analysis of compression members

Upload: hassan-usaid

Post on 05-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 Analysis of Compression Members

    1/7

    CE434,Spring2010 AnalysisofCompressionMembers 1/7Thesenotespresenttheproceduresforanalyzingmemberssubjecttopurecompression

    (axialcompressionthroughthecentroidalaxis,accordingtotheSpecifications,ChapterE

    pg16.13243). Memberssubjecttocombinedcompressionandbendingwillbecovered

    later(ChapterHintheSpecifications). Thesenoteswillfocusspecificallyontwopopular

    typesofcompressiononlymembers: wideflangeandtubular(akaHollowStructural

    Shapesor

    HSS)

    columns

    of

    braced

    frames.

    RelevantsectionsoftheSpecificationsinclude:

    Section/Chapter TitleB3.12,16.112 DesignWallThicknessforHSS

    B4.12,16.114>18 ClassificationofSectionsforLocalBuckling

    ChapterC,16.119>31 StabilityAnalysis

    ChapterE,16.132>43 DesignofMembersforCompression

    CompressionMember

    Failure

    Modes

    Therearetwoprincipalfailuremodesforcompressionmembers: yieldingandbuckling.

    Bucklingrepresentsfailureduetoinstability,andstabilityisoneofthemorecomplicated

    topicsinstructuralengineering. Longslendercolumnswillbuckleelastically,alsocalled

    Eulerbuckling. Veryshortcolumnsorpedestalswillfailbyduetoyieldingoftheentire

    crosssection. Columnsofintermediateslendernesswillfailduetoinelasticbucklingin

    whichsomeofthecrosssectionhasyielded.

    Figure1. Compressionfailuremodes.Crosssectionelementsofmemberscanalsobuckle. Anelementisconsideredslenderifit

    cannotsupportthefullyieldstresswithoutbuckling. Crosssectionelementssubjectto

    localbucklingaregenerallyplateshapeelements. Iftheelementissupportedalongboth

    ElasticBuckling

    (LongColumn)Inelastic

    Buckling

    (Interm. Column)

    Yielding

    (ShortColumn)

  • 7/31/2019 Analysis of Compression Members

    2/7

    CE434,Spring2010 AnalysisofCompressionMembers 2/7edges,itisconsideredstiffened. Forexample,intheWshapeinFigure2,theflangesare

    consideredunstiffenedandthewebisconsideredstiffened. AllflangesofWshapesforA36

    andGrade50steelarenonslender. AfewwebsforWshapesofGrade50steelare

    consideredslender. ThewallsofmanyHSSshapesareconsideredslender.

    Figure2. Examplesofstiffenedandunstiffenedcrosssectionelementssubjecttolocalbuckling.

    ElasticBucklingAnaxialload(P)onacolumnthatisslightlydisplacedlaterallyadistancex

    willcauseabendingmomentinthecolumn(M)

    M=Px

    Thedifferentialequationrelatingdisplacementtransversedisplacement(x)

    tobendingmomentis:

    02

    2

    2

    2

    =+

    ==

    Px

    dy

    xd

    PxMandEI

    M

    dy

    xd

    Solutionofthisequationyields:

    +

    = y

    EI

    PBy

    EI

    PAx cossin

    Applyingboundaryconditions:

    Outeredgeofhalfflange

    isunsupported

    Bothedgesofweb

    aresupported

    x

    P

    y

  • 7/31/2019 Analysis of Compression Members

    3/7

    CE434,Spring2010 AnalysisofCompressionMembers 3/7

    ===

    ===

    LEI

    PALyxii

    Byxi

    sin0,0)()(

    0,0)0()(

    Thenontrivialsolutionoftheequationaboveis

    2

    22

    L

    EInP

    or

    nLEI

    P

    =

    =

    whichisthefamiliarEulerbucklingequationwhenn=1.

    InsteeldesignitisconvenienttoexpresstheEulerbucklingload,alsocalledtheelastic

    bucklingload

    (Pe),

    in

    terms

    of

    astress

    2

    2

    2

    2

    22

    2

    2

    ,

    =

    =

    =

    r

    L

    EF

    A

    Irwhere

    L

    rEF

    L

    A

    IE

    A

    P

    e

    e

    e

    Ferepresentstheaveragecompressivestressatwhichamemberwithpinnedendswill

    buckleelastically. Theelasticbucklingstressformemberswithotherendconditionscanbe

    calculatedbysubstitutingKLforLintheequationabove,whereKLiscalledthe

    effectivelengthandKistheeffectivelengthfactor.

    2

    2

    =

    r

    LK

    EFe

    Approximatevalues

    of

    Kfor

    different

    support

    conditions

    are

    shown

    in

    Table

    C

    C2.2

    on

    pg.

    16.1240oftheCommentary. Foreachsupportcondition,thetheoreticalKvalueinthe

    tablerepresentsthemultipleofcolumnlengthnecessarytoachieveabuckledshapesimilar

    tothepinnedpinnedconditionsassumedforthederivationofPeandFe. Thesupport

    conditionsatthecolumnbaseareeitherpinnedorfixed. Fourpossiblesupportconditions

    arepossibleatthecolumntop:

    pinned(rotationfreeandtranslationfixed)

  • 7/31/2019 Analysis of Compression Members

    4/7

  • 7/31/2019 Analysis of Compression Members

    5/7

    CE434,Spring2010 AnalysisofCompressionMembers 5/7unbracedframes),pg.161240>241,basedontherelativerotationalstiffness(G)ofthe

    columnstothegirdersconnectedtothejointinquestion.

    =

    g

    gg

    c

    cc

    LIE

    L

    IE

    G

    Themaximumeffectivelengthfactor(K)forabracedframeis1.0. Effectivelengthfactors

    forcolumnsofbracedframescanconservativelybeestimatedas1.0. LowervaluesofKfor

    bracedframescanbecalculatedforcolumnendswithrotationalrestraint. The

    Commentary(pp.16.1241>242)listsadjustmentfactorsforpracticalconditionssuchas

    connectionstofootings,inelasticbehaviorofcolumns,andgirderswithsignificantaxial

    load.

    InelasticBucklingInelastic

    buckling

    occurs

    when

    part

    of

    the

    cross

    section

    yields,

    resulting

    in

    adecrease

    of

    stiffnessforthecolumn. Residualcompressivestressesarecreatedinsteelmembersduring

    themanufacturingprocess. Thesecompressivestressesaddtotheloadinduced

    compressivestressesandcauseelementsofthecrosssectiontoyieldundersmallerloads.

    Residualstressesariseasthemembercoolsafterbeingformed. Thecontractionof

    membersthatcoollast,forexampletheintersectionoftheflangesandwebinanIbeam,is

    resistedbyregionsthatcooledfirst,forexampletheendsoftheflangesandthemiddleof

    thewebonanIbeam. Theendresultisresidualtensilestressesexistintheregionsthat

    cooledlast,andresidualcompressivestressesexistintheregionsthatcooledfirst(see

    Figure5below).

    Figure5. Residualcompressivestresses()andtensilestresses(+)Residualcompressivestressesashighas20ksihavebeenmeasuredintheendsofthe

    flangesofrolledshapes.ForA36steel,thisrepresentsaratioof56%

    56.036

    20=

    = ksiy

    ksi

    F

  • 7/31/2019 Analysis of Compression Members

    6/7

    CE434,Spring2010 AnalysisofCompressionMembers 6/7Forthisinstance,anadditionalcompressivestress(duetoloading)equalto0.44Fywould

    causetheflangetipstoyield. Iftheelasticbucklingstress(Fe)forthiscolumnwaslessthan

    0.44Fyitwouldbuckleelastically,andiftheelasticbucklingstresswasgreaterthanorequal

    to0.44Fythecolumnwouldbuckleinelastically.

    ChapterEof

    the

    Specifications

    (pp.

    16.1

    32

    >43)

    provide

    two

    equations

    to

    calculate

    the

    flexuralbucklingstress(Fcr),dependingonthevalueoftheelasticbucklingstress(Fe)relativetotheyieldstress(Fy).

    WhenFe>=0.44Fy

    y

    F

    F

    cr FFe

    y

    = 658.0 (inelasticbuckling)

    WhenFe

  • 7/31/2019 Analysis of Compression Members

    7/7

    CE434,Spring2010 AnalysisofCompressionMembers 7/7LocalBuckling(SlenderElements)Plateshapedelementsofcompressionmemberssuchasflangesandwebscanbuckle

    locallybeforethememberitselfbuckles. Theequationsforflexuralbucklingstress(Fcr)

    aremodifiedinSectionE7oftheSpecifications(pp.16.139 >43)byreplacingFywith

    QFy,whereQisthereductionfactorforacompressionmemberwithslenderelements.

    Anelementisclassifiedasslenderbasedonthewidthtothicknessratiooftheelement. An

    elementwithawidthtothicknessratiogreaterthanrinTableB4.1(pg.16.116)isconsideredslender.

    Adistinctionismadebetweenstiffenedandunstiffenedelements. Stiffenedelementsare

    supportedalongtwoedgesparalleltothedirectionofthecompressionforce,while

    unstiffenedelementsaresupportedalongonlyoneedge. Thereductionfactorfor

    unstiffenedelements(Qs)isprovidedinSectionE7.1(pg.16.140 >42),andthereduction

    factorforstiffenedelements(Qa)isprovidedinSectionE7.2(pg.16.142 >43). The

    reduction

    factor

    (Q)

    for

    the

    compression

    member

    is

    the

    product

    of

    Qs

    and

    Qa

    Q=QsQa

    Ifacompressionmemberhasnoslenderunstiffenedelements,Qs=1;andifacompression

    memberhasnoslenderstiffenedelements,Qa=1.