lecture 13 - jon tselecture 13 logic families ii professor sunil bhave cu school of electrical and...

Post on 28-Feb-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Lecture 13Lecture 13

Logic Families II

Professor Sunil BhaveCU School of Electrical and Computer p

Engineering

March 17, 2010

RatioedLogic

Ratioed Logicg

VDD

RLLoad

VDD VDD

V

Resistive DepletionLoad

PMOSLoadVT < 0

PDNIn1In2I

FIn1In2I

F

PDNIn1In2I

FVSS

PDN

VSS

In3

VSS

In3

VSS

In3

(a) resistive load (b) depletion load NMOS (c) pseudo-NMOS

Goal: to reduce the number of devices over complementary CMOSGoal: to reduce the number of devices over complementary CMOS

Ratioed LogicgVDD

N i L d

RLLoadResistive

N transistors + Load

• VOH = VDD

F

• VOL = RPN

RPN + RL

PDNIn1In2In3

• Assymetrical response

• Static power consumption

VSS

3 p p

• tpL= 0.69 RLCL

Active LoadsVDD VDD

VSS

DepletionLoad

PMOSLoadVT < 0

In1

F

In1

F

VSS

In2In3

PDNIn2In3

PDN

VSS VSS

depletion load NMOS pseudo-NMOS

Pseudo-NMOS

VDDDD

FCA B C D CL

VOH = VDD (similar to complementary CMOS)O p y

kn VDD VTn–( )VOLVOL

2

2-------------–

⎝ ⎠⎜ ⎟⎛ ⎞ kp

2------ VDD VTp–( )

2=

VOL VDD VT–( ) 1 1kpkn------–– (assuming that VT VTn VTp )= = =

SMALLER AREA & LOAD BUT STATIC POWER DISSIPATION!!!

P d NMOS VTCPseudo-NMOS VTC

2.5

3.0

1 5

2.0

]

W/Lp = 4

1.0

1.5

Vou

t[V

]

W/Lp = 2

W/L = 1W/L = 0 5

0.0 0.5 1.0 1.5 2.0 2.50.0

0.5W/Lp = 1

W/Lp = 0.25

W/Lp 0.5

Vin [V]

Improved Loadsp

V

M1

VDD

F

M1M2 M1 >> M2Enable

A B C D

F

CL

Ad ti L dAdaptive Load

Improved Loads (2)p ( )VDD VDD

M1 M2

Out Out

APDN1 PDN2A

BB

VSS VSS

Differential Cascode Voltage Switch Logic (DCVSL)g g ( )

DCVSL Examplep

Out

B B B B

Out

B

A A

B B B

XOR-NXOR gate

DCVSL T i t RDCVSL Transient Response

2.5

1.5

ge[V

] A B

A B

0.5

Vol

tag A B

A,BA,B

0 0.2 0.4 0.6 0.8 1.0-0.5

Time [ns][ ]

Pass-Transistor Logicg

ts Switch OutOut

A

B

Inpu

t

NetworkOut

BB

• N transistors• N transistors• No static consumption

E l AND G tExample: AND Gate

BB

BA

F = AB

0

NMOS O l L iNMOS-Only Logic

In

3.0

In

VDDOut

x

0.5μm/0.25μm0 5μm/0 25μm

1.5μm/0.25μm 2.0

Volta

ge[V

]

xOut

0.5μm/0.25μm

0 0.5 1 1.5 20.0

1.0V

0 0.5 1 1.5 2Time [ns]

NMOS-only Switchy

A = 2.5 V

C = 2.5V

A = 2.5 V

C = 2.5 V

BM2

MnB

CL M1

Mn

VB does not pull up to 2.5V, but 2.5V -VTNThreshold voltage loss causes

static power consumption

B TN

NMOS has higher threshold than PMOS (body effect)

NMOS Only Logic: Level Restoring TransistorLevel Restoring Transistor

VDD

M

MrB

VDDVDDLevel Restorer

M2

Mn OutAX

M1

• Advantage: Full Swing• Restorer adds capacitance takes away pull down current at X Restorer adds capacitance, takes away pull down current at X• Ratio problem

Restorer SizingRestorer Sizing

3.0•Upper limit on restorer size•Pass-transistor pull-down

2.0

W/Lr =1.50/0.25

W/Lr =1.75/0.25

olta

ge[V

]

pcan have several transistors in stack

1.0

W/Lr =1.0/0.25 W/Lr =1.25/0.25

Vo

0 100 200 300 400 5000.0

Time [ps]

Solution 2: Single Transistor Pass Gate with V =0VT=0

VDD

VDD

0V

OutVDD

0V 2.5V

0V

2.5V

VDD 0V

WATCH OUT FOR LEAKAGE CURRENTSWATCH OUT FOR LEAKAGE CURRENTS

Complementary Pass Transistor Logicp y g

P T i tA

FPass-Transistor

NetworkABB

A Inverse

(a)

FPass-TransistorNetwork

ABB

Inverse

A

B B B B

A

B B

A

B

A

B

B

A

B

F=AB

F=AB

F=A+B

F=A+B

A

A

A

F=A⊕ΒÝ

F=A⊕ΒÝ

(b)

OR/NOR EXOR/NEXORAND/NAND

Solution 3: Transmission Gate

CC

A B A B

CC

BA = 2.5 V

C = 2.5 V

CL

C = 0 V

top related