basics of electrostatic discharge protection · prof. mayank shrivastava, dese, iisc 1 basics of...

27
20-11-2013 Prof. Mayank Shrivastava, DESE, IISc 1 Basics of Electrostatic Discharge (ESD) Protection Prof. Mayank Shrivastava Department of Electronic Systems Engineering Indian Institute of Science Bangalore Outline 1. Body Capacitance and ESD 2. System on Chip (SoC) 3. ESD Standards HBM CDM 4. Basic IC level protection 5. ESD protection devices 6. Integrated ESD Concepts 7. Summary Prof. Mayank Shrivastava, DESE, IISc

Upload: others

Post on 20-Jun-2020

3 views

Category:

Documents


1 download

TRANSCRIPT

20-11-2013

Prof. Mayank Shrivastava, DESE, IISc 1

Basics of Electrostatic Discharge

(ESD) Protection

Prof. Mayank Shrivastava

Department of Electronic Systems Engineering

Indian Institute of Science Bangalore

Outline 1. Body Capacitance and ESD

2. System on Chip (SoC)

3. ESD Standards

― HBM

― CDM

4. Basic IC level protection

5. ESD protection devices

6. Integrated ESD Concepts

7. Summary

Prof. Mayank Shrivastava, DESE, IISc

20-11-2013

Prof. Mayank Shrivastava, DESE, IISc 2

Outline 1. Body Capacitance and ESD

2. System on Chip (SoC)

3. ESD Standards

― HBM

― CDM

4. Basic IC level protection

5. ESD protection devices

6. Integrated ESD Concepts

7. Summary

Prof. Mayank Shrivastava, DESE, IISc

o Human body together with its surroundings forms a capacitance

absolute value depends on the body mass and surrounding (e.g.

humidity and temperature)

―Q: Is it good or bad? Why?

―Q: Is there any application/use of body capacitance?

o Body capacitance applications:

― to operate pushbutton switches, e.g. in elevators

― touch screens of smart phones, tablets, etc. capacitive touch

sensors in touch screens responds to close approach (but not force

of touch) of a human body, usually a fingertip The capacitance

between the device itself and the fingertip is sensed

―because of body capacitance, people act as good antennas

―a high body capacitance is an indicator of large quantities of intact

cellular membranes used in few medical tests

o Any disadvantage?

―Yes, Electrostatic Discharge!

Body Capacitance

Prof. Mayank Shrivastava, DESE, IISc

20-11-2013

Prof. Mayank Shrivastava, DESE, IISc 3

++

++

++

++

Electrostatic Discharge (ESD)

RDUT

CSUBRSUB

PAD

Discharge Path o Charge can be stored or

accumulated across physical

bodied (if isolated from

ground)

o It can be a human body, a

machine or the electronic

equipment (e.g. IC) itself

(In general) ESD is the transfer of electrostatic charge between

bodies (or surfaces) at different electrostatic potential

Electrical Overstress (EOS): Exposure of an object to current or voltage

beyond its physical limits (max. ratings). ESD is a subject of EOS.

Prof. Mayank Shrivastava, DESE, IISc

ESD EOS Specific Lightning

- High Voltage (1V –15kV)

- Short Duration (< 1ms)

- Very Low Power

- Low Rise Time (1-10ns)

- Low Voltage

- Longer Duration (> 1ms)

- Low Power

- High Rise Time (~ 10ms)

- Extremely High Voltage

- Extremely High Power

EOS In-General

ICs used in automotive, military,

medical, consumer, etc. electronics

can be damaged with ESD and EOS

Houses, Buildings

Airplanes, Electronics,

etc.

ESD Regime EOS Regime

Pf (L

og)

tf (Log)

~ 𝑡𝑓−1

~ 𝑡𝑓−1/2

~1

log(𝑡𝑓)

~ 𝑡𝑓−1

~ 𝑡𝑓−1/2

~1

log(𝑡𝑓)

~1

log(𝑡𝑓)

Constant Power

Dwyer, SSE, 1990 (modified)

o ESD: Heat does not disperse

much localized failures

o EOS: Wide spreading of heat

large areas of damage

Prof. Mayank Shrivastava, DESE, IISc

20-11-2013

Prof. Mayank Shrivastava, DESE, IISc 4

Grounding Person

Wrist Strap to Ground

(or flooring/footwear)

1

Grounded Work Surface

2

ESD Protective

Packaging

3

ESD for Layman

Prof. Mayank Shrivastava, DESE, IISc

ESD: Factory Measures

System Level ESD IC Level ESD

Prof. Mayank Shrivastava, DESE, IISc

20-11-2013

Prof. Mayank Shrivastava, DESE, IISc 5

ESD Q-Test Standards

IC level ESD

- Human Body Model (HBM):

ANSI ESDA/JEDEC JS-001

- Charged device model (CDM):

JESD 22-C101C

Systems level ESD

- IEC 61000-4-2

- ISO 10605 (automotive)

- Cable discharge events (CDE)

(company specific test specs)

Prof. Mayank Shrivastava, DESE, IISc

Outline 1. Body Capacitance and ESD

2. System on Chip (SoC)

3. ESD Standards

― HBM

― CDM

4. Basic IC level protection

5. ESD protection devices

6. Integrated ESD Concepts

7. Summary

Prof. Mayank Shrivastava, DESE, IISc

20-11-2013

Prof. Mayank Shrivastava, DESE, IISc 6

CPU v/s SoC Products

PC Client Data

Center

CPU

Netbook &

Tablet

Smart

Phones Embedded

Consumer

Electronics Wireless

SoC

Prof. Mayank Shrivastava, DESE, IISc

Progress in SoC Integration

2012

5.

PA

2008

4.

FM Radio

2006

3.

Power

Manage-

ment Unit

2005

2.

RF Trans-

ceiver

2000

1.

Digital

Baseband Analog

Baseband

Prof. Mayank Shrivastava, DESE, IISc

20-11-2013

Prof. Mayank Shrivastava, DESE, IISc 7

Outline 1. Body Capacitance and ESD

2. System on Chip (SoC)

3. ESD Standards

― HBM

― CDM

4. Basic IC level protection

5. ESD protection devices

6. Integrated ESD Concepts

7. Summary

Prof. Mayank Shrivastava, DESE, IISc

ESD: Electrostatic Discharge

An event of electrical discharge from one body to other

Discharge Path

+ + + + + +

Pre-charged Chip

RPAD

CSUB

RSUB

PAD

< 0.1Ohms

Charged Device Model

CDM

RDUT

CSUB RSUB

PAD

+ +

+ +

+ +

+ +

Human Body Model

HBM

Discharge Path

Prof. Mayank Shrivastava, DESE, IISc

20-11-2013

Prof. Mayank Shrivastava, DESE, IISc 8

0 100 200 300 400 500

0.0

0.3

0.6

0.9

1.2

Curr

ent

(A)

Time (ns)

Stress (& test) Models HBM: Human Body Model

Rise Time = 10ns

Peak Current = 1.3A

Av. Stress time = 100ns

Target = 2KV

RHBM = 1.5KΩ

C CHBM = 100pF

L

DUT (RL)

Human Body

Tester parasitic

L: Parasitic inductance

C: Test board capacitance

RL=0

Prof. Mayank Shrivastava, DESE, IISc

0 200 400 600

0

2

4

6

8

10

Curr

ent

(A)

Time (ps)

Stress (& test) Models….cont.

Rise Time = 100ps

Peak Current = 10A

Av. Stress time = 0.5ns

Target = 500V

CDM: Charged Device Model

Field Plate

Insulator

50 co-ax

Pogo Pin

DUT

GND Plate

HV

Supply

>100M

Prof. Mayank Shrivastava, DESE, IISc

20-11-2013

Prof. Mayank Shrivastava, DESE, IISc 9

Charged Device Model (CDM)– Test Setup

Prof. Mayank Shrivastava, DESE, IISc

ESD Waveforms

[Gieser] (modified)

1-16A~3.6A1.33APeak Current

100-500ps10-15ns2-10nsRise Time

~1ns~40ns~150nsPulse Width

500V200V2kVQual levels

CDMMMHBMModel

1-16A~3.6A1.33APeak Current

100-500ps10-15ns2-10nsRise Time

~1ns~40ns~150nsPulse Width

500V200V2kVQual levels

CDMMMHBMModel

-3

0

3

6

9

12

0 20 40 60 80 100 120

Time, t (ns)

Dis

charg

e C

urr

ent, I

ES

D(A

)

500V CDM

2000V HBM

200V MM

Typical CDM

peak current

range

15

o CDM discharge leads to very high, short current spikes

o ESD protection must limit excess voltage at gate oxides

due to high current Prof. Mayank Shrivastava, DESE, IISc

20-11-2013

Prof. Mayank Shrivastava, DESE, IISc 10

ESD Device characterization: Transmission Line Pulsing

Device characterization with rectangular pulses which are

generated by a Transmission Line Pulser (TLP)

HV

0 - Mega Ohms

50 transmission

line (e.g. 5m)

DUT

Switch

0

0.5

1

1.5

2

1 2 3 4

curr

ent [A

]

voltage [V]

I-V data point

Vhold

Vt1

It2

Vt2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-20 0 20 40 60

curr

ent [A

]

time [ns]

averaged

current

0

1

2

3

4

5

6

-20 0 20 40 60volta

ge

[V

]

time [ns]

averaged

voltage

Voltage probe

Current probe

Prof. Mayank Shrivastava, DESE, IISc

ESD Consequences

VDD

VSS

I/P

PAD

Internal

Circuit

VDD

VSS

O/P

PAD

-

+

-

+

Prof. Mayank Shrivastava, DESE, IISc

20-11-2013

Prof. Mayank Shrivastava, DESE, IISc 11

Failure Mechanism Failure: Device

Level

Failure: System

Level

Oxide Breakdown

(Left: Gate Oxide

Right: LOCOS)

Thermal Melting

(Left: Silicon

Right: Metal)

o CDM type fails causes breakdown of thin dielectrics

o HBM type fails causes thermal fails of silicon device or weak interconnects

o System level ESD or EOS causes much more extended fails

Physical Failure Signature

Outline 1. Body Capacitance and ESD

2. System on Chip (SoC)

3. ESD Standards

― HBM

― CDM

4. Basic IC level protection

5. ESD protection devices

6. Integrated ESD Concepts

7. Summary

Prof. Mayank Shrivastava, DESE, IISc

20-11-2013

Prof. Mayank Shrivastava, DESE, IISc 12

(Simplified) ESD protection

-

VDD

VSS

I/P

PAD

Internal

Circuit

VDD

VSS

O/P

PAD

ESD

ESD

ESD

ESD

+

-

+

(unwanted)

Voltage Drop

(unwanted)

Current Path

Tradeoffs: ESD robustness vs.

Circuit level System/IC level

Area Yield and cost

Leakage Design time/cycle

Performance Time to market

Complexity and design difficulty Testing and qualification requirements Prof. Mayank Shrivastava, DESE, IISc

ESD Design Window

o ESD design space is governed by:

― thermal failure limits (second breakdown)

― reliability constraints (dielectric breakdown)

o ESD design space is limited by:

― shrinking technology

― interconnect resistance and capacitive loading Prof. Mayank Shrivastava, DESE, IISc

20-11-2013

Prof. Mayank Shrivastava, DESE, IISc 13

(Extended) ESD Protection

VDD1

VSS1

output

VDD2

input

VSS2VSScore

VDDcore

+

o Low ohmic primary ESD discharge path (green)

o Robustness measures for parallel paths (pink) Prof. Mayank Shrivastava, DESE, IISc

Oxide Breakdown Voltage for Short Pulses

2 3 4 5 6 7 8 910 20

10-10

10-8

10-6

10-4

10-2

100

102

104

106

108

1010

Physical Tox:

6.85 nm

5.2 nm

2.65 nm

2.2 nm

1.97 nm

1.5 nm

1.1 nm

Temp.: 25°C

Normalized area

to 1.2 mm2

t63

% (

s)

Voltage (V)

HBM

regime

NFET Gox stressed in inversion

/Ille 2007/

Prof. Mayank Shrivastava, DESE, IISc

20-11-2013

Prof. Mayank Shrivastava, DESE, IISc 14

Rail-based ESD protection VDD

VSS

pad

pow

er

cla

mp

pow

er

cla

mp

-

driver

sta

ge

VDD

VSS

pad

pow

er

cla

mp

pow

er

cla

mp

+

driver

sta

ge

o Shunt ESD current over (ESD

+ parasitic) diode and power

clamp in series

Power clamp:

low trigger voltage

low on-resistance

low leakage

low latchup immunity

Immunity to power ramp

Low ohmic metal routing

o Protect driver stage

Avoid turn-on

Limit current through

driver

Ingredients:

Power clamp (mostly RC-triggered MOS)

PAD-to-VSS & PAD-to-VDD clamps (often

special ESD diodes are used) Prof. Mayank Shrivastava, DESE, IISc

Local Clamp ESD Protection VDD

VSS

pad

pow

er

cla

mp

pow

er

cla

mp

-

driver

sta

ge

ES

DV

SS

ES

DV

DD

VDD

VSS

pad

pow

er

cla

mp

pow

er

cla

mp

+

driver

sta

ge

ES

DV

SS

ES

DV

DD o Shunt ESD current over

primary ESD protection

element (or parasitic

diode)

o Protect driver stage

avoid turn-on

limit current through

driver

Ingredients:

Power clamp (RC-triggered MOS only for low

voltage domains)

PAD-to-VSS & PAD-to-VDD local clamps (ESD

diodes are not used directly) Prof. Mayank Shrivastava, DESE, IISc

20-11-2013

Prof. Mayank Shrivastava, DESE, IISc 15

Comparison of Protection Concepts

o Rail-based concepts with RC triggered power clamps most

beneficial for large digital domains without overvoltage

requirements

Caveat: Verify comptibility of fastest ramp-time of supply

voltage with turn-on of power clamp

o Local clamps efficient for

RF IOs with critical ESD design window

(e.g. LNA with thin Gox gate)

Overvoltage tolerant IOs

(I2C, USB, ...)

Failsafe IOs

Domains with very low IDDQ requirements (order of 10

nA @ RT) Prof. Mayank Shrivastava, DESE, IISc

VDD

VSS

I/P

PAD

Internal

Circuit

(unwanted)

Voltage Drop

IESD

IESD

-

+

Primary

ESD clamp

Voltage Shunt

VESD

VESD

1K

Secondry

ESD clamp

ESD Protection for Digital Inputs

o Protection required for

(thin) gate oxides

o ESD tradeoff:

Area

Speed

I/P matching for

RF IOs Prof. Mayank Shrivastava, DESE, IISc

20-11-2013

Prof. Mayank Shrivastava, DESE, IISc 16

Outline 1. Body Capacitance and ESD

2. System on Chip (SoC)

3. ESD Standards

― HBM

― CDM

4. Basic IC level protection

5. ESD protection devices

6. Integrated ESD Concepts

7. Summary

Prof. Mayank Shrivastava, DESE, IISc

Basic ESD Protection elements and Power

Clamp

DIODE

Use only in Forward Bias

SCR

Power clamp & local clamp

Be aware of turn-on delay and latching

RCMOS

Power clamp

Be aware of false triggering

R

MOS C

Prof. Mayank Shrivastava, DESE, IISc

20-11-2013

Prof. Mayank Shrivastava, DESE, IISc 17

Gate-Controlled MOS Clamp (“RCMOS”)

0

1

2

3

4

5

0 1 2 3 4 5

cla

mp

cu

rre

nt

[A]

VDD voltage [V]

o Clamp is quickly turned on by gate biasing large NMOS, excellent

clamping characteristics

o Clamp turned off after RC-timeout, ESD needs to be over by then!

o Typical application: supply rail clamping (i.e. not for local clamping)

o Full circuit simulation possible, no special models required

o Challenges: stand-by leakage during normal IC operation, unintended

turn-on during power ramp-up and tendency to oscillations!

R

C

VDD

Large

(N)MOS

e.g.

W=2000um

VSS

IO circuitRCMOS or BigFET clamp

Prof. Mayank Shrivastava, DESE, IISc

Design of RCMOS Power Clamp

– goal #1: no triggering for slow ramps

(1ms)

o R1 * C1 < 1ms

– goal #2: no early time out during ESD

o R1 * C1 > 0.5ms

– example:

o C1 ≈ 3pF, R1 ≈ 200kΩ

– Outside SOA: risk of false triggering / early

time out

– simplification: C1 >> CP1+CN1

VDD

Note: This is a simplified

design. Many complex

designs are available in

literature.

Prof. Mayank Shrivastava, DESE, IISc

20-11-2013

Prof. Mayank Shrivastava, DESE, IISc 18

ESD Diodes

0

0.5

1

1.5

0 1 2 3 4

STI

diodeGated

diode

curr

ent

[A]

voltage [V]

width =

50um

It2

It2

IV-Characteristics

o STI diodes: voltage overshoot due to strong forward recovery effect

o Gated diodes ( and NonSTI-diodes w/o gate)

much lower Ron and higher It2 for same device size

far less voltage overshoot makes them superior for ESD applications!

-1

0

1

2

3

4

5

6

-1 0 1 2 3 4

STI diodeGated diode

vo

lta

ge [

V]

time [ns]

width = 50um

I = 0.5A

oxide damage!

Transient response

N+ P+

C A

curved current flow

LstiS

TI

STI Diode

N+ P+

Nwell

Psub

gate

ST

I

C A

direct

current flow

Lg

Gated Diode

Prof. Mayank Shrivastava, DESE, IISc

Silicon Controlled Rectifier (SCR)

voltage

Itri

gg

er

Vtrig

X-section equivalent circuit

selected trigger devices o Basic structure shown; many options

o Internal spacing Lac and process

conditions determine holding voltage

and speed

o Intrinsic latchup-danger can be addressed

by e.g. series diodes

IV + latchup

PNP

NPN

Anode

Well

SUB

Itrigger

Rsub

(series diodes)

N+

Cathode

P+

SUB

P+

Anode

N+

Well

P-well N-well

P-substrate Itri

gg

er

main current

path

Lac

STI

voltage

cu

rren

t

VDD

latchup

danger

latchup-

free

holding

voltage

series

diodes

Prof. Mayank Shrivastava, DESE, IISc

20-11-2013

Prof. Mayank Shrivastava, DESE, IISc 19

More Sophisticated Options

BJT

Power clamp and local clamps

DeMOS

Power clamp & local clamp

Be aware of week ESD robustness of foundry

offered DeMOS devices

ggNMOS

Power clamp and local clamps

Be aware of gate-to-drain parasitic capacitance

R

MOS

N+P+ N+

Substrate

Gate DrainSBody

Buried N

(a)

FOX FOX

N- - Epi

P- - Body

STI STIN+P+ N+

Substrate

Gate DrainSBody

N-Well

P-Well

Buried N

(c)

N+P+ N+

Substrate

GateSBody

N- - EpiP- - Body

Buried N

(b)

FOX

Drain

STIN+P+ N+

N-Well

P-Well

Substrate

GateSBody Drain

Buried N

(d)

o Various other combinations are possible

o Various triggering mechanisms are explored

N+ P+ N+

P-well

ST

I

ST

I

C E B

Prof. Mayank Shrivastava, DESE, IISc

Outline 1. Body Capacitance and ESD

2. System on Chip (SoC)

3. ESD Standards

― HBM

― CDM

4. Basic IC level protection

5. ESD protection devices

6. Integrated ESD Concepts

7. Summary

Prof. Mayank Shrivastava, DESE, IISc

20-11-2013

Prof. Mayank Shrivastava, DESE, IISc 20

Inter-domain ESD stress: Voltage Clamping

2 V

4 V

0.5 V

VDD1 VDD2 VDD3

0.5 V

2 V

V

9 V

o Inter-domain ESD stress voltage drop exceeds intrinsic

breakdown voltages in the absence of inter domain protection

o Interface circuit between has to be protected locally

VSS1 VSS2 VSS3

1 A

RBUS RBUS RBUS

Prof. Mayank Shrivastava, DESE, IISc

VSS1

VDD1

Power

Clamp

VSS2

VDD2

Power

ClampES

D1

ESD2

RVSS

Inter-domain ESD stress: Parallel Paths & GOX Damage

o VESD voltage drop along the protection path between VDD1

and VSS2

o If VESD > gate oxide’s VBD gate oxide of receiving gate is

endangered

ON due to capacitive coupling /

floating gate Pass VESD VESD

Prof. Mayank Shrivastava, DESE, IISc

20-11-2013

Prof. Mayank Shrivastava, DESE, IISc 21

VSS1

VDD1

Power

Clamp

VSS2

VDD2

Power

ClampES

D1

ESD2

RVSS

Inter-domain ESD stress: Parallel Paths & GOX Damage

VESD

VESD

1K

ESD rules:

― Add voltage clamping elements to gate node

― No thin GOX buffer cap! Prof. Mayank Shrivastava, DESE, IISc

o ESD rule: (N)-diffusions,

which are connected to

different supplies, need

enlarged spacing

o ESD rule: (N)-wells, which

are connected to different

supplies, need enlarged

spacing

VDD1 VDD2

N-well N-well

P-substrate

N+ N+

Larger

spacing

Inter-domain ESD stress: Breakdown Between

Neighbored Diffusions

Prof. Mayank Shrivastava, DESE, IISc

20-11-2013

Prof. Mayank Shrivastava, DESE, IISc 22

4 V

0.5V

VDD1 VDD2 VDD3

4.5V

o Voltage drop might exceed intrinsic breakdown

voltages of sensitive topologies like:

― thin GOX buffer caps

― small LG, thin GOX MOS w/o SBLK

o Such sensitive topologies are forbidden

VSS1

VSS2

VSS3

1 A

V

RBUS RBUS RBUS

Intra-domain ESD stress: Voltage Clamping

Voltage C

urr

ent

1A

4V

Power Clamp Char.

Prof. Mayank Shrivastava, DESE, IISc

2 V

0.5V

VDD1 VDD2 VDD3

2.5V

VSS1

VSS2

VSS3

1 A

V

RBUS RBUS RBUS

Intra-domain ESD stress: Voltage Clamping

o Aggressive voltage clamping e.g. by large

RCMOS power clamp

o Compromises in leakage and area critical

for designs with large number of small power

domains Voltage

Curr

ent

1A

2V 4V

Power Clamp Char.

Prof. Mayank Shrivastava, DESE, IISc

20-11-2013

Prof. Mayank Shrivastava, DESE, IISc 23

o Large PMOS of internal buffer

can deliver high saturation

current (gate is floating)

o Value of current can be high

enough to trigger one finger of

the NMOS

o Unprotected diffusion of

NMOS will be destroyed

Intra-domain ESD stress: Parallel Paths & Large Buffers

ESD rule: Limit ratio of PMOS width (WP1) and smallest NMOS finger width (WN1)

P1

N1 N2 N3 Nn

𝑊𝑃1

𝑊𝑁1< 𝜔; 𝜔 𝑖𝑠 𝑚𝑎𝑥. 𝑟𝑎𝑡𝑖𝑜 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑎𝑛𝑑 𝑁1 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑁𝑀𝑂𝑆

ES

D p

ath

Pa

rasitic

E

SD

pa

th

Prof. Mayank Shrivastava, DESE, IISc

Protection Path between Power Rails

o Preferred On-chip metal

shorting of buses with same

potential

o Adequate ESD clamping

between buses at different

potentials

o Different VSS buses requiring

ground separation anti-

parallel diodes

o Double bonding Zener diodes are shown

for simplicity!

Supply domains have to be connected as:

Prof. Mayank Shrivastava, DESE, IISc

20-11-2013

Prof. Mayank Shrivastava, DESE, IISc 24

Package Level Protection Measures

o ESD master bus and

bonding influence the

voltage drop in ESD

discharge path

o The maximum

resistance of the

network is strongly

restricted demands

detailed extraction

Common power ground bar

inside package

1 2 3 4 5 6 7 8 9 10 11

12

13

14

15

16

17

18

19

20

21

22

24 23 26 25 28 27 30 29 32 31 33

44

43

42

41

40

39

38

37

36

35

34

OU

T_1

IN_1

VS

SB

VS

SP

VD

DP

_D

IG1

SPACER

VSSB

VSSP_DIG2

VDDP_DIG2

COMM1

OUT_2

SP

AC

ER

SPACER

OU

T_3

OU

T_4

OU

T_5

VD

D_M

AIN

VS

S

SP

AC

ER

IN_4

IN_5

IN_6

VS

S

VD

D_M

AIN

Prof. Mayank Shrivastava, DESE, IISc

System in Package

Establish ESD protection path between ICs, e.g. by double bonds

Common power ground bar

inside package

OU

T_1

IN_1

VS

SB

VS

SP

VD

DP

_D

IG1

SPACER

VSSB

VSSP_DIG2

VDDP_DIG2

COMM1

OUT_2

SPACER

OU

T_3

OU

T_4

OU

T_5

VD

D_M

AIN

VS

S

SP

AC

ER

IN_4

IN_5

IN_6

VS

S

VD

D_M

AIN

OU

T_1

IN_1

VS

SB

VS

SP

VD

DP

_D

IG1

SPACER

VSSB

VSSP_DIG2

VDDP_DIG2

COMM1

OUT_2

SPACER

OU

T_3

OU

T_4

OU

T_5

VD

D_M

AIN

VS

S

IN_4

IN_5

IN_6

VS

S

VD

D_M

AIN

SP

AC

ER

Prof. Mayank Shrivastava, DESE, IISc

20-11-2013

Prof. Mayank Shrivastava, DESE, IISc 25

System in Package: 3D IC ESD Challenges

Establish ESD protection path beteen ICs, e.g. by double bonds PCB

BGA Laminate

Die-1

TSV

Microbump

Underfill

Package balls

Die-2

Die-3

Die-4

o ESD master bus Dies containing IOs connected to balls need common

ESD master bus

o IO protection:

― IOs connected to balls need to have full ESD protection circuit

― Inputs not connected to balls fine with reduced ESD protection

o Be aware ESD compliance of dies from different suppliers Prof. Mayank Shrivastava, DESE, IISc

Outline 1. Body Capacitance and ESD

2. System on Chip (SoC)

3. ESD Standards

― HBM

― CDM

4. Basic IC level protection

5. ESD protection devices

6. Integrated ESD Concepts

7. Summary

Prof. Mayank Shrivastava, DESE, IISc

20-11-2013

Prof. Mayank Shrivastava, DESE, IISc 26

Summary o Appropriate ESD targets for ICs:

― HBM: 1 KV

― CDM: 250 V

o Scaling of technology narrows window for CDM further!

o Efficient voltage clamping is essential for ESD protection

― Rail based ( dual diode + RCMOS power clamp)

― Local clamp (e.g. SCR) concepts are used

o ESD rules have to be applied for protected circuitry. Most familiar

rules are:

― Cross domain rules

― Restricted use of low voltage devices

o Package design is an integral measure of ESD protection

concepts

― An ESD master bus has to be guaranteed Prof. Mayank Shrivastava, DESE, IISc

ESD in Nanoelectronics

o ESD in Nanoelectronics will be a challenge as new

structures and materials are introduced

o ESD protection of future Nanoelectronic devices

and products will be a challenge due to physical

size, geometries, and performance objectives

Prof. Mayank Shrivastava, DESE, IISc

20-11-2013

Prof. Mayank Shrivastava, DESE, IISc 27

Research Options in ESD Field

o Ultra-thin SOI

o RF SOI

o GaAs

o InP

o SiGe

o Strained Si

o FinFET

o Tunnel FET

o Carbon Nanotubes

o Graphene

o High Speed Pulse Testing

o VF-TLP

o UF-TLP

o RF Test

o Tunneling Magnetic

Heads

o Micro-Machines

o Lasers

o LEDs

o MEMs

o Space Applications

Prof. Mayank Shrivastava, DESE, IISc