av02-0031en,0 fiber module document

16
AFBR-5903Z/5903EZ/5903AZ FDDI, Fast Ethernet Transceivers in 2 x 5 Package Style Data Sheet Features Multisourced 2 x 5 package style with MT-RJ receptacle Single +3.3 V power supply Wave solder and aqueous wash process compatible Full compliance with the optical performance requirements of the FDDI PMD standard Full compliance with the FDDI LCF-PMD standard Full compliance with the optical performance requirements of the ATM 100 Mb/s physical layer Full compliance with the optical performance requirements of 100 Base-FX version of IEEE 802.3u “RoHS” compliance Receiver output squelch function enabled Applications Multimode fiber backbone links Multimode fiber wiring closet to desktop links Ordering Information The AFBR-5903Z 1300 nm product is available for pro- duction orders through the Avago Technologies Com- ponent Field Sales Offices and Authorized Distributors world wide. AFBR-5903Z = 0°C to +70°C No Shield AFBR-5903EZ = 0°C to +70°C Extended Shield AFBR-5903AZ = -40°C to +85°C No Shield. Description The AFBR-5903Z family of transceivers from Avago Tech- nologies provide the system designer with products to implement a range of FDDI and ATM (Asynchronous Transfer Mode) designs at the 100 Mb/s-125 MBd rate. The transceivers are all supplied in the new industry standard 2 x 5 DIP style with a MT-RJ fiber connector interface. FDDI PMD, ATM and Fast Ethernet 2 km Backbone Links The AFBR-5903Z is a 1300 nm product with optical per- formance compliant with the FDDI PMD standard. The FDDI PMD standard is ISO/IEC 9314-3: 1990 and ANSI X3.166 - 1990. These transceivers for 2 km multimode fiber backbones are supplied in the small 2 x 5 MT-RJ package style for those designers who want to avoid the larger MIC/R (Media Interface Connector/Receptacle) defined in the FDDI PMD standard. Avago Technologies also provides several other FDDI products compliant with the PMD and SM-PMD standards. These products are available with MIC/R, ST © , SC and FC connector styles. They are available in the 1 x 9, 1 x 13 and 2 x 11 transceiver and 16 pin transmitter/receiver pack- age styles for those designs that require these alternate configurations. The AFBR-5903Z is also useful for both ATM 100 Mb/s interfaces and Fast Ethernet 100 Base-FX interfaces. The ATM Forum User-Network Interface (UNI) Standard,Version 3.0, defines the Physical Layer for 100 Mb/s Multimode Fiber Interface for ATM in Section 2.3 to be the FDDI PMD Standard. Likewise, the Fast Ethernet Alliance defines the Physical Layer for 100 Base-FX for Fast Ethernet to be the FDDI PMD Standard. ATM applications for physical layers other than 100 Mb/s Multimode Fiber Interface are supported by Avago Technologies. Products are available for both the single-mode and the multimode fiber SONET OC-3c (STS-3c), SDH (STM-1) ATM interfaces and the 155 Mb/s- 194 MBd multimode fiber ATM interface as specified in the ATM Forum UNI. Contact your Avago Technologies sales representa- tive for information on these alternative FDDI and ATM products.

Upload: acbeo

Post on 20-Jul-2016

233 views

Category:

Documents


3 download

DESCRIPTION

SFP fiber module

TRANSCRIPT

AFBR-5903Z/5903EZ/5903AZFDDI, Fast Ethernet Transceivers in 2 x 5 Package Style

Data Sheet

Features• Multisourced2x5packagestylewithMT-RJ

receptacle• Single+3.3Vpowersupply• Wavesolderandaqueouswashprocesscompatible• Fullcompliancewiththeopticalperformance

requirementsoftheFDDIPMDstandard• FullcompliancewiththeFDDILCF-PMDstandard• Fullcompliancewiththeopticalperformance

requirementsoftheATM100Mb/sphysicallayer• Fullcompliancewiththeopticalperformance

requirementsof100 Base-FXversionofIEEE802.3u• “RoHS”compliance• Receiveroutputsquelchfunctionenabled

Applications• Multimodefiberbackbonelinks• Multimodefiberwiringclosettodesktoplinks

Ordering InformationTheAFBR-5903Z1300nmproductisavailableforpro-ductionordersthroughtheAvagoTechnologiesCom-ponentFieldSalesOfficesandAuthorizedDistributorsworldwide.

AFBR-5903Z = 0°Cto+70°C NoShieldAFBR-5903EZ = 0°Cto+70°C ExtendedShieldAFBR-5903AZ = -40°Cto+85°C NoShield.

DescriptionTheAFBR-5903ZfamilyoftransceiversfromAvagoTech-nologies provide the system designer with productstoimplementarangeofFDDIandATM(AsynchronousTransferMode)designsatthe100Mb/s-125MBdrate.

The transceivers are all supplied in the new industrystandard 2 x 5 DIP style with a MT-RJ fiber connectorinterface.

FDDI PMD, ATM and Fast Ethernet 2 km Backbone LinksTheAFBR-5903Zisa1300nmproductwithopticalper-formance compliant with the FDDI PMD standard.TheFDDI PMD standard is ISO/IEC 9314-3: 1990 and ANSIX3.166-1990.

Thesetransceiversfor2kmmultimodefiberbackbonesaresupplied inthesmall2x5MT-RJpackagestyle forthose designers who want to avoid the larger MIC/R(Media Interface Connector/Receptacle) defined in theFDDIPMDstandard.

Avago Technologies also provides several other FDDIproductscompliantwiththePMDandSM-PMDstandards.TheseproductsareavailablewithMIC/R,ST©,SCandFCconnectorstyles.Theyareavailableinthe1x9,1x13and2x11transceiverand16pintransmitter/receiverpack-agestylesforthosedesignsthatrequirethesealternateconfigurations.

The AFBR-5903Z is also useful for both ATM 100 Mb/sinterfacesandFastEthernet100Base-FXinterfaces.TheATMForumUser-NetworkInterface(UNI)Standard,Version3.0,definesthePhysicalLayerfor100Mb/sMultimodeFiberInterfaceforATMinSection2.3tobetheFDDIPMDStandard.Likewise,theFastEthernetAlliancedefinesthePhysicalLayerfor100Base-FXforFastEthernettobetheFDDIPMDStandard.

ATM applications for physical layers other than 100Mb/s Multimode Fiber Interface are supported byAvago Technologies. Products are available for boththesingle-modeandthemultimodefiberSONETOC-3c(STS-3c),SDH(STM-1)ATMinterfacesandthe155Mb/s-194 MBd multimode fiber ATM interface as specifiedintheATMForumUNI.

ContactyourAvagoTechnologiessalesrepresenta-tiveforinformationonthesealternativeFDDIandATMproducts.

2

Transmitter SectionsThetransmittersectionoftheAFBR-5903Zutilizesa1300nmSurfaceEmittingInGaAsPLED.ThisLEDispackagedin the optical subassembly portion of the transmittersection.ItisdrivenbyacustomsiliconICwhichconvertsdifferentialPECLlogicsignals,ECLreferenced(shifted)toa+3.3Vsupply,intoananalogLEDdrivecurrent.

Receiver SectionsThereceiversectionoftheAFBR-5903ZutilizesanInGaAsPINphotodiodecoupledtoacustomsilicontransimped-ancepreamplifier IC. It ispackaged in theoptical sub-assemblyportionofthereceiver.

ThisPIN/preamplifiercombinationiscoupledtoacustomquantizer ICwhich provides the final pulse shaping forthelogicoutputandtheSignalDetectfunction.TheDataoutputisdifferential.TheSignalDetectoutputissingle-ended. Both Data and Signal Detect outputs are PECLcompatible, ECL referenced (shifted) to a +3.3V powersupply.Thereceiveroutputs,DataOutandDataOutBar,aresquelchedatSignalDetectDeassert.Thatis,whenthelightinputpowerdecreasestoatypical-38dBmorless,theSignalDetectDeasserts,i.e.theSignalDetectoutputgoestoaPECLlowstate.Thisforcesthereceiveroutputs,DataOutandDataOutBar togotosteadyPECL levelsHighandLowrespectively.

PackageTheoverallpackageconceptfortheAvagoTechnologiestransceiver consists of the following basic elements; twooptical subassemblies, an electrical subassembly and thehousingasillustratedinFigure1.

ThepackageoutlinedrawingandpinoutareshowninFigures2and3.Thedetailsofthispackageoutlineandpinoutarecompliantwiththemultisourcedefinitionofthe2x5DIP.ThelowprofileoftheAvagoTechnologiestransceiverdesigncomplieswiththemaximumheightallowedfortheMT-RJconnectorovertheentirelengthofthepackage.

Theopticalsubassembliesutilizeahigh-volumeassemblyprocesstogetherwithlow-costlenselementswhichresultinacost-effectivebuildingblock.

Theelectricalsubassemblyconsistsofahighvolumemul-tilayer printed circuit board on which the IC and varioussurface-mountedpassivecircuitelementsareattached.

Thereceiversectionincludesaninternalshieldfortheelec-tricalandopticalsubassembliestoensurehighimmunitytoexternalEMIfields.

Theouterhousingiselectricallyconductiveandisatreceiversignalgroundpotential.TheMT-RJportismoldedoffillednonconductive plastic to provide mechanical strengthand electrical isolation. The solder posts of the AvagoTechnologiesdesignareisolatedfromtheinternalcircuitofthetransceiver.

Thetransceiverisattachedtoaprintedcircuitboardwiththetensignalpinsandthetwosolderpostswhichexitthebottomofthehousing.Thetwosolderpostsprovidetheprimarymechanicalstrengthtowithstandtheloadsimposed on the transceiver by mating with the MT-RJconnectoredfibercables.

Figure 1. Block Diagram.

DATA OUT

SIGNALDETECT

DATA IN

QUANTIZER IC

LED DRIVER IC

PIN PHOTODIODEPRE-AMPLIFIERSUBASSEMBLY

LED OPTICALSUBASSEMBLY

DATA OUT

DATA IN

MT-RJRECEPTACLE

RX SUPPLY

TX SUPPLY

RX GROUND

TX GROUND

3

Figure 2. Package Outline Drawing

Note:YYWW ManufacturedWorkWeekCOO CountryOfOrigin(Philippines)

FRONT VIEW

13.97(0.55)MIN.

4.5 ±0.2(0.177 ±0.008)

(PCB to OPTICSCENTER LINE)

5.15(0.20)

(PCB to OVERALLRECEPTACLE CENTER

LINE)

DIMENSIONS IN MILLIMETERS (INCHES)

NOTES:1. THIS PAGE DESCRIBES THE MAXIMUM PACKAGE OUTLINE, MOUNTING STUDS, PINS AND THEIR RELATIONSHIPS TO EACH OTHER.2. TOLERANCED TO ACCOMMODATE ROUND OR RECTANGULAR LEADS.3. ALL 12 PINS AND POSTS ARE TO BE TREATED AS A SINGLE PATTERN.4. THE MT-RJ HAS A 750 µm FIBER SPACING.5. THE MT-RJ ALIGNMENT PINS ARE IN THE MODULE.6. FOR SM MODULES, THE FERRULE WILL BE PC POLISHED (NOT ANGLED).7. SEE MT-RJ TRANSCEIVER PIN OUT DIAGRAM FOR DETAILS.

37.56 (1.479) MAX.

SIDE VIEW

49.56 (1.951) REF.

9.8(0.386)MAX.

9.3(0.366)MAX.

Ø 1.07(0.042)

Ø 0.61

(0.024)

Pin 1

TOP VIEW9.6(0.378)MAX.

13.59(0.535)MAX.

12(0.472)

7.59(0.299)

8.6(0.339)

Ø1.5(0.059)

17.778(0.7)

1.778(0.07)

7.112(0.28)

+0-0.2(+000)(-008)

10.16(0.4)

Case TemperatureMeasurement Point

Min 2.92(0.115)

Labelling Information

4

Figure 3. Pin Out Diagram.

Pin Descriptions:

Pin 1 Receiver Signal Ground VEE RX:Directlyconnectthispintothereceivergroundplane.

Pin 2 Receiver Power Supply VCC RX:Provide+3.3Vdcviatherecommendedreceiverpowersupplyfiltercircuit.LocatethepowersupplyfiltercircuitascloseaspossibletotheVCCRXpin.

Pin 3 Signal Detect SD:Normalopticalinputlevelstothereceiverresultinalogic“1”output.

Lowoptical input levels to the receiver result in a faultconditionindicatedbyalogic“0”output.

This Signal Detect output can be used to drive a PECLinputonanupstreamcircuit,suchasSignalDetectinputorLossofSignal-bar.

Pin 4 Receiver Data Out Bar RD-:Nointernalterminationsareprovided.Seerecommendedcircuitschematic.

Pin 5 Receiver Data Out RD+:Nointernalterminationsareprovided.Seerecommendedcircuitschematic.

Pin 6 Transmitter Power Supply VCC TX: Provide+3.3Vdcviatherecommendedtransmitterpowersupplyfiltercircuit.LocatethepowersupplyfiltercircuitascloseaspossibletotheVCCTXpin.

Pin 7 Transmitter Signal Ground VEE TX: Directly connect this pin to the transmitter groundplane.

Pin 8 Transmitter Disable TDIS:Nointernalconnection.Optionalfeatureforlaserbasedproductsonly.Forlaserbasedproductsconnectthispinto+3.3VTTLlogichigh“1”todisablemodule.ToenablemoduleconnecttoTTLlogiclow“0”.

Pin 9 Transmitter Data In TD+:Nointernalterminationsareprovided.Seerecommendedcircuitschematic.

Pin 10 Transmitter Data In Bar TD-: Nointernalterminationsareprovided.Seerecommendedcircuitschematic.

Mounting Studs/Solder PostsThemountingstudsareprovidedfortransceivermechani-calattachmenttothecircuitboard.Itisrecommendedthattheholesinthecircuitboardbeconnectedtochassisground.

TRANSMITTERDATAINBARTRANSMITTERDATAINTRANSMITTERDISABLE(LASERBASEDPRODUCTSONLY)TRANSMITTERSIGNALGROUNDTRANSMITTERPOWERSUPPLY

RX TX

ooooo

12345

ooooo

109876

RECEIVERSIGNALGROUNDRECEIVERPOWERSUPPLY

SIGNALDETECTRECEIVERDATAOUTBAR

RECEIVERDATAOUT

Top

View

MountingStuds/Solder

Posts

5

Figure 4. Typical Optical Power Budget at BOL versus Fiber Optic Cable Length.

OPT

ICA

L PO

WER

BU

DG

ET (

dB)

0

FIBER OPTIC CABLE LENGTH (km)0.5 1.5 2.0 2.5

12

10

8

6

4

2

1.00.3

HFBR-5903, 62.5/125 µm

HFBR-590350/125 µm

Application InformationTheApplicationsEngineeringgroupisavailabletoassistyouwiththetechnicalunderstandinganddesigntrade-offsassociatedwiththesetransceivers.YoucancontactthemthroughyourAvagoTechnologiessalesrepresentative.

Thefollowinginformationisprovidedtoanswersomeofthemostcommonquestionsabouttheuseoftheseparts.

Transceiver Optical Power Budget versus Link LengthOpticalPowerBudget(OPB)istheavailableopticalpowerforafiberopticlinktoaccommodatefibercablelossespluslossesduetoin-lineconnectors,splices,opticalswitches,andtoprovidemarginforlinkagingandunplannedlossesduetocableplantreconfigurationorrepair.

Figure4illustratesthepredictedOPBassociatedwiththetransceiverspecifiedinthisdatasheetattheBeginningofLife(BOL).Thesecurvesrepresenttheattenuationandchromaticplusmodaldispersionlossesassociatedwiththe62.5/125µmand50/125µmfibercablesonly.TheareaunderthecurvesrepresentstheremainingOPBatanylinklength,whichisavailableforovercomingnon-fibercablerelatedlosses.

AvagoTechnologiesLEDtechnologyhasproduced1300nmLEDdeviceswithloweragingcharacteristicsthannor-mallyassociatedwiththesetechnologiesintheindustry.Theindustryconventionis1.5dBagingfor1300nmLEDs.TheAvagoTechnologies1300nmLEDswillexperiencelessthan1dBofagingovernormalcommercialequipmentmission life periods. Contact your Avago Technologiessalesrepresentativeforadditionaldetails.

Figure4wasgeneratedwithaAvagoTechnologiesfiberopticlinkmodelcontainingthecurrentindustryconven-tions for fiber cable specifications and the FDDI PMDandLCF-PMDopticalparameters.Theseparametersarereflected in the guaranteed performance of the trans-ceiverspecificationsinthisdatasheet.ThissamemodelhasbeenusedextensivelyintheANSIandIEEEcommit-tees, includingtheANSIX3T9.5committee,toestablishthe optical performance requirements for various fiberoptic interface standards. The cable parameters usedcomefromtheISO/IECJTC1/SC25/WG3GenericCablingforCustomerPremisesperDIS11801documentandtheEIA/TIA-568-ACommercialBuildingTelecommunicationsCablingStandardperSP-2840.

6

Figure 6. Bit Error Rate vs. Relative Receiver Input Optical Power.

BIT

ER

RO

R R

ATE

-6 4

1 x 10 -2

RELATIVE INPUT OPTICAL POWER - dB-4 2-2 0

1 x 10 -4

1 x 10 -6

1 x 10 -8

1 x 10 -101 x 10 -11

CONDITIONS:1. 125 MBd2. PRBS 2 7-13. CENTER OF SYMBOL SAMPLING4. TA = +25 ˚C5. VCC = 3.3 V dc6. INPUT OPTICAL RISE/FALL TIMES = 1.0/ 2.1 ns.

1 x 10 -12

1 x 10 -9

1 x 10 -7

1 x 10 -5

1 x 10 -3

CENTER OF SYMBOL

HFBR-5903 SERIES

Figure 5. Transceiver Relative Optical Power Budget at Constant BER vs. Signaling Rate.

CONDITIONS:1. PRBS 2 7-12. DATA SAMPLED AT CENTER OF DATA SYMBOL.3. BER = 10-6

4. TA = +25 ˚C5. VCC = 3.3 V dc6. INPUT OPTICAL RISE/FALL TIMES = 1.0/ 2.1 ns.

-1

-0.5

0

0.5

1

1.5

2

2.5

0 25 50 75 100 125 150 175 200

SIGNAL RATE (MBd)

TRA

NSC

EIVE

R R

ELA

TIVE

PO

WER

BU

DG

ETA

T C

ON

STA

NT

BER

(dB

)

Transceiver Signaling Operating Rate Range and BER PerformanceForpurposesofdefinition, thesymbol (Baud) rate,alsocalled signaling rate, is the reciprocal of the shortestsymbol time. Data rate (bits/sec) is the symbol rate di-vided by the encoding factor used to encode the data(symbols/bit).

WhenusedinFDDIandATM100Mb/sapplicationstheperformanceofthe1300nmtransceiversisguaranteedoverthesignalingrateof10MBdto125MBdtothefullcon-ditionslistedinindividualproductspecificationtables.

The transceivers may be used for other applications atsignalingratesoutsideofthe10MBdto125MBdrangewithsomepenaltyinthelinkopticalpowerbudgetpri-marilycausedbyareductionofreceiversensitivity.Figure5givesanindicationofthetypicalperformanceofthese1300nmproductsatdifferentrates.

ThesetransceiverscanalsobeusedforapplicationswhichrequiredifferentBitErrorRate(BER)performance.Figure6illustratesthetypicaltrade-offbetweenlinkBERandthereceiversinputopticalpowerlevel.

Transceiver Jitter PerformanceTheAvagoTechnologies1300nmtransceiversaredesignedtooperateperthesystemjitterallocationsstatedinTableE1ofAnnexEoftheFDDIPMDandLCF-PMDstandards.

TheAvagoTechnologies1300nmtransmitterswilltoleratetheworstcaseinputelectricaljitterallowedinthesetableswithoutviolatingtheworstcaseoutputjitterrequirementsofSections8.1ActiveOutputInterfaceoftheFDDIPMDandLCF-PMDstandards.

TheAvagoTechnologies1300nmreceiverswilltoleratetheworstcaseinputopticaljitterallowedinSections8.2ActiveInputInterfaceoftheFDDIPMDandLCF-PMDstandardswithout violating the worst case output electrical jitterallowedinTableE1ofAnnexE.

Thejitterspecificationsstatedinthefollowing1300nmtransceiverspecificationtablesarederivedfromthevaluesinTableE1ofAnnexE.Theyrepresenttheworstcasejittercontribution that the transceivers are allowed to maketotheoverallsystemjitterwithoutviolatingtheAnnexEallocationexample.InpracticethetypicalcontributionoftheAvagoTechnologiestransceiversiswellbelowthesemaximumallowedamounts.

Recommended Handling PrecautionsAvago Technologies recommends that normal staticprecautions be taken in the handling and assem-bly of these transceivers to prevent damage whichmay be induced by electrostatic discharge (ESD).TheAFBR-5903ZseriesoftransceiversmeetMIL-STD-883CMethod3015.4Class2products.

Careshouldbeusedtoavoidshortingthereceiverdataorsignaldetectoutputsdirectlytogroundwithoutpropercurrentlimitingimpedance.

Solder and Wash Process CompatibilityThe transceivers are delivered with protective processplugsinsertedintotheMT-RJconnectorreceptacle.Thisprocessplugprotectstheopticalsubassembliesduringwavesolderandaqueouswashprocessingandactsasadustcoverduringshipping.

These transceivers are compatible with either industrystandardwaveorhandsolderprocesses.

Shipping ContainerThetransceiverispackagedinashippingcontainerde-signed to protect it from mechanical and ESD damageduringshipmentorstorage.

7

Figure 7. Recommended Decoupling and Termination Circuits

o V

EE R

Xo

V CC

RX

o S

D

o R

D-

o R

D+

Z = 50 Ω

Z = 50 Ω

TERMINATE ATTRANSCEIVER INPUTS

Z = 50 Ω

Z = 50 Ω

10 9 8 7 6

SD

LVPECL

VCC (+3.3 V)

TERMINATE ATDEVICE INPUTS

LVPECL

VCC (+3.3 V)

PHY DEVICE

TD+

TD-

RD+

RD-

VCC (+3.3V)

82 Ω

130 Ω Z = 50 Ω

1 2 3 4 5

TD-

o

TD+

o

N/C

o

VEE

TX

o

VC

C T X

o 1 µH

C2

1 µH

C1

C3 10 µF

VCC (+3.3 V)

TX

RX

Note: C1 = C2 = C3 = 10 nF or 100 nF

100

100 Ω

130 Ω 130 Ω

130 Ω 130 Ω

Board Layout - Decoupling Circuit, Ground Planes and Termination CircuitsItisimportanttotakecareinthelayoutofyourcircuitboardtoachieveoptimumperformancefromthesetransceivers.Figure 7 provides a good example of a schematic for apowersupplydecouplingcircuitthatworkswellwiththeseparts.Itisfurtherrecommendedthatacontinuousgroundplanebeprovidedinthecircuitboarddirectlyunderthetransceivertoprovidealowinductancegroundforsignalreturn current. This recommendation is in keeping withgoodhighfrequencyboardlayoutpractices.Figures7and8showtworecommendedterminationschemes.

Board Layout - Hole PatternThe Avago Technologies transceiver complies with thecircuitboard“CommonTransceiverFootprint”holepatterndefinedintheoriginalmultisourceannouncementwhichdefinedthe2x5packagestyle.ThisdrawingisreproducedinFigure9withtheadditionofANSIY14.5Mcompliantdimensioning to be used as a guide in the mechanicallayoutofyourcircuitboard.

8

Figure 9. Recommended Board Layout Hole Pattern

DIMENSIONS IN MILLIMETERS (INCHES)

NOTES:1. THIS FIGURE DESCRIBES THE RECOMMENDED CIRCUIT BOARD LAYOUT FOR THE MT-RJ

TRANSCEIVER PLACED AT .550 SPACING.2. THE HATCHED AREAS ARE KEEP-OUT AREAS RESERVED FOR HOUSING STANDOFFS. NO

METAL TRACES OR GROUND CONNECTION IN KEEP-OUT AREAS.3. 10 PIN MODULE REQUIRES ONLY 16 PCB HOLES, INCLUDING 4 PACKAGE GROUNDING TAB

HOLES CONNECTED TO SIGNAL GROUND.4. THE SOLDER POSTS SHOULD BE SOLDERED TO CHASSIS GROUND FOR MECHANICAL

INTEGRITY AND TO ENSURE FOOTPRINT COMPATIBILITY WITH OTHER SFF TRANSCEIVERS.

Spac

ing

Of F

ront

Hou

sing

Lea

ds H

oles

Holes ForHousingLeads

13.34(0.525)

KEEP OUT AREAFOR PORT PLUG

7.59(0.299)

3(0.118)

3(0.118)

6(0.236)

4.57(0.18)17.78

(0.7)27

(1.063)

1.778(0.07)

7.112(0.28)

Ø 0.81 ±0.1(0.032±0.004)

3.08(0.121)

Ø 2.29(0.09)

7.11(0.28)

9.59(0.378)

3.08(0.121)

Ø 1.4 ±0.1(0.055±0.004)

Ø 1.4 ±0.1(0.055±0.004)

Ø 1.4 ±0.1(0.055±0.004)

10.16(0.4)13.97

(0.55)MIN.

3.56(0.14)

7(0.276)

10.8(0.425)

2(0.079)

Figure 8. Alternative Termination Circuits

o

VEE

RX

oV

CC

RX

o SD

o R

D-

o

RD

+

Z = 50 Ω 130 Ω

VCC (+3.3 V)

10 nF

Z = 50 Ω

130 Ω

82 Ω 82 Ω

TERMINATE ATTRANSCEIVER INPUTS

Z = 50 Ω

Z = 50 Ω

10 9 8 7 6

SD

LVPECL

VCC (+3.3 V)

TERMINATE AT DEVICE INPUTS

LVPECL

VCC (+3.3 V)

PHY DEVICE

TD+

TD-

RD+

RD-

Z = 50 Ω

1 2 3 4 5

TD-

o

TD+

o

N/C

o

VEE

TX

o

VC

C TX

o

1 µH

C2

1 µH

C1

C3

10 µF

VCC (+3.3 V)TX

RX

Note: C1 = C2 = C3 = 10 nF or 100 nF

10 nF

130 Ω

82 Ω

VCC (+3.3V)

130 Ω

82 Ω

VCC (+3.3V)

82 Ω

130 Ω 10 nF

9

Regulatory ComplianceThesetransceiverproductsareintendedtoenablecom-mercialsystemdesignerstodevelopequipmentthatcom-plieswiththevariousinternationalregulationsgoverningcertificationof InformationTechnologyEquipment.SeetheRegulatoryComplianceTable fordetails.Additionalinformation is available from your AvagoTechnologiessalesrepresentative.

Electrostatic Discharge (ESD)There are two design cases in which immunity to ESDdamageisimportant.Thefirstcaseisduringhandlingofthetransceiverpriortomountingitonthecircuitboard.ItisimportanttousenormalESDhandlingprecautionsforESDsensitivedevices.Theseprecautionsincludeusinggroundedwriststraps,workbenches,andfloormatsinESDcontrolledareas.

Thesecondcasetoconsiderisstaticdischargestotheex-terioroftheequipmentchassiscontainingthetransceiverparts.TotheextentthattheMT-RJconnectorisexposedtotheoutsideoftheequipmentchassisitmaybesubjecttowhateverESDsystemleveltestcriteriathattheequipmentisintendedtomeet.

Electromagnetic Interference (EMI)Mostequipmentdesignsutilizingthishighspeedtrans-ceiverfromAvagoTechnologieswillberequiredtomeettherequirementsofFCC intheUnitedStates,CENELECEN55022(CISPR22)inEuropeandVCCIinJapan.

ImmunityEquipmentutilizingthesetransceiverswillbesubjecttoradio-frequencyelectromagneticfieldsinsomeenviron-ments.Thesetransceivershaveahighimmunitytosuchfields.

Regulatory Compliance TableFeature Test Method Performance

ElectrostaticDischarge(ESD)totheElectricalPins

MIL-STD-883CMethod3015.4

MeetsClass2(2000to3999Volts).Withstandupto2200Vappliedbetweenelectricalpins.

ElectrostaticDischargeESD)totheMT-RJReceptacle

VariationofIEC801-2

Typicallywithstandatleast25kVwithoutdamagewhentheMT-RJConnectorReceptacleiscontactedbyaHumanBodyModelprobe.

ElectromagneticInterference(EMI)

FCCClassBCENELECCEN55022VCCIClass2

Typicallyprovidea10dBmargintothenotedstandards,however,itshouldbenotedthatfinalmargindependsonthecustomer’sboardandchasisdesign.

Immunity VariationofIEC61000-4-3Typicallyshownomeasurableeffectfroma10V/mfieldsweptfrom10to450MHzappliedtothetransceiverwhenmountedtoacircuitcardwithoutachassisenclosure.

EyeSafety IEC825Issue11993:11Class1CENELECEN60825Class1

CompliantperAvagoTechnologiestestingundersinglefaultconditions.TUVCertification:LEDClass1

RoHSCompliance ReferencetoEURoHSDirective2002/95/EC

Transceiver Reliability and Performance Qualification DataThe2x5transceivershavepassedAvagoTechnologies’reliabilityandperformancequalificationtestingandareundergoing ongoing quality and reliability monitoring.DetailsareavailablefromyourAvagoTechnologiessalesrepresentative.

Applications Support MaterialsContactyourlocalAvagoTechnologiesComponentFieldSalesOfficeforinformationonhowtoobtainevaluationboardsforthe2x5transceivers.

10

Figure 11. Transmitter Output Optical Spectral Width (FWHM) vs. Transmit-ter Output Optical Center Wavelength and Rise/Fall Times.

1380

200

100

λ - TRANSMITTER OUTPUT OPTICAL

CENTER WAVELENGTH - nm

1200 1300 1320

180

160

140

120

13601340

∆λ

- TR

AN

SMIT

TER

OU

TPU

T O

PTIC

AL

SPEC

TRA

L W

IDTH

(FW

HM

) -

nm

t r/f - TRANSMITTER

OUTPUT OPTICAL

RISE/FALL TIMES - ns

1.5

2.0

3.0

3.5

2.5

3.0

3.5

HFBR-5903 FDDI TRANSMITTER TEST RESULTSOF λC, ∆λ AND tr/f ARE CORRELATED ANDCOMPLY WITH THE ALLOWED SPECTRAL WIDTHAS A FUNCTION OF CENTER WAVELENGTH FORVARIOUS RISE AND FALL TIMES.

C

REL

ATI

VE IN

PUT

OPT

ICA

L PO

WER

(dB

)

-4 4

EYE SAMPLING TIME POSITION (ns)

-3 -1 0 1

6

3-2 2

5

4

3

2

1

0

2.5 x 10 -10 BER

1.0 x 10-12 BER

CONDITIONS:

1.TA = +25 ˚C2. VCC = 3.3 V dc3. INPUT OPTICAL RISE/FALL TIMES = 1.0/2.1 ns.4. INPUT OPTICAL POWER IS NORMALIZED TO CENTER OF DATA SYMBOL.5. NOTE 19 AND 20 APPLY.

Figure 10. Recommended Panel Mounting

DIMENSIONS IN MILLIMETERS (INCHES)

10.8 ±0.1(0.425±0.004)

13.97(0.55)MIN.

0.25 ±0.1(0.01 ±0.004)

(TOP OF PCB TO

BOTTOM OFOPENING)

9.8 ±0.1(0.386±0.004)

14.79(0.589)

1(0.039)

3.8(0.15 )

Figure 13. Relative Input Optical Power vs. Eye Sampling Time Position.

11

Figure 12. Output Optical Pulse Envelope.

40 ± 0.7

10.0

4.850

1.525

0.5255.6

100% TIMEINTERVAL

± 0.725 ± 0.725

4.40

1.975

0.075

0.50

0.025-

0.0250.0-

0.05

0.10

10.0

5.6 1.525

0.525

4.850

80 ± 500 ppm

4.40

1.975

0.075

0.90

1.025

1.25

TIME - ns

0% TIMEINTERVAL

1.000.975

REL

ATI

VE A

MPL

ITU

DE

THE AFBR-5903 OUTPUT OPTICAL PULSE SHAPE SHALL FIT WITHIN THE BOUNDARIES OF THEPULSE ENVELOPE FOR RISE AND FALL TIME MEASUREMENTS.

-31.0 dBm

-45.0 dBm

SIGNAL _ DETECT(ON)

SIGNAL _ DETECT (OFF)

AS _MAX

INPUT OPTICAL POWER( > 1.5 dB STEP INCREASE)

INPUT OPTICAL POWER( > 4.0 dB STEP DECREASE)

PO = MAX (PS OR -45.0 dBm)

(PS = INPUT POWER FOR BER <

102)

MIN (P O + 4.0 dB OR -31.0 dBm)P A(PO + 1.5 dB < P A < -31.0 dBm)

OPT

ICA

L PO

WER

TIME

SIG

NA

LD

ETEC

TO

UTP

UT

AS _ MAX - MAXIMUM ACQUISITION TIME (SIGNAL). AS _ MAX IS THE MAXIMUM SIGNAL _ DETECT ASSERTION TIME FOR THE STATION. AS _ MAX SHALL NOT EXCEED 100.0 µs. THE DEFAULT VALUE OF AS _ MAX IS 100.0 µs.

ANS _ MAX - MAXIMUM ACQUISITION TIME (NO SIGNAL). ANS _ MAX IS THE MAXIMUM SIGNAL _ DETECT DEASSERTION TIME FOR THE STATION. ANS _ MAX SHALL NOT EXCEED 350 µs. THE DEFAULT VALUE OF AS _ MAX IS 350 µs.

ANS _ MAX

Figure 14. Signal Detect Thresholds and Timing.

12

Absolute Maximum RatingsStressesinexcessoftheabsolutemaximumratingscancausecatastrophicdamagetothedevice.Limitsapplytoeachparameterinisolation,allotherparametershavingvalueswithintherecommendedoperatingconditions.Itshouldnotbeassumedthatlimitingvaluesofmorethanoneparametercanbeappliedtotheproductatthesametime.Exposuretotheabsolutemaximumratingsforextendedperiodscanadverselyaffectdevicereliability.

Parameter Symbol Minimum Typical Maximum Unit Reference

StorageTemperature TS -40 +100 °C

LeadSolderingTemperature TSOLD +260 °C

LeadSolderingTime tSOLD 10 sec.

SupplyVoltage VCC -0.5 3.6 V

DataInputVoltage VI -0.5 VCC V

DifferentialInputVoltage(p-p) VD 2.0 V Note1

OutputCurrent IO 50 mA

Parameter Symbol Minimum Typical Maximum Unit Reference

AmbientOperatingTemperature AFBR-5903/5903EAFBR-5903A

TA

TA

0-40

+70+85

°C°C

NoteANoteB

SupplyVoltage VCC 3.135 3.465 V

DataInputVoltage-Low VIL-VCC -1.810 -1.475 V

DataInputVoltage-High VIH-VCC -1.165 -0.880 V

DataandSignalDetectOutputLoad

RL 50 W Note2

DifferentialInputVoltage(p-p) VD 0.800 V

Recommended Operating Conditions

Notes:A. AmbientOperatingTemperaturecorrespondstotransceivercasetemperatureof0°Cmininumto+85°Cmaximumwithnecessaryairflow

applied.RecommendedcasetemperaturemeasurementpointcanbefoundinFigure2.B. AmbientOperatingTemperaturecorrespondstotransceivercasetemperatureof-40°Cmininumto+100°Cmaximumwithnecessaryairflow

applied.RecommendedcasetemperaturemeasurementpointcanbefoundinFigure2.

13

Parameter Symbol Minimum Typical Maximum Unit Reference

SupplyCurrent ICC 133 175 mA Note3

PowerDissipation PDISS 0.45 0.60 W Note5a

DataInputCurrent-Low IIL -350 -2 µA

DataInputCurrent-High IIH 18 350 µA

Parameter Symbol Minimum Typical Maximum Unit Reference

SupplyCurrent ICC 65 120 mA Note4

PowerDissipation PDISS 0.225 0.415 W Note5b

DataOutputVoltage-Low VOL-VCC -1.83 -1.55 V Note6

DataOutputVoltage-High VOH-VCC -1.085 -0.88 V Note6

DataOutputRiseTime tr 0.35 2.2 ns Note7

DataOutputFallTime tf 0.35 2.2 ns Note7

SignalDetectOutputVoltage-Low VOL-VCC -1.83 -1.55 V Note6

SignalDetectOutputVoltage-High VOH-VCC -1.085 -0.88 V Note6

SignalDetectOutputRiseTime tr 0.35 2.2 ns Note7

SignalDetectOutputFallTime tf 0.35 2.2 ns Note7

PowerSupplyNoiseRejection PSNR 50 mV

Receiver Electrical CharacteristicsAFBR-5903Z/5903EZ(TA=0°Cto+70°C,VCC=3.135Vto3.465V)AFBR-5903AZ(TA=-40°Cto+85°C,VCC=3.135Vto3.465V)

Transmitter Electrical CharacteristicsAFBR-5903Z/5903EZ(TA=0°Cto+70°C,VCC=3.135Vto3.465V)AFBR-5903AZ(TA=-40°Cto+85°C,VCC=3.135Vto3.465V)

14

Receiver Optical and Electrical CharacteristicsAFBR-5903Z/5903EZ(TA=0°Cto+70°C,VCC=3.135Vto3.465V)AFBR-5903AZ(TA=-40°Cto+85°C,VCC=3.135Vto3.465V)

Parameter Symbol Minimum Typical Maximum Unit ReferenceInputOpticalPowerMinimumatWindowEdge

PINMin(W) -33.5 -31 dBmavg Note19Figure13

InputOpticalPowerMinimumatEyeCenter

PINMin(C) -34.5 -31.8 dBmavg Note20Figure13

InputOpticalPowerMaximum PINMax -14 -11.8 dBmavg Note19

OperatingWavelength l 1270 1380 nm

DutyCycleDistortionContributedbytheReceiver

DCD 0.09 0.4 nsp-p Note8

DataDependentJitterContributedbytheReceiver

DDJ 0.2 1.0 nsp-p Note9

RandomJitterContributedbytheReceiver RJ 0.11 2.14 nsp-p Note10

SignalDetect-Asserted PA PD+1.5dB -33 dBmavg Note21,22Figure14

SignalDetect-Deasserted PD -45 dBmavg Note23,24Figure14

SignalDetect-Hysteresis PA-PD 1.5 2.4 dB Figure14

SignalDetectAssertTime(offtoon)

AS_Max 0 2 100 µs Note21,22Figure14

SignalDetectDeassertTime(ontooff)

ANS_Max 0 5 350 µs Note23,24Figure14

Transmitter Optical CharacteristicsAFBR-5903Z/5903EZ(TA=0°Cto+70°C,VCC=3.135Vto3.465V)AFBR-5903AZ(TA=-40°Cto+85°C,VCC=3.135Vto3.465V)

Parameter Symbol Minimum Typical Maximum Unit ReferenceOutputOpticalPowerBOL62.5/125µm,NA=0.275FiberEOL

PO -19-20

-15.7 -14 dBmavg Note11

OutputOpticalPowerBOL50/125µm,NA=0.20FiberEOL

PO -22.5-23.5

-20.3 -14 dBmavg Note11

OpticalExtinctionRatio 10-10

%dB

Note12

OutputOpticalPoweratLogicLow“0”State

PO(“0”) -45 dBmavg Note13

CenterWavelength lC 1270 1308 1380 nm Note14Figure11

SpectralWidth-FWHM-RMS

Dl 14763

nm Note14Figure11

OpticalRiseTime tr 0.6 1.9 3.0 ns Note14/15Figure11,12

OpticalFallTime tf 0.6 1.6 3.0 ns Note14/15Figure11,12

DutyCycleDistortionContributedbytheTransmitter

DCD 0.16 0.6 nsp-p Note16

DataDependentJitterContributedbytheTransmitter

DDJ 0.07 0.6 nsp-p Note17

RandomJitterContributedbytheTransmitter

RJ 0.12 0.69 nsp-p Note18

Notes:1. ThisisthemaximumvoltagethatcanbeappliedacrosstheDifferen-

tialTransmitterData Inputs topreventdamageto the inputESDprotectioncircuit.

2. Theoutputsareterminatedwith50ΩconnectedtoVCC-2V.3. The power supply current needed to operate the transmitter is

providedtodifferentialECLcircuitry.Thiscircuitrymaintainsanearlyconstant current flow from the power supply. Constant currentoperationhelpstopreventunwantedelectricalnoisefrombeinggeneratedandconductedoremittedtoneighboringcircuitry.

4. Thisvalueismeasuredwiththeoutputsterminatedinto50Ωcon-nectedtoVCC-2Vandan InputOpticalPower levelof -14dBmaverage.

5a. Thepowerdissipationofthetransmitteriscalculatedasthesumoftheproductsofsupplyvoltageandcurrent.

5b. Thepowerdissipationofthereceiveriscalculatedasthesumoftheproductsofsupplyvoltageandcurrents,minusthesumoftheproductsoftheoutputvoltagesandcurrents.

6. ThisvalueismeasuredwithrespecttoVCCwiththeoutputterminatedinto50ΩconnectedtoVCC-2V.

7. Theoutputriseandfalltimesaremeasuredbetween20%and80%levelswiththeoutputconnectedtoVCC-2Vthrough50Ω.

8. DutyCycleDistortioncontributedbythereceiver ismeasuredatthe 50% threshold using an IDLE Line State, 125 MBd (62.5 MHzsquare-wave),inputsignal.Theinputopticalpowerlevelis-20dBmaverage.SeeApplicationInformation-TransceiverJitterSectionforfurtherinformation.

9. DataDependentJittercontributedby thereceiverisspecifiedwiththeFDDIDDJtestpatterndescribedintheFDDIPMDAnnexA.5.Theinputopticalpowerlevelis-20dBmaverage.SeeApplicationInformation-TransceiverJitterSectionforfurtherinformation.

10. RandomJittercontributedbythereceiverisspecifiedwithanIDLELineState,125MBd(62.5MHzsquare-wave),inputsignal.Theinputopticalpower level isatmaximum“PINMin. (W)”.SeeApplicationInformation-TransceiverJitterSectionforfurtherinformation.

11. Theseopticalpowervaluesaremeasuredwiththefollowingcondi-tions:• TheBeginningofLife(BOL)totheEndofLife(EOL)opticalpower

degradationistypically1.5dBpertheindustryconventionforlongwavelengthLEDs.TheactualdegradationobservedinAvagoTechnologies’1300nmLEDproductsis<1dB,asspecifiedinthisdatasheet.

• Overthespecifiedoperatingvoltageandtemperatureranges.• WithHALTLineState,(12.5MHzsquare-wave),inputsignal.• At the end of one meter of noted optical fiber with cladding

modesremoved. Theaveragepowervaluecanbeconvertedtoapeakpowervalueby

adding3dB.Higheroutputopticalpowertransmittersareavailableonspecialrequest.PleaseconsultwithyourlocalAvagoTechnologiessalesrepresentativeforfurtherdetails.

12. TheExtinctionRatioisameasureofthemodulationdepthoftheopticalsignal.Thedata“0”outputopticalpoweriscomparedtothedata“1”peakoutputopticalpowerandexpressedasapercentage.WiththetransmitterdrivenbyaHALTLineState(12.5MHzsquare-wave)signal,theaverageopticalpowerismeasured.Thedata“1”peak power is then calculated by adding 3 dB to the measuredaverageopticalpower.Thedata“0”outputopticalpowerisfoundbymeasuringtheopticalpowerwhenthetransmitterisdrivenbyalogic“0”input.Theextinctionratioistheratiooftheopticalpoweratthe“0”levelcomparedtotheopticalpoweratthe“1”levelexpressedasapercentageorindecibels.

13. ThetransmitterprovidescompliancewiththeneedforTransmit_Dis-ablecommandsfromtheFDDISMTlayerbyprovidinganOutputOpticalPowerlevelof<-45dBmaverageinresponsetoalogic“0”input.Thisspecificationappliestoeither62.5/125µmor50/125µmfibercables.

14. ThisparametercomplieswiththeFDDIPMDrequirementsforthetrade-offsbetweencenterwavelength,spectralwidth,andrise/falltimesshowninFigure11.

15. ThisparametercomplieswiththeopticalpulseenvelopefromtheFDDIPMDshowninFigure12.Theoptical riseandfall timesaremeasuredfrom10%to90%whenthetransmitterisdrivenbytheFDDIHALTLineState(12.5MHzsquare-wave)inputsignal.

16. Duty Cycle Distortion contributed by the transmitter ismeasured at a 50% threshold using an IDLE Line State,125 MBd (62.5 MHz square-wave), input signal. See ApplicationInformation -Transceiver Jitter Performance Section of this datasheetforfurtherdetails.

17. DataDependentJittercontributedbythetransmitterisspecifiedwiththeFDDItestpatterndescribedinFDDIPMDAnnexA.5.SeeApplicationInformation-TransceiverJitterPerformanceSectionofthisdatasheetforfurtherdetails.

18. RandomJittercontributedbythetransmitterisspecifiedwithanIDLELineState,125MBd(62.5MHzsquare-wave),inputsignal.SeeApplicationInformation-TransceiverJitterPerformanceSectionofthisdatasheetforfurtherdetails.

19. Thisspecification is intendedto indicatetheperformanceof thereceiversectionofthetransceiverwhenInputOpticalPowersignalcharacteristicsarepresentperthefollowingdefinitions.TheInputOpticalPowerdynamicrangefromtheminimumlevel(withawin-dowtime-width)tothemaximumlevelistherangeoverwhichthereceiverisguaranteedtoprovideoutputdatawithaBitErrorRate(BER)betterthanorequalto2.5x10-10.• AttheBeginningofLife(BOL)• Overthespecifiedoperatingtemperatureandvoltageranges• InputsymbolpatternistheFDDItestpatterndefinedinFDDIPMD

AnnexA.5with4B/5BNRZIencodeddatathatcontainsadutycyclebase-linewandereffectof50kHz.Thissequencecausesanearworstcaseconditionforinter-symbolinterference.

• Receiverdatawindowtime-widthis2.13nsorgreaterandcenteredatmid-symbol.Thisworstcasewindowtime-widthisthemini-mumallowedeye-openingpresentedtotheFDDIPHYPM_Dataindicationinput(PHYinput)pertheexampleinFDDIPMDAnnexE.Thisminimumwindowtime-widthof2.13nsisbasedupontheworstcaseFDDIPMDActiveInputInterfaceopticalcondi-tionsforpeak-to-peakDCD(1.0ns),DDJ(1.2ns)andRJ(0.76ns)presentedtothereceiver.

TotestareceiverwiththeworstcaseFDDIPMDActiveInputjitterconditionrequiresexactingcontroloverDCD,DDJandRJjittercompo-nentsthatisdifficulttoimplementwithproductiontestequipment.ThereceivercanbeequivalentlytestedtotheworstcaseFDDIPMDinputjitterconditionsandmeettheminimumoutputdatawindowtime-widthof2.13ns.Thisisaccomplishedbyusinganearlyidealinputopticalsignal(noDCD,insignificantDDJandRJ)andmeasuringforawiderwindowtime-widthof4.6ns.Thisispossibleduetothecumulativeeffectofjittercomponentsthroughtheirsuperposition(DCDandDDJaredirectlyadditiveandRJcomponentsarermsad-ditive).Specifically,whenanearlyidealinputopticaltestsignalisusedandthemaximumreceiverpeak-to-peakjittercontributionsofDCD(0.4ns),DDJ(1.0ns),andRJ(2.14ns)exist,theminimumwindowtime-widthbecomes8.0ns-0.4ns-1.0ns-2.14ns=4.46ns,orconservatively4.6ns.Thiswiderwindowtime-widthof4.6nsguaranteestheFDDIPMDAnnexEminimumwindowtime-widthof 2.13 ns under worst case input jitter conditions to the AvagoTechnologiesreceiver.• TransmitteroperatingwithanIDLELineStatepattern,125MBd

(62.5MHzsquare-wave),inputsignaltosimulateanycross-talkpresent between the transmitter and receiver sections of thetransceiver.

20. All conditions of Note 19 apply except that the measurement ismadeatthecenterofthesymbolwithnowindowtime-width.

21. Thisvalueismeasuredduringthetransitionfromlowtohighlevelsofinputopticalpower.AtSignalDetectDeassert,thereceiveroutputsDataOutandDataOutBargotosteadyPECLlevelsHighandLowrespectively.

22. TheSignalDetectoutputshallbeassertedwithin100µsafterastepincreaseoftheInputOpticalPower.ThestepwillbefromalowInputOpticalPower,-45dBm,intotherangebetweengreaterthanPA,and-14dBm.TheBERofthereceiveroutputwillbe10-2orbetterduringthetime,LS_Max(15µs)afterSignalDetecthasbeenasserted.SeeFigure14formoreinformation.

23. Thisvalueismeasuredduringthetransitionfromhightolowlevelsofinputopticalpower.Themaximumvaluewilloccurwhentheinputopticalpoweriseither-45dBmaverageorwhentheinputopticalpoweryieldsaBERof10-2orlarger,whicheverpowerishigher.

24. Signal detect output shall be de-asserted within 350 µs af-ter a step decrease in the Input Optical Power from a levelwhich is the lower of; -31 dBm or PD + 4 dB (PD is the powerlevelatwhichsignaldetectwasdeasserted),toapowerlevelof-45dBmorless.Thisstepdecreasewillhaveoccurredinlessthan8 ns.The receiver output will have a BER of 10-2 or better for aperiodof12µsoruntilsignaldetectisdeasserted.TheinputdatastreamistheQuietLineState.Also,signaldetectwillbedeassertedwithinamaximumof350µsaftertheBERofthereceiveroutputdegradesabove10-2foraninputopticaldatastreamthatdecayswithanegativerampfunctioninsteadofastepfunction.SeeFigure14formoreinformation.AtSignalDetectDeassert,thereceiveroutputsDataOutandDataOutBargotosteadyPECLlevelsHighandLowrespectively.

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries.Data subject to change. Copyright © 2006 Avago Technologies Limited. All rights reserved. Obsoletes 5989-3084ENAV02-0031EN - July 5, 2007