introduction to power system analysis - tcipgย ยท power flow analysis g bus transmission line g...

Post on 17-Aug-2020

10 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Introduction to Power System Analysis

Hui Lin, Siming Guo

Agenda

โ€ข Power System Notation

โ€ข Power Flow Analysis

โ€ข Hands on Matpower and PowerWorld

Simple Power System

Every power system has three major components

โ€“ generation: source of power, ideally with a specified power, voltage, and frequency

โ€“ load: consumes power; ideally with constant power consumption

โ€“ transmission system: transmits power; ideally as a perfect conductor

Complications

โ€ข No ideal voltage sources exist

โ€ข Loads are seldom constant, and we need to balance supply and demand in real time

โ€ข Transmission system has resistance, inductance, capacitance and flow limitations

โ€ข Simple system has no redundancy so power system will not work if any component fails

Notation - Power

โ€ข Power: Instantaneous consumption of energy

โ€ข Power Units

โ€ข Watts = voltage x current for dc (W)

โ€ข kW โ€“ 1 ร— 103 Watt

โ€ข MW โ€“ 1 ร— 106 Watt

โ€ข GW โ€“ 1 ร— 109 Watt

โ€ข Installed U.S. generation capacity is about 900 GW ( about 3 kW per person)

โ€ข Maximum load of Champaign/Urbana about 300 MW

Notation - Energy

โ€ข Energy: Integration of power over time; energy is what people really want (and pay for) from a power system

โ€ข Energy Units

โ€ข Joule = 1 Watt-second (J)

โ€ข kWh โ€“ Kilowatthour (3.6 x 106 J)

โ€ข Btu โ€“ 1055 J; 1 MBtu=0.292 MWh

โ€ข U.S. electric energy consumption is about 3600 billion kWh (about 13,333 kWh per person, which means on average we each use 1.5 kW of power continuously)

Review of Phasors

Goal of phasor analysis is to simplify the analysis of constant frequency ac systems

v(t) = Vmax cos(wt + qv)

i(t) = Imax cos(wt + qI)

Root Mean Square (RMS) voltage of sinusoid

2 max

0

1( )

2

TV

v t dtT

Complex Power

max

max

max max

( ) ( ) ( )

v(t) = cos( )

(t) = cos( )

1cos cos [cos( ) cos( )]

2

1( ) [cos( )

2

cos(2 )]

V

I

V I

V I

p t v t i t

V t

i I t

p t V I

t

w q

w q

q q

w q q

Power

Complex Power, contโ€™d

max max

0

max max

1( ) [cos( ) cos(2 )]

2

1( )

1cos( )

2

cos( )

= =

V I V I

T

avg

V I

V I

V I

p t V I t

P p t dtT

V I

V I

q q w q q

q q

q q

q q

Power Factor

Average

P

Angle

ower

Phasor Representation

Eulerโ€™s identity: ๐‘’๐‘—๐œƒ = cos ๐œƒ + ๐‘— sin ๐œƒ

Phasor notation is developed by

rewriting using Eulerโ€™s identity

๐‘ฃ ๐‘ก = 2๐‘‰cos(๐œ”๐‘ก + ๐œƒ๐‘‰)

๐‘ฃ ๐‘ก = ๐‘Ÿ๐‘’[ 2๐‘‰๐‘’๐‘—๐œ”๐‘ก๐‘’๐œƒ๐‘‰]

Phasor Representation, contโ€™d

The RMS, cosine-reference phasor is:

๐‘‰ = ๐‘‰๐‘’๐‘—๐œƒ = ๐‘‰โˆ ๐œƒ๐‘‰

๐‘‰ = ๐‘‰(cos ๐œƒ๐‘‰ + ๐‘—sin ๐œƒ๐‘‰)

๐ผ = ๐ผ(cos ๐œƒ๐ผ + ๐‘— sin ๐œƒ๐ผ)

Complex Power

๐‘† = ๐‘‰ ๐ผ โˆ—

= ๐‘‰๐ผ๐‘’๐‘—(๐œƒ๐‘‰โˆ’๐œƒ๐ผ)

= ๐‘‰๐ผ cos ๐œƒ๐‘‰ โˆ’ ๐œƒ๐ผ + ๐‘— sin ๐œƒ๐‘‰ โˆ’ ๐œƒ๐ผ

= ๐‘ƒ + ๐‘—๐‘„

๐‘ƒ: real power (W, kW, MW)

Q: reactive power (var, kvar, Mvar)

S: complex power (va, kva, Mva)

Power factor (pf): cos (๐œƒ๐‘‰ โˆ’ ๐œƒ๐ผ)

If current leads voltage, then pf is leading

If current lags voltage then pf is lagging

Power Flow Analysis

G

Bus Transmission Line

G Generators Loads

(๐‘‰1, ๐œƒ1) (๐‘‰2, ๐œƒ2)

(๐‘‰3, ๐œƒ3)

โ€ข The power flow analysis is the process of solving the steady state of the power system

โ€“ Steady state: voltage magnitude and angle for each bus

โ€“ Generator: modeled as constant power delivery

โ€“ Loads: modeled as constant power consumption

โ€“ Transmission line: modeled as constant impedance

Power Flow Analysis

๐‘†๐บ โˆ’ ๐‘†๐ท = ๐‘‰ ๐‘–๐ผ ๐‘–โˆ—

(๐‘‰ , ๐ผ : the voltage and the current that injects into bus i)

๐ผ ๐‘– = ๐ผ ๐‘–๐‘˜๐‘˜

๐ผ ๐‘–๐‘˜ =๐‘‰ ๐‘–โˆ’๐‘‰ ๐‘˜

๐‘๐‘–๐‘˜

(k takes indices of all buses that connected to bus i; Zik

specifies the impedance of transmission line connecting

bus i and bus k)

Bus i

To other buses

SGSD

Y-Bus (admittance matrix)

๐ผ๐‘– = ๐‘‰๐‘–โˆ’๐‘‰๐‘˜

๐‘๐‘–๐‘˜๐‘˜ = ๐‘‰๐‘– โˆ’ ๐‘‰๐‘˜ ๐‘ฆ๐‘–๐‘˜๐‘˜

= โˆ’๐‘ฆ๐‘–1๐‘‰1 + โˆ’๐‘ฆ๐‘–2๐‘‰2 +,โ€ฆ , ๐‘ฆ๐‘–๐‘˜ ๐‘‰๐‘–๐‘˜ +,โ€ฆ+ โˆ’๐‘ฆ๐‘–๐‘› ๐‘‰๐‘›

= โˆ’๐‘ฆ๐‘–1 โˆ’๐‘ฆ๐‘–2 โ€ฆ ๐‘ฆ๐‘–๐‘˜๐‘˜ โ€ฆ โˆ’๐‘ฆ๐‘–๐‘›

๐‘‰1

๐‘‰2

โ‹ฎ๐‘‰๐‘–

โ‹ฎ๐‘‰๐‘›

Y-Bus (admittance matrix), contโ€™d

Write ๐ผ๐‘— for all buses together: ๐ผ = ๐‘Œ๐‘‰ , where

(๐ผ = [๐ผ1, ๐ผ2, โ€ฆ , ๐ผ๐‘›], ๐‘‰ = [๐‘‰1, ๐‘‰2, โ€ฆ , ๐‘‰๐‘›])

Construction of Y:

๐‘Œ๐‘–๐‘– = ๐‘ฆ๐‘–๐‘˜๐‘˜ ๐‘Œ๐‘–๐‘˜ = ๐‘Œ๐‘˜๐‘– = โˆ’๐‘ฆ๐‘–๐‘˜

๐‘Œ = ๐บ + ๐‘—๐ต

So we have: ๐ผ๐‘– = (๐‘Œ๐‘–๐‘˜๐‘‰๐‘˜)๐‘˜

Power Flow Equation at Bus j

๐‘†๐บ โˆ’ ๐‘†๐ท = ๐‘‰๐‘– ๐ผ๐‘–

โˆ—

๐‘†๐บ โˆ’ ๐‘†๐ท = ๐‘‰๐‘– ๐ผ๐‘–

โˆ—= ๐‘‰๐‘–

๐‘Œ๐‘–๐‘˜๐‘‰๐‘˜๐‘˜โˆ—

= ๐‘‰๐‘–๐‘’๐‘—๐œƒ๐‘– ๐บ๐‘–๐‘˜ + ๐‘—๐ต๐‘–๐‘˜ ๐‘‰๐‘˜๐‘˜ ๐‘’๐‘—๐œƒ๐‘˜

โˆ—

= ๐‘‰๐‘–๐‘’๐‘—๐œƒ๐‘– ๐‘‰๐‘˜ ๐บ๐‘–๐‘˜ โˆ’ ๐‘—๐ต๐‘–๐‘˜ ๐‘’โˆ’๐‘—๐œƒ๐‘˜

๐‘˜

= ๐‘‰๐‘–๐‘‰๐‘˜๐‘˜ ๐บ๐‘–๐‘˜ โˆ’ ๐‘—๐ต๐‘–๐‘˜ ๐‘’๐‘—(๐œƒ๐‘–โˆ’๐œƒ๐‘˜)

= ๐‘‰๐‘–๐‘‰๐‘˜๐‘˜ ๐บ๐‘–๐‘˜ cos ๐œƒ๐‘– โˆ’ ๐œƒ๐‘˜ + ๐ต๐‘–๐‘˜sin (๐œƒ๐‘– โˆ’ ๐œƒ๐‘˜)

+๐‘— ๐‘‰๐‘–๐‘‰๐‘˜๐‘˜ ๐บ๐‘–๐‘˜sin (๐œƒ๐‘– โˆ’ ๐œƒ๐‘˜) โˆ’ ๐ต๐‘–๐‘˜cos (๐œƒ๐‘– โˆ’ ๐œƒ๐‘˜)

Bus i

To other buses

SGSD

Power Flow Equation at Bus j

๐‘ƒ๐บ โˆ’ ๐‘ƒ๐ท = ๐‘‰๐‘–๐‘‰๐‘˜๐‘˜ ๐บ๐‘–๐‘˜ cos ๐œƒ๐‘– โˆ’ ๐œƒ๐‘˜ + ๐ต๐‘–๐‘˜sin (๐œƒ๐‘– โˆ’ ๐œƒ๐‘˜)

Q๐บ โˆ’ ๐‘„๐ท = ๐‘‰๐‘–๐‘‰๐‘˜๐‘˜ ๐บ๐‘–๐‘˜sin (๐œƒ๐‘– โˆ’ ๐œƒ๐‘˜) โˆ’ ๐ต๐‘–๐‘˜cos (๐œƒ๐‘– โˆ’ ๐œƒ๐‘˜)

โ€ข Slack bus:

โ€“ ๐‘‰ and ๐œƒ are known, used as a reference

โ€ข PV bus, with generators connected

โ€“ P and V are known

โ€ข PQ bus, with only load units connected

โ€“ P and Q are known

Solving Power Flow Equations

โ€ข Assuming m-1 PV buses

โ€“ Given: ๐‘‰1, ๐œƒ1, ๐‘ƒ๐บ,2, ๐‘‰2, โ€ฆ, ๐‘ƒ๐บ,๐‘š, ๐‘‰๐‘š, ๐‘ƒ๐ท,๐‘š+1, ๐‘„๐ท,๐‘š+1,โ€ฆ,

๐‘ƒ๐ท,๐‘›, ๐‘„๐ท,๐‘›

โ€“ Unknown: ๐‘ƒ๐บ,1, ๐‘„๐บ,1, ๐‘„๐บ,2, ๐œƒ2, โ€ฆ, ๐‘„๐บ,๐‘š, ๐œƒ๐‘š, ๐‘‰๐‘š+1,

๐œƒ๐‘š+1,โ€ฆ, ๐‘‰๐‘›, ๐œƒ๐‘›

Newton-Raphson Methods

Assume (m-1) PV buses among n buses

๐‘ฅ =

๐œƒ2

๐œƒ3

โ‹ฎ๐œƒ๐‘›

๐‘‰๐‘š+1

๐‘‰๐‘š+2

โ‹ฎ๐‘‰๐‘›

๐‘“ ๐‘ฅ =

๐‘ƒ2(๐‘ฅ) โˆ’ ๐‘ƒ๐บ,2 + ๐‘ƒ๐ท,2

๐‘ƒ3(๐‘ฅ) โˆ’ ๐‘ƒ๐บ,3 + ๐‘ƒ๐ท,3

โ‹ฎ๐‘ƒ๐‘›(๐‘ฅ) โˆ’ ๐‘ƒ๐บ,๐‘› + ๐‘ƒ๐ท,๐‘›

๐‘„๐‘š+1(๐‘ฅ) โˆ’ ๐‘„๐บ,๐‘š+1 + ๐‘„๐ท,๐‘š+1

๐‘„๐‘š+2(๐‘ฅ) โˆ’ ๐‘„๐บ,๐‘š+2 + ๐‘„๐ท,๐‘š+2

โ‹ฎ๐‘„๐‘›(๐‘ฅ) โˆ’ ๐‘„๐บ,๐‘› + ๐‘„๐ท,๐‘›

Multi-Variable Example

1

2

2 21 1 2

2 22 1 2 1 2

1 1

1 2

2 2

1 2

xSolve for = such that ( ) 0 where

x

f ( ) 2 8 0

f ( ) 4 0

First symbolically determine the Jacobian

f ( ) f ( )

( ) =f ( ) f ( )

x x

x x x x

x x

x x

x f x

x

x

x x

J xx x

๐‘ฅ ๐‘ก + 1 = ๐‘ฅ ๐‘ก โˆ’ ๐ฝโˆ’1(๐‘ฅ)f(x[t])

Multi-variable Example, contโ€™d

1(2)

(2)

2.1 8.40 2.60 2.51 1.8284

1.3 5.50 0.50 1.45 1.2122

Each iteration we check ( ) to see if it is below our

specified tolerance

0.1556( )

0.0900

If = 0.2 then we wou

x

f x

f x

ld be done. Otherwise we'd

continue iterating.

N-R Power Flow Solution

1 1 1

1 2

2 2 2

1 2

1 2

The most difficult part of the algorithm is determining

and inverting the n by n Jacobian matrix, ( )

( ) ( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )

n

n

n n n

n

f f f

x x x

f f f

x x x

f f f

x x x

J x

x x x

x x x

J x

x x x

Other Power Flow Solution

Divide the Jacobian matrix into four sub-matrices:

๐ฝ ๐‘ฅ =

๐œ•๐‘ƒ

๐œ•๐œƒ

๐œ•๐‘ƒ

๐œ•๐‘‰๐œ•๐‘„

๐œ•๐œƒ

๐œ•๐‘„

๐œ•๐‘‰

Decoupled power flow:

๐‘€ ๐‘ฅ =

๐œ•๐‘ƒ

๐œ•๐œƒ0

0๐œ•๐‘„

๐œ•๐‘‰

Other Power Flow Solution

Fast decoupled power flow, assuming ๐œƒ๐‘– โˆ’ ๐œƒ๐‘˜ โ‰ˆ 0 ,

๐‘‰๐‘– โ‰ˆ 1, ๐บ๐‘–๐‘˜ โ‰ช ๐ต๐‘–๐‘˜

So we have: ๐œ•๐‘ƒ

๐œ•๐œƒโ‰ˆ โˆ’๐ต = โˆ’

๐ต22 โ€ฆ ๐ต2๐‘›

โ‹ฎ โ‹ฎ โ‹ฎ๐ต๐‘›๐‘› โ€ฆ ๐ต๐‘›๐‘›

๐œ•๐‘„

๐œ•๐‘‰โ‰ˆ โˆ’๐ต =

๐ต๐‘š+1,๐‘š+1 โ€ฆ ๐ต๐‘š+1,๐‘›

โ‹ฎ โ‹ฎ โ‹ฎ๐ต๐‘›,๐‘š+1 โ€ฆ ๐ต๐‘›๐‘›

๐‘€ ๐‘ฅ =โˆ’๐ต 0

0 โˆ’๐ต

DC Power Flow Analysis

Assumption: small deviation flat voltage profile, ๐‘‰๐‘– โ‰ˆ 1

and ๐œƒ๐‘– โ‰ˆ 0 ๐œ•๐‘ƒ

๐œ•๐œƒโ‰ˆ โˆ’๐ต

The ultimate steady state: ๐‘ƒ = ๐‘ƒ0 + ๐œ•๐‘ƒ, ๐œƒ = ๐œƒ0 + ๐œ•๐œƒ.

In the flat voltage profile, ๐‘ƒ0 = 0, ๐œƒ0 = 0

๐‘ƒ โ‰ˆ โˆ’๐ต ๐œƒ

Matpower

โ€ข http://www.pserc.cornell.edu/matpower/

โ€ข runpf: run power flow analysis

โ€ข runopf: solves an optimal power flow

โ€ข makeYbus: Builds the bus admittance matrix and branch admittance matrices.

PowerWorld

PowerWorld, contโ€™d

Thanks

top related