an optimized low noise low power preamplifier for cardiac ... no... · international journal of...

14
International Journal of Nanoelectronics and Materials Volume 11, No. 2, Apr 2018 [153‐166] An Optimized LowNoise LowPower Preamplifier for Cardiac Implants Sanna Mairaj 1 , Suhaib Ahmed 1,* and Vipan Kakkar 1 1 Department of Electronics and Communication Engineering, Shri Mata Vaishno Devi University, Katra, J&K 182 320, India. Received 19 October 2017; Revised 16 December 2017; Accepted 2 January 2018 ABSTRACT Among various analog circuits, the preamplifier has a prominent role in the analog front end (AFE) circuit of biomedical implantable microsystems for a reliable acquiring of weak biophysiological signals. The AFE acts as an interface between the acquired analog biosignals and the digital part in these implants. As the industry of the biomedical implantable devices develops, lowering the power consumption as much as possible without sacrificing the performance is essential in improving the service time of the battery, which cannot be replaced frequently. Hence, there is an increasing demand for a low noise, low power bioacquisition system so as to avoid bulky connectivity and reduce patient mobility and discomfort. This paper thus presents an operational transconductance based preamplifier for the application in cardiac implants. The performance of the proposed design was evaluated based on various parameters such as gain, common mode rejection ratio (CMRR), noise spectral density, and power consumption. Besides, optimization by supply voltage scaling of the proposed design was done with the focus is on lowering the power consumption. The tradeoffs between various parameters like gain, speed, and power consumption were observed in the optimized design. The preamplifier, designed using a 180nm CMOS technology, provides a high gain of 50dB at a supply voltage of 1.5V and a low power dissipation of 61.10μW. Based on the performance evaluation, it was observed that the proposed preamplifier is suitable for low power cardiac applications. Keywords: Cardiac Implants, Preamplifier, Low Power Electronics, Operational Transconductance Amplifier. 1. INTRODUCTION The term implant represents a medical device that acts as a part of the whole biological system or can be used to provide support to a damaged biological structure [1,2]. Currently biomedical implants are used for various applications including cardiac pacemakers, defibrillators, and cardiovascular stents. The monitoring of biomedical signals provides us information about the vital health of the body and thus the data can be of prime importance to medical practitioners [3]. With the rapid development in microelectronics towards medical therapies and diagnostic aids, there is a need for lowering the power consumption in active implantable devices that are battery powered so that the device lifetime increases. One such example of active implantable device is the Cardiac Pacemaker in terms of its widespread application [4]. A Cardiac Pacemaker is a device that uses electrical pulses to recover the normal heartbeat of a diseased heart. The major building blocks of the pacemaker, as shown in Figure 1, are an analog front end (AFE) circuit, a microcontroller with ultra low power * Corresponding Author: [email protected]

Upload: others

Post on 30-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: An Optimized Low Noise Low Power Preamplifier for Cardiac ... No... · International Journal of Nanoelectronics and Materials Volume 11, No. 2, Apr 2018 [153‐166] An Optimized Low‐Noise

InternationalJournalofNanoelectronicsandMaterialsVolume11,No.2,Apr2018[153‐166]

AnOptimizedLow‐NoiseLow‐PowerPreamplifierforCardiacImplants

SannaMairaj1,SuhaibAhmed1,*andVipanKakkar1

1DepartmentofElectronicsandCommunicationEngineering,ShriMataVaishnoDeviUniversity,Katra,J&K‐182320,India.

Received19October2017;Revised16December2017;Accepted2January2018

ABSTRACT

Amongvariousanalogcircuits,thepreamplifierhasaprominentroleintheanalogfrontend(AFE)circuitofbiomedicalimplantablemicrosystemsforareliableacquiringofweakbiophysiological signals. The AFE acts as an interface between the acquired analogbiosignals and the digital part in these implants. As the industry of the biomedicalimplantable devices develops, lowering the power consumption as much as possiblewithout sacrificing the performance is essential in improving the service time of thebattery,whichcannotbereplaced frequently.Hence,there isan increasingdemand foralownoise, lowpowerbio‐acquisitionsystemsoastoavoidbulkyconnectivityandreducepatientmobilityanddiscomfort.Thispaperthuspresentsanoperationaltransconductancebased preamplifier for the application in cardiac implants. The performance of theproposeddesignwasevaluatedbasedonvariousparameterssuchasgain,commonmoderejection ratio (CMRR), noise spectral density, and power consumption. Besides,optimizationbysupplyvoltagescalingoftheproposeddesignwasdonewiththefocusisonlowering the power consumption. The trade‐offs between various parameters like gain,speed,andpowerconsumptionwereobserved in theoptimizeddesign.Thepreamplifier,designedusinga180nmCMOStechnology,providesahighgainof50dBatasupplyvoltageof1.5Vandalowpowerdissipationof61.10µW.Basedontheperformanceevaluation,itwas observed that the proposed preamplifier is suitable for low power cardiacapplications.Keywords:CardiacImplants,Preamplifier,LowPowerElectronics,OperationalTransconductanceAmplifier.

1. INTRODUCTION

Thetermimplantrepresentsamedicaldevicethatactsasapartofthewholebiologicalsystemor can be used to provide support to a damaged biological structure [1,2]. Currentlybiomedical implants are used for various applications including cardiac pacemakers,defibrillators, and cardiovascular stents. The monitoring of biomedical signals provides usinformationaboutthevitalhealthofthebodyandthusthedatacanbeofprimeimportancetomedical practitioners [3].With the rapid development inmicroelectronics towardsmedicaltherapiesanddiagnosticaids, there isaneed for lowering thepowerconsumption inactiveimplantabledevicesthatarebatterypoweredso thatthedevice lifetimeincreases.Onesuchexample of active implantable device is the Cardiac Pacemaker in terms of its widespreadapplication [4]. A Cardiac Pacemaker is a device that uses electrical pulses to recover thenormalheartbeatofadiseasedheart.Themajorbuildingblocksofthepacemaker,asshowninFigure 1, are an analog front end (AFE) circuit, a microcontroller with ultra low power

*CorrespondingAuthor:[email protected]

Page 2: An Optimized Low Noise Low Power Preamplifier for Cardiac ... No... · International Journal of Nanoelectronics and Materials Volume 11, No. 2, Apr 2018 [153‐166] An Optimized Low‐Noise

SannaMairaj,etal./AnOptimizedLow‐NoiseLow‐Power…

154

consumption,abattery,andanoutputcircuitthatstimulatestheheart.TheAFEcomprisesofapreamplifier,alow‐passfilter,alevelshifter,andasynchronizingcircuit.Thecardiacsignalisgiventoalownoisepreamplifierforamplificationpurposesandisthenfiltered.Thisfilteredsignal is then given to the comparator that produces a pulse which depends upon thethresholdvoltagelevel.Theoutputstageofapacemakeriscalledachargepumpthatusesapulsegenerator to stimulate theactivityof theheart.Thus, a preamplifier is a criticalblockthatisusedforthedetectionofsmalllevelsignalsespeciallyforbiomedicalapplications[3].

Figure1.GeneralBlockDiagramofanImplantableCardiacPacemakerSystem.

BiosignalslikeEEG,ECG,EMG,EOGareweaksignalswithaninputamplitudetypicallyrangingfrom0.5µV to 5mV [5,6] and are highly susceptible to noise andpower line interference at50Hzto60Hz.Nowadaysthereisademandforalownoise,lowpowerbioacquisitionsystemso as to avoid bulky connectivity and reduce patients’ mobility and discomfort [7]. APreamplifierisoneoftheimportantcomponentsoftheanalogfrontendasitdeterminestheSNRoftheentirebiomedicalsignalacquisitionsystemandisrequiredforreliablemonitoringof the physiological signal [8]. These weak biosignals need to be amplified before beingcompatible for processing by the other components of the implant for measurement andtestingpurposes[9]. 2. DESIGNSPECIFICATIONS

Neuralimplantabledevices,EEG,andcochlearimplantsarethemajorapplicationareasforthepreamplifierdesign in the survey [10‐15]while less exploredapplicationsbeing the cardiacpacemaker, EOG, PCG, and retinal prostheses. Some of the key design parameters of anamplifier are its Gain, stability, power consumption, CMRR, PSRR,Noise, THD, andDynamicrange.Different applicationsdemanddifferentparameters that are critical to thatparticularapplication.SomeapplicationslikeNeuralImplantabledevicesrequirealownoise,lowpoweranalogfrontendwhileotherslikecochlearrequireahighPSRR,andgoodSNR.Basedontheliterature study [16‐18], the required design specifications for the preamplifier for CardiacImplants are formulated and summarized inTable 1.Ahigh gain of >50dB, a highCMRRofaround70dB,andahighPSRRof60dBarerequiredforthisparticularapplication.

Page 3: An Optimized Low Noise Low Power Preamplifier for Cardiac ... No... · International Journal of Nanoelectronics and Materials Volume 11, No. 2, Apr 2018 [153‐166] An Optimized Low‐Noise

InternationalJournalofNanoelectronicsandMaterialsVolume11,No.2,Apr2018[153‐166]

155

Table1DesignSpecificationsforPreamplifiersinCardiacImplants

Parameters TargetSpecifications

Gain >50dB

SlewRate 10V/µs

LoadCapacitance 10pF

MinandMaxOutputvoltages 2V

UnityGainBandwidth 7MEG

ICMR ‐1.5Vto2.5V

CMRR >70dB

PSRR >60dB

Technology 180nm

3. PROPOSEDLOWPOWERPREAMPLIFIER

ThefoldedcascodeOperationalTransconductanceAmplifier(OTA)waschosenforthedesignofthepreamplifierforcardiacapplications.AnOTAisactuallyanop‐ampwithouttheoutputbufferandiscapableofdrivingonlycapacitiveloads.OneoftheimportantfeaturesoftheOTAis that its transconductancecanbeadjustedbyabiascurrent.A foldedcascode isactuallyacompromisebetweenatwostageandatelescopiccascode.Thename“folded”comesfromthefactthatbecauseofthefoldingofP‐channelcascodeactiveloadsofadifferentialpairandthenconverting the MOSFETs to N channel. A folded cascode overcomes the drawbacks of atelescopicstructure,i.e.limitedoutputswingsanddifficultyinshortinginputandoutput,thusprovidesawideswing.AWideSwingmeansthataninputCommonmoderangeisveryclosetothe supply voltage [19]. TheOutput voltage swing is limited by supply voltages. In a foldedcascodeOTA a perfect balance of currents in the differential amplifier stage is not requiredbecause of the fact that excess dc currents can flow in or out of the current mirror. Thepractical version of an OTA and its small signalModel are shown in Figure 2 and Figure 3respectively.ThebiascurrentsI3,I4,andI5ofthetopologyshouldbedesignedsuchthattheDCcurrent in the cascodemirror never goes to zero, e.g. if the input voltageVin ismade largeenough such that M1 is turned on and M2 is turned off. Then, all the current will flowthroughM1 that results in and will be zero. If the currents and arenot greaterthan current , then will be zero. To avoid this problem, the values of currents and were kept between values of currents and 2 [20]. The resistances RA and RB as seenlookingintothesourceofM6andM7andaregivenas:

6 210

6 6 6

11

1A

rds Rgm

Rgm rds gm

(1)

7 9 9

7 7 7 71B

rds R RR

gm rds gm rds

(2)

Here, 9 9 9 11R gm rds rds

Page 4: An Optimized Low Noise Low Power Preamplifier for Cardiac ... No... · International Journal of Nanoelectronics and Materials Volume 11, No. 2, Apr 2018 [153‐166] An Optimized Low‐Noise

SannaMairaj,etal./AnOptimizedLow‐NoiseLow‐Power…

156

Figure2.FoldedCascodeOTAschematic.

Figure3.SmallsignalmodeloftheOTA.Current isgivenas:

1 1 4 110

1 42 2in in

A

gm rds rds V gm Vi

R rds rds

(3)

Current canbewrittenas:

2 2

79 2 5

7 7

2 12 1

in ingm V gm Vi

KR gds gds

gm rds

(4)

TypicallyK 1 9 2 5

7 7

R gds gdsK

gm rds

(5)

Page 5: An Optimized Low Noise Low Power Preamplifier for Cardiac ... No... · International Journal of Nanoelectronics and Materials Volume 11, No. 2, Apr 2018 [153‐166] An Optimized Low‐Noise

InternationalJournalofNanoelectronicsandMaterialsVolume11,No.2,Apr2018[153‐166]

157

TheOutputVoltagecanbeexpressedasthesumof and flowingthrough

1 2

1 11

2

2 2 1 2 2out

in

V gm gm Kgm R

V K K

(6)

whereR11,theoutputresistanceisgivenas 11 9 9 11 7 7 2 5R gm rds rds gm rds rds rds

3.1AnalyticalModeling

Thedesignof theProposedFoldedCascodeOTAwasdoneusing level49BSIM3v3MOSFETand TSMC 0.18µm. T‐Spice parameters were used, which are summarized in Table 2. Thedesignconsistsofdeterminingthespecifications,selectingdevicesizesandbiasingconditions,andsimulatingandcharacterizingvariousperformanceparameterssuchastheopenloopgain,CMRR,slewrate,andoutputswing.

Table2ParametersfromTspiceModelFile(TSMC180nm)

Parameter Value

kn’ 172.1μA/

kp’ ‐36.4µA/

LowFieldMobilityμn 398.72( )/V*s

LowFieldMobilityμp 84.33( )/V*s

Vthn 0.37965V

ToxforNMOS 4.1e‐9m

Vthp ‐0.4215V

ToxforPMOS 4.1e‐9m

The main goal is to design a preamplifier based on the above design specifications and tochooseproperW/Lsizesfortheamplifierdesign.Thedesignstepstocomputethetransistorsizesareasfollows:i. Smallestdevicelengthischosensuchthatthechannellengthmodulationparameterλ

iskeptconstant,andalsothereisgoodmatchingforcurrentmirrors.(HereL=1µm)ii. FromtheSlewrateexpression,thetailcurrent isobtainediii.

3 LI SR C (7)

WhereSRistheslewrateand istheloadcapacitance.

iv. Biascurrentsintheoutputcascodewhileavoidingzerocurrentsinthecascodearegivenas:

3 4 5 31.2 1.5I I I I (8)

Page 6: An Optimized Low Noise Low Power Preamplifier for Cardiac ... No... · International Journal of Nanoelectronics and Materials Volume 11, No. 2, Apr 2018 [153‐166] An Optimized Low‐Noise

SannaMairaj,etal./AnOptimizedLow‐NoiseLow‐Power…

158

v. Designfor and isobtainedfromthemaximumoutputVoltage.LetS4=S14=S5=S13andS6=S7

5

5 2'5 5

2

p

W IS

L k Vds

(9)

77 2'

7 7

2

p

W IS

L k Vds

(10)

Here 5 7

(max)(sat) (sat)

2DD outV V

Vds Vds

vi. Designfor and isobtainedusingminimumoutputvoltage.LetS10=S11andS8=S9

1111 2'

11 11

2

n

W IS

L k Vds

(11)

9

9 2'9 9

2

n

W IS

L k Vds

(12)

Here 9 11

(min)(sat) (sat)

2out SSV V

Vds Vds

vii. Calculationofresistancevalues.

13 81 2

12 6

(sat) (sat),

Vds VdsR R

I I (13)

viii. Designof and isobtainedfromthevalueofUnitygainbandwidthandload

capacitance .

2 2

1 2 3'3

L

n

GB CS S I

k I

(14)

Where l

L

gmGB

C

ix. designisobtainedfromtheminimumInputcommonmodevoltage

33

3 ' 31 '

1

2

(min)n in SS tn

W IS

L Ik V V V

k S

(15)

x. and designisobtainedfromthemaximumInputcommonmodevoltage.

4

4 5 2'1

2

(max)p D in t

IS S

k V V V

(16)

Page 7: An Optimized Low Noise Low Power Preamplifier for Cardiac ... No... · International Journal of Nanoelectronics and Materials Volume 11, No. 2, Apr 2018 [153‐166] An Optimized Low‐Noise

InternationalJournalofNanoelectronicsandMaterialsVolume11,No.2,Apr2018[153‐166]

159

Also and valuesshouldbelargeenoughtosatisfythemaximumInputcommonmodevoltage.

xi. ThedifferentialVoltagegainisgivenas

1 11 3

2

2 2v

KA gm R I

K

(17)

xii. Powerdissipationgivenas

3 12 10 11 3diss DD SSP V V I I I I I (18)

xiii. PositiveCMRgivenas:

53 1max

3

(max) (min)in DD TO T

IV V V V

(19)

xiv. NegativeCMRxv.

0.5

55 1

1

(min) (sat) (max)in SS T

IV V Vds V

(20)

14.Thesecondstageresistanceis

1 9 7 37 2 5

1 1 1R R gm I

gds gds gds

(21)

Where 9 9 9 11 3R gm rds rds I

15.Theparameterscanbeevaluatedfromthefollowingequations

'3 , ,2 n p n p Dgm I k S I (22)

Dgds I (23)

1 1

D

rdsgds I

(24)

3

2(sat) DSIVds I

(25)

Fromtheabovemathematicalequations,thebiascurrentsandthetransistorsizes( )fortheamplifierwerecalculatedandsummarizedinTable3and4respectively.

Page 8: An Optimized Low Noise Low Power Preamplifier for Cardiac ... No... · International Journal of Nanoelectronics and Materials Volume 11, No. 2, Apr 2018 [153‐166] An Optimized Low‐Noise

SannaMairaj,etal./AnOptimizedLow‐NoiseLow‐Power…

160

Table3ParameterValues

Parameter Value 100µA= 125µA 10pF

= 2KΩ

Table4Calculated oftransistors(AssumingL=1µm)

W/Lratiosoftransistors TransistorWidths(

=109.80 =109.8065.93 =65.93

=47.44 =47.44= =11.24 = =11.24=8.421 =8.421=10.5 =10.5

3.2CircuitSchematic

Theproposedpreamplifierschematicisshowninfigure4.Thetopologyusescascodecurrentmirrors as active biasing elements. Current mirrors are more economical than passiveresistorsintermsofthediearearequiredtoprovidebiascurrentofacertainvalue.

Figure4.SchematicoftheproposedfoldedcascodeOTAbasedpreamplifier.

A cascode current mirror provides a wider swing compared to a Wilson current mirror.Becauseofthiscurrentmirror,foldedcascodeop‐amphasawideroutputswing.The3main

Page 9: An Optimized Low Noise Low Power Preamplifier for Cardiac ... No... · International Journal of Nanoelectronics and Materials Volume 11, No. 2, Apr 2018 [153‐166] An Optimized Low‐Noise

InternationalJournalofNanoelectronicsandMaterialsVolume11,No.2,Apr2018[153‐166]

161

stagesof theOTA include thedifferential inputstage, the foldedcascode loadstage, and theoutput stage. The Cascode topology increases the gain of the input differential stage. ThefoldedcascodewasusedtoimprovetheICMRandalsotoreducetherequiredsupplyvoltage.TheCurrentmirrorsinkusedinthisfoldedcascodetopologyhasthefollowingadvantages:

i. HighOutputresistanceii. LowPowerdissipationiii. Self‐biasingiv. Highswingv. SmallsaturationVoltage

4.RESULTSANDDISCUSSIONS

LowVoltageandlowpowerareimportantattributesforcardiacimplantstoachievealongerbattery life time.Theproposedpreamplifierwasfirstdesignedatasupplyof2.5Vandthenoptimizedbyscalingitdownto1.5Vtoachievealoweraveragepowerconsumption.TofindtheACresponseoftheOTA,a100mVinputwasgiventothedifferentialamplifieralongwithDC voltages; the ac analysis was done from 1Hz to 10MHz. Figure 5 shows the frequencyresponseoftheproposeddesigns.

(a)

(b)

Figure5.Frequencyresponseoftheproposedpreamplifierat(a)2.5Vand(b)1.5Vsupplyvoltage.

Page 10: An Optimized Low Noise Low Power Preamplifier for Cardiac ... No... · International Journal of Nanoelectronics and Materials Volume 11, No. 2, Apr 2018 [153‐166] An Optimized Low‐Noise

SannaMairaj,etal./AnOptimizedLow‐NoiseLow‐Power…

162

TofindtheCommonModegain,bothVin+andVin‐inputswereshortedandthenACandDCvoltageswereapplied.ThesimulatedresultsinFigure6showthecommonmodegain.

(a)

(b)

Figure6.Commonmodegainat(a)2.5Vand(b)1.5Vsupplyvoltage.

Asquarewavewasgiventotheinputsofthedifferentialstage,andthetransientanalysisgavethesimulationresults.TheSlewrateactuallyrepresentsthecurrentavailabletodrivetheloadcapacitance.TheslewratefortheproposeddesignscanbeevaluatedfromFigure7.

Figure7.Slewrateat2.5V.

Page 11: An Optimized Low Noise Low Power Preamplifier for Cardiac ... No... · International Journal of Nanoelectronics and Materials Volume 11, No. 2, Apr 2018 [153‐166] An Optimized Low‐Noise

InternationalJournalofNanoelectronicsandMaterialsVolume11,No.2,Apr2018[153‐166]

163

(a)

(b)

Figure8.Outputswingat(a)2.5Vand(b)1.5Vsupplyvoltage.

Theoutputswingrepresentsthevaluesofthemaximumpositiveandnegativevoltagesabovewhichtransistorwillremainoutofsaturationandthusspecifiestherangeoverwhichoutputvoltagecanvarywithoutexcessivedistortion.ThegraphsinFigure8showsthevoltageswingfrom‐2.5V to+2.5V.TheOTAprovidesawideswing,meaning the inputCMR isclose to thesupplyvoltages.TheoutputswingislimitedbythesupplyvoltagesasisevidentfromFigure8.

(a)

Page 12: An Optimized Low Noise Low Power Preamplifier for Cardiac ... No... · International Journal of Nanoelectronics and Materials Volume 11, No. 2, Apr 2018 [153‐166] An Optimized Low‐Noise

SannaMairaj,etal./AnOptimizedLow‐NoiseLow‐Power…

164

(b)

Figure9.PSRRat(a)2.5Vand(b)1.5Vsupplyvoltage.

IfthereisachangeXinthesupplyvoltagethatproducesanoutputvoltagechangeofYvolts,thenthePSRRisexpressedasaratioofX/Y.ThisquantityisexpressedindB.ThePSRRcanbeapositiveornegativequantity.TodeterminethePSRR,DCbiaswasappliedtotheinputsofthedifferentialstageandanACVoltagewasappliedtothepositiveVDDterminaltodeterminethePSRR+.Fortheproposeddesigns,thePSRRcanbecalculatedfromthegraphshowninFigure9.Thispaperfirstpresentsthedesignofapreamplifierforcardiacimplantsdesignedatasupplyvoltageof2.5V,whereahighgainofaround60dBwasobtainedbutthepowerconsumptionisslightlyhigh.Therefore, furtheroptimizationwasdonewherea supplyvoltageof 1.5Vwasobtained.Theaveragepowerconsumption reduced to61.10µWat theexpenseof a reducedgain of 50dB. Also, there is an improvement in the noise spectral density at 1.5V. TheperformanceparametersoftheproposedandoptimizeddesignsaresummarizedinTable5.

Table5ComparsionofProposedandOptimizedPreamplifierDesigns

Specification ProposedDesign OptimizedDesign

SupplyVoltage 2.5V 1.5V

OpenLoopGain 62dB 50dB

PhaseMargin ‐95.83º ‐92.02º

CMRR 102dB 114dB

PSRR+ ‐50dB ‐60dB

PowerConsumption 0.131mW 61.10µW

OutputSwing ‐2.5Vto2.5V ‐1.4Vto1.4V

NoiseSpectralDensity250µV/√ at100mVinput

3.5µV/√ at100mVinput

The state of the art comparison of the proposed low power preamplifier with some otherrelatedworkisgiveninTable6.Againof50dB,alowpowerconsumptionof61.10µW,andahigh CMRR of 94dBwere achieved,which are suitable for the cardiac applications. Also, animprovementinthenoisespectraldensityisquiteevidentfromthetable.

Page 13: An Optimized Low Noise Low Power Preamplifier for Cardiac ... No... · International Journal of Nanoelectronics and Materials Volume 11, No. 2, Apr 2018 [153‐166] An Optimized Low‐Noise

InternationalJournalofNanoelectronicsandMaterialsVolume11,No.2,Apr2018[153‐166]

165

Table6PerformanceComparisonofProposedPreamplifier

Parameter [21] [22] [23] [24] ThisWork

Technology(µm)

0.6 0.35 0.18 0.18 0.18

Gain(dB) 39.4 20.4 40 63.06 50

PowerConsumption

(W)

2.4µ 23.1µ ‐ 0.0154m 61.10µ

CMRR(dB) 66 ‐ 82 ‐ 114

PSRR(dB) 80 ‐ ‐ ‐ 60

SupplyVoltage(V)

2.8 3.3 1.8 1.8 1.5

5.CONCLUSION

Parameterssuchassize,weight,andbatteryareofprimeimportanceincardiacimplants.Astheindustryofthemedicalimplantabledevicesdevelops,loweringthepowerconsumptionasmuch as possible is essential in improving the service time of the battery,which cannot bereplaced frequently.Hence,a lowvoltageoperationbecomescritical toachievea lowpowerconsumption.ThispaperpresentsthedesignandoptimizationofanOTAbasedpreamplifierforcardiacapplication.Thepreamplifierprovidesagainof50dBatasupplyvoltageof1.5Vand a low power dissipation of 61.10µW, thereby making it suitable for this particularapplication.Thetrade‐offsbetweenvariousparameterssuchasgainandpowerconsumptionare also evident in the optimized design. In the future, further optimization to an ultra‐lowpowerlevelcanbedone.Also,differentapplicationssuchasretinalprostheses,EOG,andPCGcanbeconsideredsincemuchoftheworkisdoneonneuralimplantabledevices.

REFERENCES[1] W. Khan, E. Muntimadugu, M. Jaffe, A.J. Domb, Implantable Medical Devices, Focal

ControlledDrugDelivery,Springer(2014)33‐59.[2] R.J.Baker,CurrentMirrors,CMOSCircuitDesign,Layout,andSimulation,WileyStudent

Edition(2005)613‐657.[3] F.Moulahcene,N.E.Bouguechal,Y.Belhadji,ALowPowerLowNoiseChopperStabilized

Two Stage Operational Amplifier for Portable Bio‐potential Acquisition Systems using90nmTechnology,InternationalJournalofHybridInformationTechnology,7(2014)25‐42.

[4] F. Silveira, D. Flandre, Implantable Cardiac Pacemaker, Low Power Analog CMOS forCardiac Pacemakers, Design and optimization in Bulk and SOI Technologies, KluwerAcademicPublishers(2004)1‐24.

[5] S. Ahmed, V. Kakkar, Modeling and Simulation of an Eight‐bit Auto‐ConfigurableSuccessive ApproximationRegister Analog‐to‐Digital Converter for Cardiac andNeuralImplants, Simulation: Transactions of the Society for Modeling and SimulationInternational(2017)p.0037549717716537.

Page 14: An Optimized Low Noise Low Power Preamplifier for Cardiac ... No... · International Journal of Nanoelectronics and Materials Volume 11, No. 2, Apr 2018 [153‐166] An Optimized Low‐Noise

SannaMairaj,etal./AnOptimizedLow‐NoiseLow‐Power…

166

[6] S.Ahmed,S.Bashir,B.Bilal,V.Kakkar,FeasibilityofSuccessiveApproximationRegisterADC inUltraLowPowerBiomedicalApplications, International Journal ofEngineeringandTechnology9(2017)338.

[7] R. Chebli, M. Sawan, Low Noise and High CMRR Front‐End Amplifier Dedicated toPortable EEGAcquisition System, Proc. of 36th Annual International Conference of theIEEEEMBS(2013)3.

[8] S.Kumaravel,K.N.B.Tirumala,B.Venkataramani,R.Raja,APowerEfficientLowNoisePreamplifier for Biomedical Applications, Journal of Low Power Electronics, 9 (2013)501.

[9] J.H. Nagel, Biopotential Amplifiers, Biomedical Engineering Han‐dbook, 2nd Ed., CRCpressLLC(2000)2.

[10] J.Holleman,B.Otis,ASub‐MicrowattLow‐NoiseAmplifierforNeuralRecording,Proc.of29thAnnualInternationalConferenceofIEEEEMBS(2007)23.

[11] R.Reiger,J.Taylor,N.Donaldson,LowNoisePreamplifierDesignforNerveCuffElectroderecording systems, Proc. of IEEE International Symposium on Circuits and Systems,(2002)193‐V‐196‐V.

[12] M.‐Z. Li. K.‐T. Tang, A Low‐Noise Low‐Power Amplifier for Implantable Devices forNeuralSignalAcquisition,Proc.of31stAnnualInternationalConferenceoftheIEEEEMBS(2009)2.

[13] R.R.Harrison,C.Charles,ALow‐PowerLowNoiseCMOSAmplifierforNeuralRecordingApplications,IEEEJournalofSolid‐StateCircuits38(2003)958.

[14] W.A.Serdijn,A.C.vanderWoerd,J.Davidse,A.H.M.vanRoermund,ALow‐VoltageLow‐Power Fully‐Integratable Front‐End for Hearing instruments, IEEE Transactions onCircuitsandSystems‐FundamentalTheoryandApplications42(1995)166.

[15] V. Kakkar, S. Ahmed, S. Koul, An Enhanced Pre‐Amplifier for Cochlear Implants, ActaTechnicaNapocensis:ElectronciaandTelecomunicatii56(2015)13.

[16] A.Gerosa,A.Maniero,A.Neviani,AFullyIntegratedTwo‐ChannelA/DInterfacefortheAcquisition of Cardiac Signals in Implantable Pacemakers, IEEE Journal of Solid‐StateCircuits39(2004)1083.

[17] L. Fay, V. Misra, R. Sarpeshkar, A Micropower Electrocardiogram Amplifier, IEEETransactionsonBiomedicalCircuitsandSystems2(2009)312.

[18] K.Lasanen,J.Kostamovaara,A1‐VAnalogCMOSFrontEndforDetectingQRSComplexesin a Cardiac Signal, IEEE Transactions on Circuits and Systems ‐ Regular Papers 52(2005)2584.

[19] B. Razavi, Operational Amplifiers, Design of Analog CMOS Integrated Circuits, TataMcGraw‐HillPublishingCompanyLimited(2002)47.

[20] M.H. Zarifi, J. Frounchi, S. Farshchi, J.W. Judy, A Low‐power, Low Noise Neural SignalAmplifier Circuit in 90nm CMOS, Proc. of 30th Annual International IEEE EMBSConference(2008)20.

[21] C. Qian, J. Parramon, E. Sanchez‐Sinencio, A Micropower Low‐Noise Neural RecordingFront‐EndCircuitforEpilepticSeizureDetection,IEEEJournalofSolid‐StateCircuits46(2011)1392.

[22] Z. Xu, P. Weihua, H. Beiju, Low Power CMOS Preamplifier for Neural RecordingApplications,JournalofSemiconductors31(2010)045002.

[23] J. Xu, R.F. Yazicioglu, P. Harpe, K.A.A. Makinwa, C.V. Hoof, A 160µW 8‐Channel ActiveElectrode System for EEG Monitoring, IEEE Transactions on Biomedical Circuits andSystems,5(2011)555.

[24] D. Basak, P.V. Nishanth, R. P. Paily, A LowNoise Preamplifier and Switched CapacitorFilterforHeart‐rateDetection,Proc.ofInternationalConferenceonAdvancedElectronicSystems(2013).