nanotechnology and its futuristic applications · 2014. 8. 19. · nanotechnology and its...

Post on 11-Sep-2020

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

11/30/12

Noe T. Alvarez, Ph. D. Alvarez 1

Nanotechnology and its Futuristic Applications

Alvarez 2

Outline 1. Science & Engineering education in the USA

2. Nanotechnology

3. Nanomaterials

Molecular assemblies, nanocar

Fullerenes, Carbon nanotubes and graphene

4. Future applications of nanomaterials

5. Conclusion

Extracted from Science and Engineering Indicators 2, National

Science Board (NSB 04-01), 2004, www.nsf.gov/nsb/documents/

reports.htm (accessed April 2005).

Alvarez 4

0.000 000 001 0.000 001

0.001 1

m mili micro nano

Nanotechnology

~1.4 m object

2.4 mm ant ~6 um red blood cell 1.1 nm

Lux Research Report “Ranking the nations: nanotechnology’s shifting global leaders

Alvarez 6

Fullerenes and NanoCar

Alvarez 7

Nanocar Wheel Discovery

Ballene, spherene, soccerene and carbosoccer 1985 Buckyminsterfullerene discovery 1996 Nobel prize award to Curl, Kroto and Smalley

Alvarez 8

C60 – MS data

Kroto, Curl and Samlley Nature 1985, 318, 162-163

Alvarez 9

Hirai, Tour et al. Chem Soc Rev., 2006, 35, 1043-1055

Nanocars Synthesis

Nanocar with Fulleren wheels

Nanocars on Street

Alvarez 12

Hirai, Tour et al. Chem Soc Rev., 2006, 35, 1043-1055

Other Nanovehicles

Alvarez 13

Molecular Parking Lot - Nanovehicles

http://www.redorbit.com/images/pic/62292/single-molecule-nanocars/

Carbon Allotropes

Carbon Nanotubes

Alvarez 15

Types of Carbon Nanotubes

http://people.bath.ac.uk/tl258/Types.html

16

Hexagonal Lattice (n,m) nanotubes

(10,2)

(0,0) (1,0) (2,0) (3,0)

(1,1) (2,1)

Zigzag

(2,2)

(4,0) (5,0) (6,0)

(3,1) (4,1) (5,1)

(3,2) (4,2) (5,2)

(7,0) (8,0) (9,0)

(6,1) (7,1) (8,1)

(6,2) (7,2) (8,2)

(10,0) (11,0)

(9,1) (10,1)

(9,2)

(3,3) (4,3) (5,3) (6,3) (7,3) (8,3) (9,3)

(4,4) (5,4) (6,4) (7,4) (8,4) (9,4)

(5,5) (6,5) (7,5) (8,5)

(6,6) (7,6) (8,6)

(7,7)

n - m = 3q (q: integer): metallic

n - m 3q (q: integer): semiconductor

A) ”Zig-zag” – semiconductor

B) “ Chiral” – Semiconductor

C) ”Armchair” – metal-like

conductivity

http://www.photon.t.u-tokyo.ac.jp/~maruyama/nanotube.html

Electrical conductivity

higher than copper.

Thermal conductivity

as high as diamond.

Superconductivity has

been observed at very

low temperatures.

Alvarez 17

Carbon Nanotubes

TEM STM

http://ceesdekkerlab.tudelft.nl/research/image-gallery/

Alvarez 18

Nanomotor

Carbon

Nanotube

nanoMotor

http://www.physics.berkeley.edu/research/zettl/projects/Rotorpics.html

Alvarez 19

http://www.def-logic.com/articles/nanomachines.html

Nanogears

Carbon Nanotube

nanoMotor

20

Microcatheter ( CNT & Nylon 12) composite

Jensen et al. Nano Lett., 2007; 7; 3508-3511 Zhang et al., Nano Lett. 2008; 8; 2564-2569 Koyama et al. Small 2006; 2; 1406-1411

Sensation™ Technology - Nanomix

CNT gas sensor for industrial level H2 detection

CNT radio

CNT TEM grid

Carbon Nanotube Applications

21

Field emission devices Supercapacitors & batteries Electronics devices and interconnects Nanoscale sensors Composite materials, conducting Composites Electromechanical actuators Computer display thin films Optoelectronics, optical activity Catalysis Mechanical strength. Gas separation membranes Data storage Controlled Drug Delivery/release Energy Storage: Hydrogen storage Armchair Quantum Wire

Samsung prototype field emission display using carbon nanotubes

Carbon Nanotube Applications

DGU for Large Diameter CNTs Separation

Density of the tubes

based on their

diameter determines

the layer where

individual CNTs are

located in

23

Chemical Vapor Deposition - Synthesis

Sinnot et al., Chem. Phys. Lett. 1999; 315; 25-30

nanotube

nanotube

24

VA-SWCNT Synthesis:

Electron beam evaporation: P < 1x10-5 T Catalyst support : Al2O3 (5 – 40 nm) Catalyst : Fe (0.5 - 5 nm)

Catalyst (Fe, Co, Ni)

Substrate (SiO2)

Al2O3

Catalyst deposition process – Chemical Vapor Deposition

Alvarez 25

Typical growth conditions: C source: C2H4 Temperature : 750 ºC

VA-SWCNT Synthesis:

Alvarez 26

Higher Magnification on the CNT arrays reveals the nature of the CNT bundles

SEM Image of VA-SWCNTs

27

VA-CNT characterization

SWCNT areal density: 5.2x1011 tubes/cm2

Mass density: 0.037 g/cm3

Average diameter: 3 nm

Catalyst activity: 84% (±6%)

Tube/ 190 nm2

Average distance between CNT: 14 nm

CNTs occupy 3.6% surface area and 96% is

empty

Total length of the tubes in a single substrate 241124 Km Total earth circumference at the equator 40075 Km A single substrate (cm2) of the CNT array grown for 15 min can wrap the earth 6 times along the equator CNTs are perfect sample of nanostructures impact on the macroscopic world

Futaba et al., J. Phys Chem B 2006; 110:8035-8038

Cu 5.96×107 (S/m) 1.68x10-8 [Ω m] Au 4.1×107 (S/m) 2.44x10-8 [Ω m] SWCNT fiber 5x105 (S/m) L. M. Ericson et al., Science 2004, 305, 1447 MWCNT yarn 3x104 (S/m) M. Zhang et al., Science 2004, 306, 1358 SWCNT fiber 3x105 (S/m) E. Y. Jang et al., Adv. Mater 2009; 6; 1806 MWCNT yarn 5x102 (S/m) L. K. Randeniya, Small 2010, 6, 1806 MWCNT-Au yarn 3x105 (S/m) L. K. Randeniya, Small 2010, 6, 1806 MWCNT yarn 4.2x104 (S/m) K. Liu et al., ACS nano 2010, 4, 5827 MWCNT-PVA yarn 9.2x104 (S/m) K. Liu et al., ACS nano 2010, 4, 5827 MWCNT yarn 2.00x106 (S/m) Y. Zhao et al., nature 2011, online MWCNT-I3 yarn 6.67x106 (S/m) Y. Zhao et al., nature 2011, online MWCNT 1.3x109 (S/m) H. Dai et al., Science 1996, 272, 523

Electrical Conductivity of CNT Yarns/Threads

Alvarez 28

Manual Carbon Nanotube Fiber Spinning

Atkinson et al., Physica B 394 (2007) 339–343

Alvarez 30

Manual Carbon Nanotube Fiber Spinning

Baughman et al., Science 2005, 309 1215

Semi-manual CNT Fiber

Production

CNT sheet cross patterns

Hydrophobicity of CNTs

CNT fiber spinning under microscope

Baughman et al., Science 2005, 309 1215

Koziol et al. Science 2007; 318; 1892-1895

Mechanical Strength Of CNTs

33

Composites, resins, adhesives based on CNT CNTs enter Tour de Fance (2006) BMC (2.2 pounds – frame weight 20% less) ZyvexTM performance materials 540SE built with Arovex: ¼ of the weight 15/ 85 (gallons/h) 520/1600 (HP)

Alvarez 34

Boeing 787 Dreamliner 32 000 Kg of C-fiber reinforced plastic (25K Kg of C-fiber)

110 000 Kg – total weight Consumes 20% less fuel

CNT’s brother – Carbon Fiber

Alvarez 35

CNT – Strongest Fiber

http://inventorspot.com/articles/space_elevator_competition_shows_7648

Alvarez 36

http://euspec.warr.de/background

Alvarez 37

Carbon Nanotube Sheet Processing at UC

Alvarez 38

Carbon Nanotube Sheet Processing at UC

Alvarez 39

Carbon Nanotube Fiber Spinning at UC

Alvarez 40

CNT Doping Types

Exo-hedral endo-hedral Substitutional

Yeung et al., J. of Nanotech. 2010, Art Number 801789 Wei et al., Physica E. 2008, 40, 262

Y . Zhao et al., nature 2011, online

Iodine doping CNT yarns/fibers a). Elemental maping of C b). Elemental maping of Iodine c). Schematic of doping

a.

c.

b.

Alvarez 41

Iodine doped CNT fibers

Alvarez 42

Electrical properties

2 4 6 81E-8

1E-7

1E-6

1E-5

1E-4

Au Doping

Solvent Densified

Reference

Au wire

El.

Resis

tivit

y (m

)

Sample # 1

Cu wire

Alvarez 43

Alvarez 44

CNT Fiber Coating at UC

2

3

1

• Polymer coating and curing in a single step • Digitally controlled temperature

Alvarez 45

Concentrated polymer coating – D3 Final Vol ~25 mL

011812_d3_9_10_11_12

Z1020 Alvarez 46

Preliminar results of polymer coating on CNT yarns Ideal wetting of the CNT yarn and uniform coating were observed

CNT Fiber Coating at UC

Alvarez 47

CNT Fiber Coating at UC

Alvarez 48

CNT Fiber Coating at UC

Alvarez 49

Alvarez 50

Acknowledgements Prof Vesselin Shanov Prof Mark Schulz Prof David Mast Nicholas (Undergraduate) Timothy Ochman (Undergraduate) Brad Ruff (Graduate Student) Rachit Malik (Graduate Student) Mark Haase(Graduate Student) Diep Cuong (Undergraduate) Nanoworld undergraduate and graduate students Doug Hurd (Machine shop manager) Funding agencies, Army, Ohio-Frontier, NSF . . .

Alvarez 51

Alvarez 52

top related