an electrochemical haber-bosch process* · 2020. 12. 5. · an electrochemical haber-bosch process*...

20
An Electrochemical Haber - Bosch Process* V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, and M. Stoukides Aristotle University of Thessaloniki (AUTH) and Center for Research & Technology Hellas (CERTH) Financial Support: CoorsTek Membrane Sciences * JOULE, 4(1)pp. 142-158 (2020).

Upload: others

Post on 19-Jan-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: An Electrochemical Haber-Bosch Process* · 2020. 12. 5. · An Electrochemical Haber-Bosch Process* V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, and M. Stoukides Aristotle

An Electrochemical Haber-Bosch Process*

V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, and M. Stoukides

Aristotle University of Thessaloniki (AUTH) and

Center for Research & Technology Hellas (CERTH)

Financial Support: CoorsTek Membrane Sciences

* JOULE, 4(1)pp. 142-158 (2020).

Page 2: An Electrochemical Haber-Bosch Process* · 2020. 12. 5. · An Electrochemical Haber-Bosch Process* V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, and M. Stoukides Aristotle

T. Eggeman, in “Kirk- Othmer Encyclopedia of Chemical Technology,” 4th edition, John Wiley (2008)

Industrial Ammonia Production

▪ Supports >50% of earth’s population

▪ High T, P → High capital cost

▪ Responsible for 1-2% energy consumption and CO2 emissions worldwide

Page 3: An Electrochemical Haber-Bosch Process* · 2020. 12. 5. · An Electrochemical Haber-Bosch Process* V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, and M. Stoukides Aristotle

➢ Hydrogen production (highly endothermic)

Methane steam reforming: CH4 + H2O ➔ CO + 3 H2

Water gas shift: CO + H2O ➔ CO2 + H2

➢ Preparation of synthesis gas (extreme purification)

➢ Pressurization (150-250 bar)

➢ Ammonia synthesis (exothermic): N2 + 3H2 ➔ 2 NH3

Overall Reaction: 3 CH4 + 6 Η2O + 4 Ν2 <==> 3 CO2 + 8 NH3

In industrial practice, the CO2/NH3 molar ratio is about 1.1 (instead of 0.4)

The main steps in the NH3 synthesis plant

Page 4: An Electrochemical Haber-Bosch Process* · 2020. 12. 5. · An Electrochemical Haber-Bosch Process* V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, and M. Stoukides Aristotle

Electrolyte: BaZr0.7Ce0.2Y0.1O2.9 (BZCY72), thickness: 30 μm

Counter Electrode: Ni-BZCY72, area: 20-25 cm-2

Working Electrode: VN-Fe, area : 8 cm-2

Tube length: 250 mm

* H. Iwahara, et al, Solid State Ionics 4, 359–363 (1981).

* * S. Robinson, et al, J. Membr. Sci. 446 (2013) 99–105; W.G. Coors, A. Manerbino, J. Membr. Sci. 376 (2011) 50–55.

Plants and bacteria produce NH3 at ambient conditions (nitrogenase, N2 , H+, e- )

Discovery* and development of high temperature H+ conductors

Development * * of ceramic membrane reactors with high H+ conductivity

✓ High H+ conductivity (10-6 moles H2 cm-2 s-1) at 450-700 oC

✓ The hydrogen source can be a hydrocarbon (e.g. steam reforming)

NH3

electrode

9.99 mm

Page 5: An Electrochemical Haber-Bosch Process* · 2020. 12. 5. · An Electrochemical Haber-Bosch Process* V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, and M. Stoukides Aristotle

H+

H+

H+

H+

CH4 , H2O

N2 + 6H+ +6e- 2 NH3

CO, CO2

N2

N2, H2, NH3

CH4 + H2O CO + 3H2

CO + H2O CO2 + H2

H2 2H+ + 2e-

➢ Methane conversion increases by H2 removal (operation at lower T)➢ Purification of hydrogen is eliminated

Combined SSAS and CH4-H2O reforming

Overall: 3 CH4 + 6 H2O + 4 N2➔ 8 NH3 + 3 CO2

2H+ +2e- H2

Page 6: An Electrochemical Haber-Bosch Process* · 2020. 12. 5. · An Electrochemical Haber-Bosch Process* V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, and M. Stoukides Aristotle
Page 7: An Electrochemical Haber-Bosch Process* · 2020. 12. 5. · An Electrochemical Haber-Bosch Process* V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, and M. Stoukides Aristotle

Anode side

0 30 60 90 120 150

40

50

60

70

80

90

100

550 oC

600 oC

650 oC

CH

4 c

on

ve

rsio

n,

%

Current, mA

0 30 60 90 120 15090

92

94

96

98

100

CO

2 s

ele

ctivity,

%

Current, mA

550 oC

600 oC

650 oC

Results of the combined process

0 30 60 90 120 1500

15

30

45

60

75

90

NH

3 r

ate

, m

mo

l. h-1. m

-2

Current, mA

550 oC

600 oC

650 oC

0 30 60 90 120 1500

3

6

9

12

15

18

NH

3 f

ara

daic

effic

iency

, %

Current, mA

550 oC

600 oC

650 oC

Cathode side

Page 8: An Electrochemical Haber-Bosch Process* · 2020. 12. 5. · An Electrochemical Haber-Bosch Process* V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, and M. Stoukides Aristotle

At the anode:

▪ Open-circuit: methane conversion > 60%

▪ Closed-circuit: methane conversion up to 85%

▪ Open-circuit: CO2 selectivity up to 90%.

▪ Closed-circuit: CO2 selectivity > 99%.

At the cathode:

▪ NH3 is formed at a rate of up to 1.95 x 10-9 mol.s-1.cm-2 with a

corresponding Faradaic Efficiency of 5.5%.

▪ FEs up to 14% at lower current densities

Summary of Experimental Results

Page 9: An Electrochemical Haber-Bosch Process* · 2020. 12. 5. · An Electrochemical Haber-Bosch Process* V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, and M. Stoukides Aristotle

Visualizing an electrochemical HB

SSAS Reactor: CH4 + Η2O ↔ CO2 + 6Η+ + 6e- (anode)

N2 + 6H+ + 6e- ↔ 2NH3 (cathode)

2H+ + 2e- ↔ H2 (cathode)

Protonic Ceramic Fuel Cell: H2 ↔ 2Η+ + 2e- (anode)

1/2O2 + 2H+ + 2e- ↔ H2O (cathode)

(The PCFC is assumed to operate at a 45% efficiency)

NH3, N2, H2

Page 10: An Electrochemical Haber-Bosch Process* · 2020. 12. 5. · An Electrochemical Haber-Bosch Process* V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, and M. Stoukides Aristotle

0 20 40 60 80 1000

2

4

6

8

10

12

EHB process

HB process

CO

2 e

mis

sio

ns,

kg

CO

2/k

g N

H3

Faradaic efficiency to NH3, %

PCMR operation window

FENH3 = 35%

0 20 40 60 80 1000

500

1000

1500

2000

PCMR operation window

Electrical

Thermal

Total

HB process

PCMR voltage = 0.3 V

Ener

gy, k

J.m

ol-1 N

H3

Faradaic efficiency to NH3, %

FENH3 = 35%

Electrochemical vs Industrial HB

➢ >35% FE is required to exhibit lower energy demands and CO2 emissions

than the industrial HB

Page 11: An Electrochemical Haber-Bosch Process* · 2020. 12. 5. · An Electrochemical Haber-Bosch Process* V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, and M. Stoukides Aristotle

The “Giddey” Requirements 1

➢ current density: 0.25-0.5 A cm-2

➢ current efficiency : >50% ➢ NH3 is production rates: 4.3 - 8.7 x 10-7 mol cm-2 s-1

The DOE (REFUEL) Requirements 2

➢ current density: 0.3 A cm-2

➢ Faradaic efficiency : 90% ➢ NH3 is production rates: 9.3 x10-7 mol cm-2 s-1

1 S..Giddey et al, Int'l J. Hydrogen Energy 38, pp. 14576-14594 (2013)2 I.McPherson, J. Zhang, JOULE, 4, pp. 12-14 (2020)]

What is the target

Page 12: An Electrochemical Haber-Bosch Process* · 2020. 12. 5. · An Electrochemical Haber-Bosch Process* V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, and M. Stoukides Aristotle

Increasing the Faradaic Efficiency to a 40-50% and the NH3

production rate to 5 x 10-7 mol cm-2 s-1 is a real challenge. It

will require intense collaboration among researchers in the

fields of electrochemistry, heterogeneous catalysis and

materials science.

But it is worth the effort…

Page 13: An Electrochemical Haber-Bosch Process* · 2020. 12. 5. · An Electrochemical Haber-Bosch Process* V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, and M. Stoukides Aristotle

Thank you for your attention!

Page 14: An Electrochemical Haber-Bosch Process* · 2020. 12. 5. · An Electrochemical Haber-Bosch Process* V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, and M. Stoukides Aristotle
Page 15: An Electrochemical Haber-Bosch Process* · 2020. 12. 5. · An Electrochemical Haber-Bosch Process* V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, and M. Stoukides Aristotle
Page 16: An Electrochemical Haber-Bosch Process* · 2020. 12. 5. · An Electrochemical Haber-Bosch Process* V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, and M. Stoukides Aristotle

Electrical energy demands

Page 17: An Electrochemical Haber-Bosch Process* · 2020. 12. 5. · An Electrochemical Haber-Bosch Process* V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, and M. Stoukides Aristotle
Page 18: An Electrochemical Haber-Bosch Process* · 2020. 12. 5. · An Electrochemical Haber-Bosch Process* V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, and M. Stoukides Aristotle

SSASREACTOR

CO2capture

CH4, H2O

N2,H2O

PCFC NH3 storage

Condenser2

Anode:CH4 +2H2Oà CO2 +8H+ +8e-

Condenser1

H2O

Condenser3

Cathode:N2 +8H+ +8e-à 2NH3 +H2

N2,H2

N2

H2O

N2 (H2)

N2 (H2)

Anode:2H2à 4H+ +4e-

Cathode:O2+4H+ +4e-

à 2H2O

Air(N2,O2)

Page 19: An Electrochemical Haber-Bosch Process* · 2020. 12. 5. · An Electrochemical Haber-Bosch Process* V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, and M. Stoukides Aristotle
Page 20: An Electrochemical Haber-Bosch Process* · 2020. 12. 5. · An Electrochemical Haber-Bosch Process* V. Kyriakou, I. Garagounis, A. Vourros, E. Vasileiou, and M. Stoukides Aristotle