air-conditioned cabinet acs (patented) - almatec · the specific heat capacity of dry air at -40...

12
Aluminium Enclosure Systems AIR-CONDITIONED CABINET ACS (patented)

Upload: dinhkhuong

Post on 02-Apr-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

Aluminium Enclosure Systems

AIR-CONDITIONED CABINETACS (patented)

500149_e_Prospekt Klima-_72 22.9.2005 10:44 Uhr Seite 1

subject to alteration

2

ACS

Thermal conduction through heat dissipation

Construction

The framework of the ACS cabinet is composed of robust distortion proof hollow alu extrusures.

The extrusures are fitted with symetrical fixing runners for the fitting of sliding nuts, giving a wideand varied construction range.

The bridth and depth connections over various levels provide a universal construction range.

The cabinet has a closed top and bottom (inner circulation). The doors, side- and back panels, are alldouble panelled. Added strengthened extrusures ensures a high mechanical stability.

Finishing treatment

Standard coating: RAL 7032Pre-treatment: Chromated to DIN 50939Coating: powder coated

Non standard coating: RAL to orderPre-treatment on extrusure: Chromated to DIN 50939Pre-treatment on panel sheets: Cleaned with Meta-Clean HP hydrocarbon compound specially for

aluminium, biologically decomposedCoating thickness: 60 – 80 Micron

This treatment proceedure is necessary on aluminium used outside and guarantees long term weatherprotection.

TestingThe ACS complies and certifies to EN 50298

RF Shielding provided to EN 61000

Earthquake, shock, vibration, transportation ETS 300019

IP 55 dust and waterproof to EN 60529

500149_e_Prospekt Klima-_72 22.9.2005 10:44 Uhr Seite 2

measurements in mm subject to alteration

3

Standard version 1-Hinged door Standard version 2-Hinged doors

sectional view B – B sectional view A – A

500149_e_Prospekt Klima-_72 22.9.2005 10:44 Uhr Seite 3

measurements in mm subject to alteration

4

19”/ ETSI Swivel frameView without door

19”/ ETSI Fixed extrusureView without door

Swivel frame 180 ° pivotable

19” / ETSI Swivel frame

Double fixed extrusure

sectional view plinth

standard option

sectional view A – A sectional view B – B

Table 1

500149_e_Prospekt Klima-_72 22.9.2005 10:44 Uhr Seite 4

Änderungen vorbehalten

5

ACS

Einflussfaktoren

Thermophysikalische Charakteristik von LuftLuft ist eine Gasmischung mit thermophysikalischen Charakteristiken, die beim Ändern von Druckbzw. Förderhöhe, Temperatur und Feuchtigkeit variieren.

Die Dichte von Luft bei 20 °C und 50% relativer Feuchtigkeit beträgt 1,2 kg/m3, das heisst, dass1 m3 Luft 1,2 kg wiegt. Die Dichte kann bei normalem Arbeitsbereich als konstanter Wertbetrachtet werden.

Die spezifische Wärmekapazität von trockener Luft bei -40 °C beträgt 0,238 kcal/kg °C, bei 60 °Cbeträgt sie 0,244 kcal/kg °C. Der konstante Wert von 0,24 kcal/kg °C gilt auch für feuchte Luft.Praktisch kann man sagen, dass zum erwärmen oder abkühlen von 1 kg Luft um 1 °C in einer Stunde,0,24 kcal benötigt werden, solange keine Zustandsänderungen auftreten (Verdampfung,Kondensation usw.) Wir arbeiten mit dem aufgerundeten Wert 0,29 kcal/m3 °Czusammengesetzt aus: Dichte x spezifische Wärmekapazität = 1,2 x 0,24 = 0,29.

Passive Entwärmung / KonvektionBeispiel

• Kühlleistung 850 Watt (Verlustleistung im Klima-Shelter)• max. Aussentemperatur 30 °C• max. Shelter-Innentemperatur 50 °C• Shelter-Abmessungen Breite 1m, Höhe 2m, Tiefe 0,6m• Shelter-Plazierung Breite 1m x 2m an der Wand (sonst keine Hindernisse)• Shelter-Material Aluminium

P Konvektion (Wärmeleistung, die durch die Shelterwände an die Umgebung abgegeben wird)

Pkonv. = A x ΔT x k k = 5 W / m2 °C (für Aluminium)Pkonv. = 5m2 x 20 °C x 5W / m2 °C = 500 Watt ΔT = T Schrank – T aussen

A = Shelter-Oberfläche

Effektive Kühlleistung

Peff. = Pv – Pkonv. Pv = VerlustleistungPeff. = 850 Watt - 500 Watt = 350 Watt

DiagrammIm nebenstehenden Diagramm kann mandie Wärmeleistung (Konvektion) graphischablesen (mit k = 5 für Aluminium).

Wärmeverlust durch die Shelter-Wände

Temperaturdifferenz zwischen Innen- und Aussenseite

abg

egeb

ene

Wär

mel

eist

un

g

frei

e S

chra

nko

ber

fläc

he

(m2 )

subject to alteration

5

ACS

Influence factors

Thermal physical characteristics of airAir is a mixture of gases, which have physical thermal characteristics that change due to pressure,temperature and humidity.

An air density of 20 % with 50 % relativ humidity, is equivalent to 1,2 kg/m3,in otherwords, 1 m3 of air weighs 1,2 kg. The pressure in a normal working area can then be consideredas a constant value.

The specific heat capacity of dry air at -40 °C is equivalent to 0,238 kcal/kg °C, and at 60 °C to 0,244 kcal/kg °C.The constant value of 0,244 kcal/kg °C. The constant value of 0,24 kcal/kg °C applies also to humid air.In otherwords (in practice it can be said), to heat or cool 1 kg of air in one hour, 0,24 kcal would be needed,so long as there were no change in conditions, (humidity, condensation, etc.).We’re working with a rounded off value of 0,29 kcal/m3 °C. Reached through the equivalent:Density x specific thermal capacity = 1,2 x 0,24 = 0,29.

Passive thermal heating / ConvectionExample

•Cooling performance 850 Watt (Performance loss in cabinet)• max. outside temp. 30 °C• max. inner cabinet temp. 50 °C• Cabinet dimensions Bridth 1 m, height 2 m, depth 0,6 m• Cabinet location Bridth 1 m x 2 m against the wall• Cabinet construction Alu

P Convection (Heat performance, emitted through the side panels)

Pconv. = A x ΔT x k k = 5W / m2 °C (for Alu)Pconv. = 5 m2 x 20 °C x 5 W/m2 °C = 500 Watt ΔT = T cabinet – T outside

A = Cabinet surface area

Effective cooling performance

Peff. = Pv – Pconv. Pv = Performance lossPeff. = 850 Watt - 500 Watt = 350 Watt

DiagramThe thermal performance can be readin graphical form, from the adjacentdiagram.

Thermal loss through the cabinet panels

Giv

enhe

at p

erfo

rman

ce

Cab

inet

sur

face

area

(m2 )

Temp. difference between the inside and outside

500149_e_Prospekt Klima-_72 22.9.2005 10:45 Uhr Seite 5

Principle functionThe climate cabinet functions similar to an air-air heat exchanger. By this we mean an outer and inner aircirculation. The climate cabinet has the function, to transfer heat between two medias with varioustemperatures (the cooler media carries the heat up, and the warmer media, down).The climate cabinet is built on an air-air opposing principle. That means that the two air flows exchangedirection in the cabinet thermal flow.The main advantage over air-vents, is that the two air flows do not mix.The heat, in relation to the cooling performance of the climate cabinet is dependant on:

• The exchange area of the cabinet• Type of medien (by us always air)• Air density inside and outside• Temperature difference between inside and outside the cabinet

Mostly the values for the cabinet are given, only the air temperatures inside and outside are to be given.The cooling performance changes, when the temperature differences changes. By constant temperaturedifferences, the cooling performance doesn’t change. The cooling performance (in Watt) and the temperaturedifference (pro grad Kelvin, or °C), between outside and inside air can be exchanged and printed out as aspecific cooling performance.

Climate cabinet exampleFollowing values are known: – Specific cooling performance 50 W/K

– max. permitted temp. 45 °C– max. forseen outside temp. 35 °C

Resulting in: Cooling performance = 50 x (45–35) = 500 W

The climate cabinet can retain a temperature of 45 °C with a max. ambient temperature of 35 °C.By a performance loss of 500 W or less in the cabinet, the max. temperature in the cabinet can be guaranteed.

The climate cabinet volume decides the number of fans to be fitted in the cabinets top spacing. This generatesa vacuum flow in the top compartment of the cabinet which meets the air-flow from the bottom hollowchambers at ca. 3,6 m/s. Through the controlled inflow speed in the chambers of the doors, side- and backpanels is an optimal air quantity in the outside circulation guaranteed, independant of the size of the cabinet.

subject to alteration

6

ACS

Specific cooling performance x Temperature difference = cooling performance

Pspez. x ΔT = Pv

(W/K x °C = W)

500149_e_Prospekt Klima-_72 22.9.2005 10:45 Uhr Seite 6

subject to alteration

7

ACSPerfect design

Climate cabinet closed with swivel grip handle and locking cylinder

Special plinth for the application to a concrete grounding

With removable lifting rings, ensuring an easy transport and placing of the cabinet

500149_e_Prospekt Klima-_72 22.9.2005 10:45 Uhr Seite 7

subject to alteration

8

ACSPerfect enclosure technique

Version with sidedoor entry to mains field, with separate cylinder lock

Double winged front with telescope door-restrainer

With outer enviromental seal, and inner R.F.-shielding

500149_e_Prospekt Klima-_72 22.9.2005 10:45 Uhr Seite 8

Made to measure

subject to alteration

9

ACS

Outer hanging front with inner securingStainless steel, pull out or fixed battery compartment (max. weight 220 kg)19”/ ETSI swivel frame (180 ° pivotable)19”/ ETSI fixed extrusure

500149_e_Prospekt Klima-_72 22.9.2005 10:45 Uhr Seite 9

subject to alteration

10

ACSHigh efficiency

Inner cooling body increases the wetting area.

The heat flow from inside over the cooling body(convection) in the hollow chambers is optimal andthe heat effect on the outer panel surface is low.

The hollow chamber (double panel) on the doors,side- and back panels enable a high air-flow tocool the inner panels. The air will then be directedover the cooling body, between the mid and toppanels until released into the open.

500149_e_Prospekt Klima-_72 22.9.2005 10:45 Uhr Seite 10

subject to alteration

11

ACSIndividual installation

Lockable cable guide

Door retrainer

Fixing technique to customers wish

19” / ETSI Alu-swivel frame 180 °pivotable with inserted threadledges M6 and roller bearing.

Removable service shelf

500149_e_Prospekt Klima-_72 22.9.2005 10:45 Uhr Seite 11

"FI/8HGBF$FHGEB 8"-FGE$ "8# 65&>*3>*)7

$.0= >.*<2&1 2&3&,*2*3> 5<4+*==043&1*3=@<*= >.&> D4@< '42543*3>= <*2&03 '441

#@M8:>7 -)> +0)M M8:H ):G9-@>/:M:@>:>7 -)+:>0MD '80C)M0>M0/ -@@<:>7 HUHM0= =0)>H M8)M 0TC0>H:R0 80)M/:HH:C)M0GH )G0 >@M G0FP:G0/D (H0 M8:H @PM/@@G -)+:>0MS80G0R0G =)T:=P= CG@M0-M:@> )>/ @CM:=)< M80G=)<=)>)70=0>M 8)R0 M@ +0 7P)G)>M00/D

V:78 C0G3@G=)>-0 M80G=)< -@>MG@< M8)>;H M@ C)M0>M0/80)/ R0>M:<)M@G G@@3A@G 0TMG0=0 M80G=)< -@>/:M:@>H. )//:M:@>)< H@<PM:@>HHP-8 )H 80)M /:HH:C)M0GH )>/ ):G9-@>/:M:@>0GH%@+PHM CG@3:<0 M0-8>@<@7U">M:9R)>/)<:H= /0H:7>H. 3@G 0T)=C<0 8://0> 8:>7:>7,PHM@=0G9HC0-:3:- H@<PM:@>H

Y$ 44 /PHM )>/ S)M0GCG@@3%"Z IXNO. @G HC0-:)< -@<@PGH PC@> G0FP0HM6[, R0GH:@> )R):<)+<0'UC0 -0GM:3:-)M:@> :> -@=C<:)>-0 S:M8 6#4XO?2&8:0</ )MM0>P)M:@> :> -@=C<:)>-0 S:M8 6#JBXXX6)GM8FP);0. H8@-;. R:+G)M:@>. MG)>HC@GM 6'&NXXXB?

"

"

"

"

"

8425*1103, 5<4)@'> &)A&3>&,*=(

$*'.30'&1 )&>&(

??

"<=)M0- "LY>/PHMG:0HMG)HH0 J,V9JBIX &-8QC380:='0<D E5B 5B 524 II IIA)T E5B 5B 524 II 22

"<=)M0- &"%P0<<0 /0 <) [@MM)W,V9BXIB ,80T+G0H'1<D E5B OB ?5J XN XXA)T E5B OB ?5J XN XN

:>3@*)<=)M0-D-@=SSSD)<=)M0-D-@=

"

B4 D4@ .&A* &3D :@*=>043= 4< =@,,*=>043=; #*3) @= D4@< <*:@0<*2*3>=9 %* C011 =@551D &'@=>420=*) =41@>043 >4 D4@9

X5KO

XX4

"

"

"

"

"

500149_e_Prospekt Klima-_72 22.9.2005 10:45 Uhr Seite 12