chris h. kim, kaushik roy, steven k. hsu*, ram k....

Post on 09-Aug-2020

5 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

An On-Die CMOS Leakage Current Sensor for Measuring

Process Variation in Sub-90nm Generations

Chris H. Kim, Kaushik Roy, Steven K. Hsu*, Ram K. Krishnamurthy*, Shekhar Borkar*

Purdue University, West Lafayette, IN*Circuit Research, Intel Labs,

Intel Corporation, Hillsboro, ORIntel Labs

2

Outline

Motivation and prior art

Proposed leakage sensing technique

Leakage sensor test chip implementation

in 90nm

Leakage binning results

Conclusions

3

Process Variation

0.4

0.6

0.8

1.0

1.2

1.4

0.01 0.1 1 10 100Normalized IOFF

Nor

mal

ized

I ON

NMOSPMOS

100X

2X

150nm CMOS, 110°C

IOFF spread > 100X, ION spread > 2XDevice parameters are NOT deterministic any more

4

Off-current meas.Off-current meas.

Process Variation Detection

Sub-threshold CMOS device:

T. Kuroda, JSSC, Nov. 1996

Test row devicesProcess monitor

Decay sensors

Strong inversion CMOS device:

M. Griffin, JSSC, Nov. 1998Y. Kim, IEICE, Nov. 1999

Delay line:M. Miyazaki, ISLPED, Aug. 1998

On-current meas.On-current meas.

Process detection method optimized for each applicationResolution, area, complexity, testing cost, etc.

5

Leakage Variations Impact

Dynamic circuit NMOS pull-down leakage variation:Keeper size determined for target robustness at worst-case leakage cornerExcess leakage dies: fail to meet target robustnessLower leakage dies: over-designed for robustness

Dynamic 8-way Bitline

0.7

1

1.3

1.6

0.25 1 1.75

Nor

mal

ized

Del

ay

Keeper upsizin

g 20%

5%

10%

DC noise robustness

8%

Target robustness

clk

...RS0

D0

RS1

D1

RS7

D7

Dyn_out

WKPR

R. Krishnamurthy et al, VLSI Circuits Symp. 2001

6

Target Application: Process Compensating Dynamic Circuit

3-bit programmable conditional keeper

clk

. . .RS0 RS7

D0 D7

RS1

D1

LBL0

LBL1

N0

b[2:0]

W 2W 4Ws s s

On-die leakage current sensor required to generate b[2:0] based on NMOS pull-down leakage

Conventional

C. Kim, S. Hsu et al, VLSI Circuits Symp. 2003

7

Usage Model and Design Goal for On-Die Leakage Sensor

83μm

73μ

m

current reference

comparators

current m

irrors

VBIASgen.

NMOS device

test interface

High leakage sensing gain (> 3b resolution)No complicated timing controlCompact analog design

On-Die Leakage Sensors

8

Previous Leakage Current Sensing Circuits

Susceptible to P/N skew and supply fluctuationLarge area due to multiple analog bias circuitsLimited leakage sensing gain

+- d0

IREFd0VBIAS

+-

VSEN

VDD/2

VSEN

T. Kuroda et al., JSSC, Nov. 1996 M. Griffin et al., JSSC, Nov. 1998

9

Proposed Single Channel Leakage Sensing Circuit

Basic principle: Drain induced barrier loweringLow sensitivity to P/N skew and supply fluctuation

IREF

M1 (saturation)

M2 (subthreshold)

+-

VBIAS+- d0

VREF

VSEN

10

PV Insensitive Current Reference (IREF)

• Sub-1V process, voltage compensated MOS current generation concept

• Reference voltage, external resistor not required• Scalable, low cost, flexible solution

2/0.4

2/0.4

6/0.4

6/0.4

1/1.6

18/0.4

18/0.4

18/0.4

6/0.4 2/0.4

6/0.8 6/0.8 4/0.8 4/0.8

IREF

Vt generation circuit Subtraction circuit

S. Narendra et al., VLSI Circuits Symp. 2001

11

PV Insensitive Bias Voltage (VBIAS)

8/0.4 1/0.4

96/0.2

2/0.2IREF

VBIAS )(log2

1=WW

qkT

(W1=96μm, W2=2μm)

E. Vittoz et al., JSSC, June 1979

• PTAT containing no resistive dividers• Based on weak inversion MOS characteristics• Desired output voltage achieved via sizing

12

Comparator

• 2-stage differential amplifier• Already designed IREF is used for bias current

4/0.4 4/0.4

8/0.48/0.4 8/0.4

4/0.44/0.4

+- =

(+)(-)

output

IREF

Subtraction circuit

13

PV Sensitivity of Designed IREF, VBIAS

• IREF variation < 4%, VBIAS variation < 2%• Under realistic process skews, ±100mV supply

voltage fluctuations

1.2V, 90nm CMOS, 80˚C

VDD (V)

1.00 0.991.000.99 1.00 1.00

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.1 1.2 1.3

IREFVBIAS

1.011.000.99 1.000.99 1.01

0.0

0.2

0.4

0.6

0.8

1.0

1.2

fast typical slow

Process skew

IREFVBIAS

14

Proposed Leakage Current Sensing

IREF

M1 (saturation)

M2 (sub-threshold)

+-

VBIAS+- d0

VREF

VSEN

PMOS M1

0 0.2 0.4 0.6 0.8 1 1.2

VSEN (V)

I ds

fasttypicalslow

0 0.2 0.4 0.6 0.8 1 1.2

VSEN (V)

I ds

fasttypicalslow

NMOS M2

1.2V, 90nm CMOS, 80˚C

15

Superimposed I-V Curves

• 1.9-10.2X higher VSEN swing than prior-art• Process-voltage insensitive design

0 0.2 0.4 0.6 0.8 1 1.2

VSEN (V)

I ds

slowtypicalfast

1.2V, 90nm CMOS, 80˚C

∆VSEN=0.93V

16

6-Channel Leakage Sensor Test Chip

IREF+-

VBIAS

-+

WP 2WP 3WP 4WP 6WP 9WP

WN

VSEN

1

VREF

Bubblerejection

circuit

V1 V2 V3 V4 V5 V6

V1V2V3

V1V4V5

V2V4V6

OUT[2]

OUT[1]

OUT[0]

WN WN WN WN WN

VSEN

2

VSEN

3

VSEN

4

VSEN

5

VSEN

6

Incremental mirroring ratio for multi-bit resolution leakage sensingShared bias generators compact designProcess-voltage insensitive IREF, VBIAS gen.

-+ -+ -+ -+ -+

17

Multi-Bit Resolution Leakage Sensing

Leakage level determined by comparing VSEN1 through VSEN6 with VREF6-channel leakage sensor gives 7 level resolution

0

0.2

0.4

0.6

0.8

1

1.2

fast typical slow

Volta

ge (V

) VSEN6VSEN5VSEN4VSEN3VSEN2VSEN1VREF

Process skew

1.2V, 90nm CMOS, 80˚C

18

Example: Operation at Fast Process Corner

IREF+-

VBIAS

WP 2WP 3WP 4WP 6WP 9WP

WN

VSEN

1

VREF

Bubblerejection

circuit

V1 V2 V3 V4 V5 V6

V1V2V3V1V4V5V2V4V6

OUT[2]

OUT[1]

OUT[0]

WN WN WN WN WN

VSEN

2

VSEN

3

VSEN

4

VSEN

5

VSEN

6

1 1 1 1 0 0

1 1 1 1 0 1

00.20.40.60.8

11.2

fast typical slow

Volta

ge (V

)

VREF

1

0

1

-+ -+ -+ -+ -+ -+

Fast corner: output code ‘101’

19

Example: Operation at Typical Process Corner

IREF+-

VBIAS

WP 2WP 3WP 4WP 6WP 9WP

WN

VSEN

1

VREF

Bubblerejection

circuit

V1 V2 V3 V4 V5 V6

V1V2V3V1V4V5V2V4V6

OUT[2]

OUT[1]

OUT[0]

WN WN WN WN WN

VSEN

2

VSEN

3

VSEN

4

VSEN

5

VSEN

6

1 0 0 0 0 0

1 0 1 1 1 1

00.20.40.60.8

11.2

fast typical slow

Volta

ge (V

)

VREF

0

1

0

-+ -+ -+ -+ -+ -+

Typical corner: output code ‘010’

20

current reference

comparators

current m

irrors

VBIASgen.

NMOS devices

test interface

6 channels (7 levels)Resolution1.2VVDD

83 X 73 μm2Dimensions 0.66 mW @ 80°CPower consumption

90nm dual-Vt CMOSTechnology

On-Die Leakage Sensor Test Chip

21

Leakage Sensor Results

• Effective leakage binning for PCD technique• Scalable beyond 90nm generation

001 010 011 100 101 110 111Output codes from leakage sensor

Leakage current (normalized)

I DSA

T(n

orm

aliz

ed)

Die

cou

nt (%

) 1.2V, 90nm CMOS, 80˚C

22

ConclusionsPost silicon tuning is becoming promising for process compensationOn-die leakage current sensors assist inter/intra-die process compensationMulti-channel leakage current sensor– No complicated timing control– 1.9-10.2X higher sensitivity to leakage– Shared analog components for compact

design

top related