0-%012)+*%3#$4$5€¦ · $f"./+&! @;& 8&7$%"2$...

Post on 17-Aug-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Does  QCD  predict  light  hybrid  mesons?

Jozef  DudekOld  Dominion  University  &  Jefferson  Lab

JLab  Users’  Group  Workshop

Robert  Edwards  (JLab)Balint  Joo  (JLab)David  Richards  (JLab)Christopher  Thomas  (JLab)Mike  Peardon  (Trinity  Coll.,  Dublin)

for  the  Hadron  Spectrum  Collaboration

2

constituent  quark  model

π(1300

)π(

1800

)

ρ

π

ρ(14

50)

ρ(1700

)

ρ3

π 2(1670)π 2

(188

0)

b1

a0(980)

a 0(145

0)

a 1(126

0) a2

a 4(204

0)

(historical)  empirical  motivation

“1S”

2

constituent  quark  model

π(1300

)π(

1800

)

ρ

π

ρ(14

50)

ρ(1700

)

ρ3

π 2(1670)π 2

(188

0)

b1

a0(980)

a 0(145

0)

a 1(126

0) a2

a 4(204

0)

(historical)  empirical  motivation

1P?

“1S”

2

constituent  quark  model

π(1300

)π(

1800

)

ρ

π

ρ(14

50)

ρ(1700

)

ρ3

π 2(1670)π 2

(188

0)

b1

a0(980)

a 0(145

0)

a 1(126

0) a2

a 4(204

0)

(historical)  empirical  motivation

1P?

2S

“1S”

2

constituent  quark  model

π(1300

)π(

1800

)

ρ

π

ρ(14

50)

ρ(1700

)

ρ3

π 2(1670)π 2

(188

0)

b1

a0(980)

a 0(145

0)

a 1(126

0) a2

a 4(204

0)

(historical)  empirical  motivation

1P?

1D

2S

“1S”

2

constituent  quark  model

π(1300

)π(

1800

)

ρ

π

ρ(14

50)

ρ(1700

)

ρ3

π 2(1670)π 2

(188

0)

b1

a0(980)

a 0(145

0)

a 1(126

0) a2

a 4(204

0)

(historical)  empirical  motivation

1P?

1F

1D

2S

“1S”

2

constituent  quark  model

π(1300

)π(

1800

)

ρ

π

ρ(14

50)

ρ(1700

)

ρ3

π 2(1670)π 2

(188

0)

b1

a0(980)

a 0(145

0)

a 1(126

0) a2

a 4(204

0)

(historical)  empirical  motivation

hybrid  mesons  -­‐  beyond  the  quark  model

observed  meson  state  flavor  &  JPC  systematics  suggest “constituent  quarks”

hybrid  mesons  -­‐  beyond  the  quark  model

observed  meson  state  flavor  &  JPC  systematics  suggest “constituent  quarks”

exotic  quantum  numbers

hybrid  mesons  -­‐  beyond  the  quark  model

observed  meson  state  flavor  &  JPC  systematics  suggest “constituent  quarks”

exotic  quantum  numbers

but  what  if  excited  gluonic  fields  play  a  rôle  -­‐  a  hybrid  meson,                        ?

possibly  exotic  JPC  &  extra  ‘non-­‐exotic’  states

must  be  ‘heavier’  or  ‘harder  to  produce’  ?

hybrid  mesons  -­‐  models tubes,  bags  &  heavy  glue

hybrid  mesons  -­‐  models tubes,  bags  &  heavy  glue

flux-­‐tube  model0-­‐+,  1-­‐+,  2-­‐+,  1-­‐-­‐

0+-­‐,  1+-­‐,  2+-­‐,  1++roughly  degenerate

hybrid  mesons  -­‐  models tubes,  bags  &  heavy  glue

flux-­‐tube  model0-­‐+,  1-­‐+,  2-­‐+,  1-­‐-­‐

0+-­‐,  1+-­‐,  2+-­‐,  1++roughly  degenerate

bag  model 0-­‐+,  1-­‐+,  2-­‐+,  1-­‐-­‐&  others  heavier

hybrid  mesons  -­‐  models tubes,  bags  &  heavy  glue

flux-­‐tube  model0-­‐+,  1-­‐+,  2-­‐+,  1-­‐-­‐

0+-­‐,  1+-­‐,  2+-­‐,  1++roughly  degenerate

bag  model 0-­‐+,  1-­‐+,  2-­‐+,  1-­‐-­‐&  others  heavier

massive  quasi-­‐gluons Coulomb  gauge  transverse  (no  3-­‐body) 0++,  1++,  2++,  1+-­‐

0-­‐-­‐,  1-­‐+,  ...1-­‐-­‐      “S-­‐wave”

hybrid  mesons  -­‐  models tubes,  bags  &  heavy  glue

flux-­‐tube  model0-­‐+,  1-­‐+,  2-­‐+,  1-­‐-­‐

0+-­‐,  1+-­‐,  2+-­‐,  1++roughly  degenerate

bag  model 0-­‐+,  1-­‐+,  2-­‐+,  1-­‐-­‐&  others  heavier

massive  quasi-­‐gluons Coulomb  gauge  transverse  (no  3-­‐body) 0++,  1++,  2++,  1+-­‐

0-­‐-­‐,  1-­‐+,  ...1-­‐-­‐      “S-­‐wave”

Coulomb  gauge  transverse  (incl.  3-­‐body)

0+-­‐,  (2+-­‐)2,  ...

0-­‐+,  1-­‐+,  2-­‐+,  1-­‐-­‐

1+-­‐      “P-­‐wave”

hybrid  mesons  -­‐  models tubes,  bags  &  heavy  glue

flux-­‐tube  model0-­‐+,  1-­‐+,  2-­‐+,  1-­‐-­‐

0+-­‐,  1+-­‐,  2+-­‐,  1++roughly  degenerate

without  much  data  -­‐  nothing  much  to  constrain  them  ...

bag  model 0-­‐+,  1-­‐+,  2-­‐+,  1-­‐-­‐&  others  heavier

massive  quasi-­‐gluons Coulomb  gauge  transverse  (no  3-­‐body) 0++,  1++,  2++,  1+-­‐

0-­‐-­‐,  1-­‐+,  ...1-­‐-­‐      “S-­‐wave”

Coulomb  gauge  transverse  (incl.  3-­‐body)

0+-­‐,  (2+-­‐)2,  ...

0-­‐+,  1-­‐+,  2-­‐+,  1-­‐-­‐

1+-­‐      “P-­‐wave”

spectrum  from  lattice  QCD

two-­‐point  correlator e.g.  

spectrum  from  lattice  QCD

two-­‐point  correlator e.g.  

as  a  sum  of  QCD  eigenstates

spectrum  from  lattice  QCD

two-­‐point  correlator e.g.  

as  a  sum  of  QCD  eigenstates

e.g.  1-­‐-­‐two-­‐point  correlator  matrix

spectrum  from  lattice  QCD

two-­‐point  correlator e.g.  

as  a  sum  of  QCD  eigenstates

e.g.  1-­‐-­‐two-­‐point  correlator  matrix

each  state  comes  from  an  orthogonal  combination  of                      

solve  by  using  a  ‘Rayleigh-­‐Ritz’-­‐style  variational  approach  -­‐  “diagonalize  the  matrix”

optimal  operator  :  

mesonic  operator  basis

fermion  bilinears  with  up  to  three  covariant  derivatives  -­‐  project  into  good  JPC

actually  also  have  to  project  into  irreducible  representations  of  the  cubic  symmetry  group

#  of  operators

~J=0

~J=1

~J=2

~J=2

~J=3

this  is  by  far  the  largest  operator  set  ever  used  in  a  calculation  like  this

isovector  spectrum

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

mπ  ~  700  MeV

isovector  spectrum

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

mπ  ~  700  MeV

isovector  spectrum

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

mπ  ~  700  MeV

0.1 0.2 0.3 0.4500

1000

1500

2000

2500

3000

exotic  JPC  -­‐  before

lattice  QCD  exotic  meson  spectrum  circa  2006

0.1 0.2 0.3 0.4 0.5 0.61.0

1.5

2.0

2.5

quenched

dynamical

mπ  ~  7

00  MeV

mπ  ~  5

00  MeV

mπ  ~  3

00  MeV

exotic  JPC  -­‐  before

lattice  QCD  exotic  meson  spectrum  circa  2006

0.1 0.2 0.3 0.4 0.5 0.61.0

1.5

2.0

2.5

quenched

dynamical

mπ  ~  7

00  MeV

mπ  ~  5

00  MeV

mπ  ~  3

00  MeV

others?

0.1 0.2 0.3 0.4 0.5 0.61.0

1.5

2.0

2.5

quenched

dynamical

dynamical

exotic  JPC  -­‐  after

2+-­‐,  1-­‐+,  0-­‐-­‐

exotic  JPC  -­‐  after

2+-­‐,  1-­‐+,  0-­‐-­‐

0.1 0.2 0.3 0.4 0.5 0.61.0

1.5

2.0

2.5

dynamical

understanding  &  interpreting  ?

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

systematics  of  a              pair

mπ  ~  700  MeV

1S

2S

3S?

1D

2D?1G?

1P

2P

1F

understanding  &  interpreting  ?

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

systematics  of  a              pair

mπ  ~  700  MeV

1S

2S

3S?

1D

2D?1G?

1P

2P

1F?

understanding  &  interpreting  ? try  (model-­‐dependent)  analysis  of  matrix  elements  

1-­‐-­‐

understanding  &  interpreting  ? try  (model-­‐dependent)  analysis  of  matrix  elements  

1-­‐-­‐

hybrid?

(spin-singlet)

understanding  &  interpreting  ? try  (model-­‐dependent)  analysis  of  matrix  elements  

hybrid?

ground state is dominantly

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.1 0.2 0.3 0.4

500

1000

1500

2000

2500

3000

1-­‐-­‐

understanding  &  interpreting  ? try  (model-­‐dependent)  analysis  of  matrix  elements  

hybrid?

ground state is dominantly

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.1 0.2 0.3 0.4

500

1000

1500

2000

2500

3000

1st excited state is dominantly

0.0 0.1 0.2 0.3 0.4

500

1000

1500

2000

2500

3000

1-­‐-­‐

understanding  &  interpreting  ? try  (model-­‐dependent)  analysis  of  matrix  elements  

hybrid?

ground state is dominantly

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.1 0.2 0.3 0.4

500

1000

1500

2000

2500

3000

1st excited state is dominantly

0.0 0.1 0.2 0.3 0.4

500

1000

1500

2000

2500

3000

2nd excited state is dominantly

with some

0.0 0.1 0.2 0.3 0.4

500

1000

1500

2000

2500

3000

1-­‐-­‐

understanding  &  interpreting  ? try  (model-­‐dependent)  analysis  of  matrix  elements  

hybrid?

ground state is dominantly

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.1 0.2 0.3 0.4

500

1000

1500

2000

2500

3000

1st excited state is dominantly

0.0 0.1 0.2 0.3 0.4

500

1000

1500

2000

2500

3000

2nd excited state is dominantly

with some

0.0 0.1 0.2 0.3 0.4

500

1000

1500

2000

2500

3000

3rd excited state is dominantly

hybrid?

with some

0.0 0.1 0.2 0.3 0.4

500

1000

1500

2000

2500

3000

1-­‐-­‐

the  lightest  hybrid  supermultiplet  ?

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

mπ  ~  700  MeV

1S

2S

3S?

1D

2D?1G?

1P

2P

1F

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0-­‐+

1-­‐-­‐2-­‐+ 1-­‐+

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Does  QCD  predict  light  hybrid  mesons?

YES  

Does  QCD  predict  light  hybrid  mesons?

YES  

*  Light  hybrid  mesons  may  be  observed  only  for  heavy  quark  masses,  risk  of  large  hadronic  widths  has  not  been  determined.  The  Hadron  Spectrum  Collaboration  offers  no  guarantee  that  they  can  be  produced  in  photoproduction.

*

models  in  light  of  what  we’ve  seen

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

flux-­‐tube

1-­‐+ 0+-­‐ 2+-­‐

bag

1-­‐+ 0+-­‐ 2+-­‐

quasi-­‐gluon1-­‐-­‐    “S-­‐wave”

1-­‐+ 0+-­‐ 2+-­‐ 0-­‐-­‐

quasi-­‐gluon1+-­‐    “P-­‐wave”

1-­‐+ 0+-­‐ 2+-­‐

exotic  state  degeneracy  pattern

✘? ✔?✔? ✘✘

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0-­‐+

1-­‐-­‐2-­‐+ 1-­‐+

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

have  the  ‘right’  complete  lightest  hybrid  supermultiplet

*  Light  hybrid  mesons  may  be  observed  only  for  heavy  quark  masses,  risk  of  large  hadronic  widths  has  not  been  determined.  The  Hadron  Spectrum  Collaboration  offers  no  guarantee  that  they  can  be  produced  in  photoproduction.

addressing  the  small  print

calculate  at  lighter  quark  masses increased  computational  cost

just  a  matter  of  time  ...

*  Light  hybrid  mesons  may  be  observed  only  for  heavy  quark  masses,  risk  of  large  hadronic  widths  has  not  been  determined.  The  Hadron  Spectrum  Collaboration  offers  no  guarantee  that  they  can  be  produced  in  photoproduction.

addressing  the  small  print

observing  states  as  decaying  resonances

scattering  of  composite  objects  in  non-­‐perturbative  field  theory  !

*  Light  hybrid  mesons  may  be  observed  only  for  heavy  quark  masses,  risk  of  large  hadronic  widths  has  not  been  determined.  The  Hadron  Spectrum  Collaboration  offers  no  guarantee  that  they  can  be  produced  in  photoproduction.

addressing  the  small  print

observing  states  as  decaying  resonances

scattering  of  composite  objects  in  non-­‐perturbative  field  theory  !

-70

-60

-50

-40

-30

-20

-10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

HooglandLosty

CohenDurusoyex

pt.

-15

-10

-5

0

5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

HooglandLosty

CohenDurusoyex

pt.

Isospin=2  ππ  scattering

*  Light  hybrid  mesons  may  be  observed  only  for  heavy  quark  masses,  risk  of  large  hadronic  widths  has  not  been  determined.  The  Hadron  Spectrum  Collaboration  offers  no  guarantee  that  they  can  be  produced  in  photoproduction.

addressing  the  small  print

observing  states  as  decaying  resonances

scattering  of  composite  objects  in  non-­‐perturbative  field  theory  !

-70

-60

-50

-40

-30

-20

-10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

HooglandLosty

CohenDurusoyex

pt.

-15

-10

-5

0

5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

HooglandLosty

CohenDurusoyex

pt.

Isospin=2  ππ  scattering

0

0.2

0.4

0.6

0.8

1

400 600 800 1000 1200 1400

0

0.2

0.4

0.6

0.8

1

400 600 800 1000 1200 1400

0

0.2

0.4

0.6

0.8

1

400 600 800 1000 1200 1400

0

0.2

0.4

0.6

0.8

1

400 600 800 1000 1200 1400

mπ=481MeV

mπ=421MeV

mπ=330MeV

mπ=290MeV

Isospin=1  ππ  scattering

Feng,  Jansen,  Renner

*  Light  hybrid  mesons  may  be  observed  only  for  heavy  quark  masses,  risk  of  large  hadronic  widths  has  not  been  determined.  The  Hadron  Spectrum  Collaboration  offers  no  guarantee  that  they  can  be  produced  in  photoproduction.

addressing  the  small  print

determining  coupling  to  photons  is  relatively  straighforward

t-­‐channel  meson  exchange

p N

γM’

M

production  modeling

*  Light  hybrid  mesons  may  be  observed  only  for  heavy  quark  masses,  risk  of  large  hadronic  widths  has  not  been  determined.  The  Hadron  Spectrum  Collaboration  offers  no  guarantee  that  they  can  be  produced  in  photoproduction.

addressing  the  small  print

determining  coupling  to  photons  is  relatively  straighforward

t-­‐channel  meson  exchange

p N

γM’

M

production  modelingγ

M’

M

photocoupling  /  transition  form-­‐factor

lattice  calculation  of  this

*  Light  hybrid  mesons  may  be  observed  only  for  heavy  quark  masses,  risk  of  large  hadronic  widths  has  not  been  determined.  The  Hadron  Spectrum  Collaboration  offers  no  guarantee  that  they  can  be  produced  in  photoproduction.

addressing  the  small  print

determining  coupling  to  photons  is  relatively  straighforward

t-­‐channel  meson  exchange

p N

γM’

M

production  modelingγ

M’

M

photocoupling  /  transition  form-­‐factor

lattice  calculation  of  this0 1 2 3 4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Q2 / GeV

V(Q

2 )

CLEO ‘08

p = 000

p = 100

e.g.  in  charmonium

0 1 2 3 4-0.1

0.1

0.2

0.3

0.4

0.5

0.6

0

CLEO ‘08PDG ‘08

p = 000

p = 100

Q2 / GeV

V(Q

2 )

“Isoscalar  meson  spectroscopy  from  lattice  QCD”  -­‐  arXiv:1102.4299  [hep-­‐lat]  (2011)  (PRD  in  press)“The  phase-­‐shift  of  isospin-­‐2  ππ  scattering  from  lattice  QCD”  -­‐  PRD.83.071504  (2011)“Toward  the  excited  meson  spectrum  of  dynamical  QCD”  -­‐  PRD.82.034508  (2010)“Highly  excited  and  exotic  meson  spectrum  from  dynamical  lattice  QCD”  -­‐  PRL.103.262001  (2009)“A  novel  quark-­‐field  creation  operator  construction  for  hadronic  physics  in  lattice  QCD”  -­‐  PRD.80.054506  (2009)

Robert  Edwards  (JLab)Balint  Joo  (JLab)David  Richards  (JLab)Christopher  Thomas  (JLab)Mike  Peardon  (Trinity  Coll.,  Dublin)

for  the  Hadron  Spectrum  Collaboration

Does  QCD  predict  light  hybrid  mesons?

Jozef  DudekOld  Dominion  University  &  Jefferson  Lab

isoscalar  mesons

isovector  correlator  :

isoscalar  mesons

isovector  correlator  :

isoscalar  (with  just  light  quarks)  correlator  :

-­‐2

isoscalar  mesons

isovector  correlator  :

isoscalar  (with  just  light  quarks)  correlator  :

-­‐2 noisy

need  inversion  from  all  t

GPUs  ideal  for  the  ‘grunt’  work

isoscalar  mesons

isoscalar  (with  light  &  strange)  :

-­‐2

-­‐

⎧|

⎫|

⎭||

||

diagonalising  gives  the                                    mixing

-­‐√2

-­‐√2

isoscalar  spectrum

ETMC  (2009)  [2-­‐flavour,  extrap.  to  phys.  quark  mass]ρ/ω  splitting  of  27(10)  MeV

very  few  results  due  to  the  difficulty  of  calculation

C.  Michael  et  al  (UKQCD,  2001)  [heavy  quarks,  2-­‐flavour  theory]found  f1/a1  ,  b1/h1    ,  ρ/ω  splittings  consistent  with  zero

isoscalar  spectrum

0.5

1.0

1.5

2.0

2.5

exotics

isoscalar

isovector

YM glueball

negative parity positive parity

M  /  GeV

η

η’

mπ  ~  420  MeV

RBC/UKQCD  (2010)

ETMC  (2009)  [2-­‐flavour,  extrap.  to  phys.  quark  mass]ρ/ω  splitting  of  27(10)  MeV

very  few  results  due  to  the  difficulty  of  calculation

C.  Michael  et  al  (UKQCD,  2001)  [heavy  quarks,  2-­‐flavour  theory]found  f1/a1  ,  b1/h1    ,  ρ/ω  splittings  consistent  with  zero

isoscalar  spectrum

0.5

1.0

1.5

2.0

2.5

exotics

isoscalar

isovector

YM glueball

negative parity positive parity

isoscalar  spectrum

0.5

1.0

1.5

2.0

2.5

exotics

isoscalar

isovector

YM glueball

negative parity positive parity

isoscalar  spectrum

0.5

1.0

1.5

2.0

2.5

exotics

isoscalar

isovector

YM glueball

negative parity positive parity

0.0 0.1 0.2 0.3 0.4

500

1000

1500

2000

2500

3000

0.0 0.1 0.2 0.3 0.4

500

1000

1500

2000

2500

3000

0.0 0.1 0.2 0.3 0.4

500

1000

1500

2000

2500

3000

1D

1F1-­‐+

M  /  GeV

level  ordering  ?

mπ  ~  4

00  MeV

mπ  ~  7

00  MeV

real*  resonances

but  we  can’t  be  satisfied  with  this  ...

APS  April  meeting  2011

*complex

real*  resonances

but  we  can’t  be  satisfied  with  this  ...

APS  April  meeting  2011

*complex

the  spectrum  should  not  be  this  simple

enhancements  in  the  meson-­‐meson  scattering  continuum

excited  states  should  be  resonances

real*  resonances

but  we  can’t  be  satisfied  with  this  ...

in  finite  volume  only  discrete  meson-­‐meson  states

but  we  aren’t  seeing  them  !

APS  April  meeting  2011

*complex

the  spectrum  should  not  be  this  simple

enhancements  in  the  meson-­‐meson  scattering  continuum

excited  states  should  be  resonances

real*  resonances

but  we  can’t  be  satisfied  with  this  ...

in  finite  volume  only  discrete  meson-­‐meson  states

but  we  aren’t  seeing  them  !

APS  April  meeting  2011

*complex

the  spectrum  should  not  be  this  simple

enhancements  in  the  meson-­‐meson  scattering  continuum

excited  states  should  be  resonances

0.4

0.6

0.8

1.0

1.2

1.4

1.6

increasingvolume

AB

real*  resonances

but  we  can’t  be  satisfied  with  this  ...

in  finite  volume  only  discrete  meson-­‐meson  states

but  we  aren’t  seeing  them  !

APS  April  meeting  2011

*complex

the  spectrum  should  not  be  this  simple

enhancements  in  the  meson-­‐meson  scattering  continuum

excited  states  should  be  resonances

0.4

0.6

0.8

1.0

1.2

1.4

1.6

increasingvolume

AB

our  operators  closely  resemble  single  hadrons  ...

and  not  meson-­‐meson  pairs  ~

28

parity  doubling  &  chiral  symmetry  restoration  ?

0.0 0.1 0.2 0.3 0.4

500

1000

1500

2000

2500

3000

0.0 0.1 0.2 0.3 0.4

500

1000

1500

2000

2500

3000

0.0 0.1 0.2 0.3 0.4

500

1000

1500

2000

2500

3000

1-­‐-­‐

0-­‐+

2-­‐+

overlaps  with  decreasing  quark  mass

cubic  complications  ...

integer  spin  not  a  good  quantum  number

restricted  rotational  symmetry  of  a  cube

APS  April  meeting  2011

cubic  complications  ...

integer  spin  not  a  good  quantum  number

restricted  rotational  symmetry  of  a  cube

APS  April  meeting  2011

E

cubic  complications  ...

integer  spin  not  a  good  quantum  number

restricted  rotational  symmetry  of  a  cube

APS  April  meeting  2011

⎭⎬⎫E

cubic  complications  ...

integer  spin  not  a  good  quantum  number

restricted  rotational  symmetry  of  a  cube

APS  April  meeting  2011

⎭⎬⎫ ⎫ ⎬ | ⎭|

E

cubic  complications  ...

‘solved’  by  careful  operator  construction

APS  April  meeting  2011

construct  operators  of  definite  J  in  the  continuum

“subduce”  into  the  cubic  group  irreps

if  the  rotational  symmetry  is  “restored”and  then  

operators  respect  cubic  symmetry,  but  are  ‘preconditioned’  to  be  J-­‐diagonal

...  but  does  it  work  in  practice  ?

cubic  complications  ...

APS  April  meeting  2011

0.6

0.8

1.0

1.2

1.4

1.6

(26)

clear  dominance  of  a  single  spin  for  each  state

J=1

J=3

J=4

top related