afe8406 system evaluation kit and - pudn.comread.pudn.com/downloads97/ebook/398931/afe8406 system...

62
AFE8406 System Evaluation Kit and GC Studio Reference User's Guide May 2006 SLWU034

Upload: trannhi

Post on 21-Jul-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

AFE8406 System Evaluation Kit andGC Studio Reference

User's Guide

May 2006

SLWU034

AFE8406 System Evaluation Kit and GCStudio Reference

User's Guide

Literature Number: SLWU034

May 2006

Contents

1 AFE8406 System Evaluation Kit Overview ..................................................................... 51.1 AFE8406 System Evaluation Kit .................................................................................. 6

2 Installing the Software ................................................................................................ 72.1 TSW2100 SPI Software Installation .............................................................................. 7

2.2 GC Studio Software Installation................................................................................... 8

3 Setting up the System ................................................................................................. 93.1 Hardware Setup..................................................................................................... 9

3.2 Loading and Running a GC Studio Project .................................................................... 12

3.2.1 ADC Experiments: AFE8406_TESTBUS_EX Directory ............................................. 12

3.2.2 UMTS Experiment: AFE8406_UMTS_EX Directory ................................................. 12

3.2.3 CDMA2000 Experiment: AFE8406_CDMA2k_EX Directory........................................ 12

3.2.4 DDC AGC Experiment: AFE8406_AGC_EX Directory .............................................. 13

3.2.5 Receive-Input AGC Experiment: AFE8406_RAGC_EX Directory ................................. 13

3.3 Creating a New GC Studio Project.............................................................................. 15

4 Other Options in GC Studio ....................................................................................... 334.1 Saving the Output to a File....................................................................................... 33

4.2 Changing the Data Capture Size................................................................................ 34

4.3 Capturing the AFE8406 Test Bus Output ...................................................................... 36

5 AFE8406 Daughtercard Description ............................................................................ 415.1 AFE8406 Daughtercard Pin Description ....................................................................... 41

5.2 AFE8406 Daughtercard Jumpers ............................................................................... 43

5.3 AFE8406 Daughtercard Power Supplies....................................................................... 43

5.4 AFE8406 Daughtercard Clock Configurations................................................................. 43

6 Physical Description ................................................................................................. 456.1 PCB Layout ........................................................................................................ 45

6.2 Parts List ........................................................................................................... 52

7 AFE8406 Daughtercard Schematics ............................................................................ 55

SLWU034–May 2006 Contents 3Submit Documentation Feedback

List of Figures

1-1 Kit Contents................................................................................................................... 63-1 System Setup ............................................................................................................... 103-2 Typical Setup ............................................................................................................... 113-3 TSW2100 SPI Software Screen.......................................................................................... 126-1 Top Layer 1 ................................................................................................................. 456-2 Ground Plane Layer 2 ..................................................................................................... 466-3 Signal Layer 3 .............................................................................................................. 476-4 Signal Layer 4 .............................................................................................................. 486-5 Power Plane Layer 5....................................................................................................... 496-6 Signal Layer 6 .............................................................................................................. 506-7 Ground Plane Layer 7 ..................................................................................................... 516-8 Bottom Layer 8 ............................................................................................................. 52

List of Tables

3-1 Clock Requirements ......................................................................................................... 93-2 SMA Cable Connections .................................................................................................. 103-3 Default Jumper Settings ................................................................................................... 105-1 Memory Input Bus—36 Data Inputs Used to Stimulate the AFE8406 Inputs ...................................... 415-2 Memory Output Bus—36 Data Outputs From Selected AFE8406 Outputs Captured by the GC101 ........... 425-3 Clock ......................................................................................................................... 425-4 Microprocessor Control Bus—Bus to Program the Internal Registers .............................................. 425-5 JTAG ......................................................................................................................... 425-6 Power and Ground ......................................................................................................... 426-1 AFE8406 Daughtercard Bill of Materials (BOM) ....................................................................... 52

4 List of Figures SLWU034–May 2006Submit Documentation Feedback

C001

Chapter 1SLWU034–May 2006

AFE8406 System Evaluation Kit Overview

The AFE8406 is a multichannel communications signal processor that providesanalog-to-digital conversion and digital downconversion optimized for cellular basetransceiver systems. The device supports UMTS, CDMA-1X and TD-SCDMAair-interface cellular standards.

The AFE8406 provides up to 8 UMTS digital downconverter channels (DDC), 16 CDMADDCs, or 16 TD-SCDMA DDCs. The DDC channels are independent and operatesimultaneously. At the AFE8406 inputs, there are four input ports: two are hardwired tointernal 14-bit analog-to-digital converters and two are 16-bit digital inputs. Each DDCchannel can be programmed to accept data from any one of the four input ports.

The AFE8406 system evaluation kit is a set of hardware and software tools designed toease the AFE8406 evaluation. This guide provides a step-by-step description on how toset up the AFE8406 system solution.

Windows, Windows XP are trademarks of Microsoft Corporation.All trademarks are the property of their respective owners.

SLWU034–May 2006 AFE8406 System Evaluation Kit Overview 5Submit Documentation Feedback

www.ti.com

1.1 AFE8406 System Evaluation Kit

M0050-01

SMA cables

5-V power supply for TSW2100

GC101 motherboard

5-V power supply for GC101

AFE8406 daughtercard

TSW2100 clock solution EVM

Parallel port cable Software CD

AFE8406 System Evaluation Kit

The AFE8406 system evaluation kit includes the items shown in Figure 1-1:

Figure 1-1. Kit Contents

The CD includes two software packages that must be installed before connecting the hardware:• TSW2100 SPI software – used to configure the TSW2100• GC Studio software – used to configure the GC101 and AFE8406 as well as to analyze the results

6 AFE8406 System Evaluation Kit Overview SLWU034–May 2006Submit Documentation Feedback

2.1 TSW2100 SPI Software Installation

C002

Chapter 2SLWU034–May 2006

Installing the Software

All necessary software to operate the serial interface is provided on the included CD.This section describes in detail how to install the required software packages.

The TSW2100 SPI is a GUI-based software that allows full control and programmability of the CDCM7005(core device of the TSW2100). Load the software as follows:

1. Insert the CD into the computer to be used to operate the serial interface.2. Open the TSW2100_Installv1p0 folder.3. Double-click on the file called setup.exe.4. The Installation Wizard opens. Follow the on-screen instructions.5. After the installation is complete, you can access the program from the programs list on the Start

menu.6. On starting the program, the following screen should be present:

SLWU034–May 2006 Installing the Software 7Submit Documentation Feedback

www.ti.com

2.2 GC Studio Software Installation

C003

GC Studio Software Installation

For more information on the various parameters shown on the GUI, see the CDCM7005 product page:http://focus.ti.com/docs/prod/folders/print/cdcm7005.html.

The GC Studio software program, along with the GC101 motherboard, provides a framework to evaluatethe AFE8406. The primary uses of the GC101 EVM are to program the AFE8406, to provide a stream ofstimulus information, and to capture the response information for processing by the computer. The GCStudio software controls the GC101 EVM, provides a stimulus image, and retrieves and processes theresponse image. Several GC Studio projects for the AFE8406 are included in the installation. Theseprojects can be used as the starting point for creating new experiments.

The minimum requirements to install GC Studio are:• Host computer (PC) with BIOS supporting ECP mode for LPT1, running Windows™ 98 SP 2, Windows

ME, Windows 2000 SP 1, Windows XP™ Home or Windows XP Professional• Administrator group privileges

The steps to install GC Studio are as follows:

1. Insert the CD into the computer to be used to operate the serial interface.2. Double-click the file called GCStudio_Minimal_Setup_xx_xx_xxxxxx.exe, where xx_xx_xxxx

corresponds to the GC Studio version number.3. The installation wizard opens. Follow the on-screen instructions. This will load the main GC Studio

software.4. Double-click the file called AFE8406_projects_xxxxxx.exe, where xxxx corresponds to the AFE8406

project version number.5. The installation wizard opens. Follow the on-screen instructions and use the default settings. This will

load the AFE8406 projects in the proper directory to allow access by the GC Studio software.6. After the installation is complete, you can access the program from the programs list on the Start

menu.7. On starting the program, the following screen should be present:

8 Installing the Software SLWU034–May 2006Submit Documentation Feedback

3.1 Hardware Setup

Chapter 3SLWU034–May 2006

Setting up the System

The GC101 and AFE8406 daughtercard require three clocks when used for operation with an analog inputsignal. The clocks are described in Table 3-1.

Table 3-1. Clock Requirements

BOARD CONNECTOR DESCRIPTION

AFE8406 daughtercard CLKP (J6) AFE8406 ADC clock. On the AFE8406 daughtercard, thissignal is converted to a differential signal and routed toAFE8406 balls CLK(M/P)(A/B). It must be a low-jitter clockfor optimal performance.

AFE8406 daughtercard CLKM (J5) AFE8406 digital clock. Routed to AFE8406 ball RXCLK.

GC101 EXT CLK Digital clock input for GC101. Digital source and capturerate.

When the AFE8406 FIFO is enabled (recommended), an arbitrary skew between the AFE8406 ADC clockand the AFE8406 digital clock can be used. The skew between the AFE8406 digital clock and the GC101EXT CLK is important, and the optimum setting depends on the clock frequency. Note that the frequencyof the two digital clocks must be the same frequency and locked.

The TSW2100 EVM provides a platform for providing multiple clock sources without any other equipment.In particular, several outputs have an amplifier and filter circuit that can provide a low-jitter clock for theAFE8406 ADC clocks. The TSW2100 default configuration has a 491.52-MHz VCXO, which allows foroutput frequencies of 491.52/N MHz, where N = 2, 3, 4, 6, 8, or 16. See the TSW2100 EVM User’s Guide(SLWU026) for more information. The default board has three filter clock paths at 122.88MHz, 81.92MHzand 61.44MHz (N = 4, 6, and 8, respectively).

Alternatively, the TSW2100 VCXO can be bypassed so that an input signal with arbitrary frequency can beused. In this mode, the TSW2100 can still be used as a multiple-output buffer and clock divider.

In the default configuration, the TSW2100 can generate a filtered ADC clock at 61.44 MHz and two digitalclocks for the AFE8406 daughtercard and GC101 at 122.88 MHz. This is a common configuration forWCDMA applications. With this configuration, the TSW2100 EVM and GC101/AFE8406 cards areconnected as described in the following steps and in Figure 3-1.

1. Plug the AFE8406 daughtercard into the GC101 EVM.2. Connect the TSW2100 to the GC101/AFE8406 system using the included SMA cables, as indicated in

Table 3-2.3. Connect the external analog input signal(s) to AIN and/or BIN on the AFE8406 daughtercard.4. For synchronization, an external 10-MHz reference can be plugged into the TSW2100 J2 SMA

connector. If this is the case, ensure there is a jumper on J14 between pins 11 and 12. If using theonboard reference, then the jumper must be between pins 10 and 11.

5. Ensure the remaining jumpers are set as indicated in Table 3-3

SLWU034–May 2006 Setting up the System 9Submit Documentation Feedback

www.ti.com

M0051-01

Hardware Setup

Table 3-2. SMA Cable Connections

TSW2100 SMA Connector GC101/AFE8406 SMA Connector

J3 (Y1A) AFE8406 J5 (CLKM)

J4 (Y1B) GC101 J1 (EXTCLK)

J12 (Y0A) AFE8406 J6 (CLKP)

Table 3-3. Default Jumper Settings

Jumper Connect Pins

J7 2–3

J8 1–2

J9 1–2

J11 1–2

J12 2–3

J17 1–2, 3–4, 5–6

J23 Do not install

JP1 2–3

JP2 2–3

JP3 2–3

JP4 2–3

W13 1–2

W14 1–2

W15 1–2

W26 1–2

W27 1–2

W25 1–2

Figure 3-1. System Setup

10 Setting up the System SLWU034–May 2006Submit Documentation Feedback

www.ti.com

B0133-01

GC101

AFE8406DIMM card

TSW2100 CLKdistribution board

CDCM7005

VCXO

FilterAmp

Filtered ADC Clock

Digital AFE Clock

GC101 clock

Agilent 4438 ESG Filter

10 MHz reference

A or B input

Hardware Setup

A typical setup with external 10-MHz reference is shown in Figure 3-2.

Figure 3-2. Typical Setup

The following steps are required to set up the TSW2100:

1. Connect one end of the supplied serial interface cable to the parallel port of a PC and the other end ofthe cable to J10 on the EVM.

2. Provide 5 V to J15 by using the power supply provided. LED D1 should light, indicating that thereference input is present. LED D3 should light, indicating that the VCXO input is present. If LED D1does not light, ensure that a jumper is on J14 between pins 10 and 11 if using the onboard reference.The jumper should be between pins 11 and 12 if using the external reference.

3. Open the TSW2100 SPI software.4. The default settings assume that the base address for the parallel port is hexadecimal 378. If this is not

the case, the base address should be changed to match your computer configuration.5. Click the Load Setting button (Figure 3-3). This opens up a window asking for an *.reg7005

configuration file. Load the file "TSW2100_491p52VCXO_61p44Filter.reg7005, located in theAFE8406_UMTS_EX experiment directory. This directory is located in the AFE8406 folder under "MyGC Studio Projects".

6. Click the Send button (Figure 3-3). LED D2 should light, indicating that the clock outputs aresynchronized with the reference input. The EVM is now ready to clock the AFE8406 and GC101boards.

SLWU034–May 2006 Setting up the System 11Submit Documentation Feedback

www.ti.com

C004

3.2 Loading and Running a GC Studio Project

3.2.1 ADC Experiments: AFE8406_TESTBUS_EX Directory

3.2.2 UMTS Experiment: AFE8406_UMTS_EX Directory

3.2.3 CDMA2000 Experiment: AFE8406_CDMA2k_EX Directory

Loading and Running a GC Studio Project

Figure 3-3. TSW2100 SPI Software Screen

The simplest way to use GC Studio with the AFE8406 is to open an existing project and to modify itaccording to the application-specific requirements. The following example projects, along with thecorresponding TSW2100 setup files, are included on the Experiments directory:

In these projects, the AFE8406 test bus is used to obtain the internal analog-to-digital converter outputswith a sampling rate of 61.44 Msps and 81.92 Msps. The ADC outputs are decimated by a factor of 32.The MATLAB script AFE8406TestbusPlot.m is provided to measure the signal-to-noise ratio (SNR) andspurious free dynamic range (SFDR) of the signal.

In this project, a UMTS signal with IF frequency of 15.36 MHz, either from analog input or file, isdownconverted. The ADC rate is 61.44 Msps. The NCO mixes the input down to baseband. The mixerbaseband output is upsampled 2× (zero-stuffed) to 122.88 Msps. The zero-stuffed output is decimated 8×by the CIC filter, then decimated 2× by a 32-tap CFIR, with final symbol shaping provided by a 64-tapPFIR. Serial output of the recovered UMTS signal (7.68 Msps) is captured from output port A0 andgraphed spectrally.

In this project, a two-carrier CDMA2000 signal with IF frequency of 8.6432 MHz, either from analog inputor file, is downconverted. The ADC rate is 78.6432 Msps. The NCO mixes the carriers down to baseband.The mixer outputs are decimated 16× by the CIC filter, then decimated 2× by a 32-tap CFIR, with finalsymbol shaping provided by a 64-tap PFIR. Serial outputs of the recovered CDMA2000 signals (2.4576Msps) are captured from output ports A0 and B0 and graphed spectrally.

Setting up the System12 SLWU034–May 2006Submit Documentation Feedback

www.ti.com

3.2.4 DDC AGC Experiment: AFE8406_AGC_EX Directory

3.2.5 Receive-Input AGC Experiment: AFE8406_RAGC_EX Directory

Loading and Running a GC Studio Project

This project demonstrates the adaptation of the DDC’s AGC. The AFE8406 built-in self-test circuit is usedto output a constant which, when multiplied by the NCO, generates a sinusoid signal at the input to theAGC block. Both the PFIR and CFIR have the maximum positive value (131071) programmed into thecorresponding tap0 to allow signal values to pass through the FIRs without being disturbed. In CDMAmode, two signals are present in the interleaved data stream (A and B). To demonstrate the effectivenessof the AGC on both streams, the A and B paths have different AGC gain values. The AGC operationcauses the two signals converge to the same amplitude, one from a lower value (requiring amplification)and one from a higher value (requiring attenuation). Adjusting the agc_gaina_lsb/msb (GAIN_FOR_A) andagc_gainb_lsb/msb (GAIN_FOR_B) values adjusts the amount of change. The rate of change is controlledby the following parameters: agc_dabv, agc_dblw, agc_dsat and agc_dzro.

This project builds on the UMTS experiment and demonstrates the adaptation of the AFE8406 front endand DDC AGCs.

SLWU034–May 2006 Setting up the System 13Submit Documentation Feedback

www.ti.com

C005

C006

C007

Loading and Running a GC Studio Project

To load and run an existing GC Studio project, perform the following steps:• Connect the parallel-port cable to the port connector on the GC101.• Provide power to the GC101 using the power supply provided.• Open the GC Studio program from the Start menu. This opens the main GC Studio window.• Select Open Project… from the File menu. From the CD, select one of the *.gcproj files. This loads the

experiment into GC Studio.

• Click on the Build button. This instructs GC Studio to build the experiment, load it into the GC101 andAFE8406, and capture one frame of data.

• Each of the example projects comes with a set of predefined plots. New plots can be added by clickingon the New Graph button on the top toolbar.

14 Setting up the System SLWU034–May 2006Submit Documentation Feedback

www.ti.com

C008

3.3 Creating a New GC Studio Project

Creating a New GC Studio Project

• This example lists the steps to add the spectral plot of output port A0: On the graph window click onPlot Type and choose Spectral Magnitude. Also, put a checkmark on the Logarithmic box. Click on AddNew Data Source to add Receive Output Port A 0 to the graph.

• After adding the new data source, the FFT plot of output port A 0 is displayed on the right side of thescreen.

The following example describes how to generate a new GC Studio project from scratch. In this project,the AFE8406 is configured to process a UMTS signal. The AFE8406 configuration details are as follows:• A single, real UMTS carrier is applied to the AFE8406 rxin_c and rxin_d digital inputs with a simulated

sample rate of 61.44 Msps and an IF frequency of 15.36 MHz.• The RXCLK to the AFE8406 is 122.88 MHz.• Receive FIFOs are enabled.• Receive AGC is bypassed.• Receive channel 0 is configured to process the signal.• The mixer/NCO shifts the 15.36-MHz IF to dc.• The dc-centered signal is zero-stuffed to increase the rate from 61.44 Msps to 122.88 Msps. This is

required, as the CIC uses only full-rate RXCLK input signals.• The CIC filter is programmed to decimate by 8. The output sample rate at the CIC output is 15.36

Msps.• The CFIR filter compensates for the droop in the CIC filter and provides some low-pass filtering. It is

configured as a 32-tap filter, which is the maximum length that can be computed with RXCLK at122.88 MHz and the CFIR output rate of 7.68 Msps.

• The 64-tap PFIR provides final symbol shaping and filtering.• Channel AGC is configured as fixed unity gain.• Baseband data is transmitted and captured using the serial interface at the full RXCLK rate.

SLWU034–May 2006 Setting up the System 15Submit Documentation Feedback

www.ti.com

C003

C009

Creating a New GC Studio Project

To generate the project, follow these steps:

1. Start GC Studio.

2. Select New Project from the File menu and choose a name for the new project. Click create.

16 Setting up the System SLWU034–May 2006Submit Documentation Feedback

www.ti.com

C010

C011

Creating a New GC Studio Project

3. Select AFE8406 for the plug-in and click OK.

4. Click Next> on the Welcome to the GC Studio Project Setup Wizard window.

SLWU034–May 2006 Setting up the System 17Submit Documentation Feedback

www.ti.com

C012

C013

Creating a New GC Studio Project

5. The Evaluation Board Setup appears. It is highly recommended to replicate the setup for one of theexample projects. If a TSW2100 is being used to clock the AFE8406 DIMM and the GC101, under theClock and Sync tab ensure that:

– Stimulus Memory Clock Source is changed to SMA Connector– The correct clock frequency is entered under Input Clock Frequency– The Use Analog PLL box is uncheckedAIf the AFE8406 clock is to be provided by the GC101, modify the AFE8406 DIMM clock path asdescribed in Section 5.4 of this guide. Also ensure the stimulus memory and response memory areconfigured as explained in Section 4.2. After configuring the Evaluation Board Setup, click Next>.

6. Configure the AFE8406 I/O mode. In this example, ensure the ADC clock rate is set to 1/2 and that theRx Sync Offsets and Lengths satisfy the requirements described in Section 4.2. Click Next>.

18 Setting up the System SLWU034–May 2006Submit Documentation Feedback

www.ti.com

C014

C015

Creating a New GC Studio Project

7. Set the simulated clock rate to 122.88 MHz and click Next>.

8. Click Next> on Channel Copying.

SLWU034–May 2006 Setting up the System 19Submit Documentation Feedback

www.ti.com

C016

C017

Creating a New GC Studio Project

9. Enter a description for the project. Click Next>.

10. Click Finish to exit the GC Studio Wizard.

20 Setting up the System SLWU034–May 2006Submit Documentation Feedback

www.ti.com

C018

C019

Creating a New GC Studio Project

11. Click on the large afe8406 box to display the global control registers.

12. Double-click on the afe8406 block to push down one level into the AFE8406. Click on the InputInterface block to display and edit the receive input interface registers. Set rate_sel to HALF; thisconfigures the AFE8406 for input samples at 1/2 the RXCLK rate. Set adc_fifo_bypass to NOTBYPASSED to enable the rxin_a/b/c/d input FIFO circuits.

SLWU034–May 2006 Setting up the System 21Submit Documentation Feedback

www.ti.com

C020

C021

Creating a New GC Studio Project

13. Click on the upper Receive Channel 0 block. Set ddc_ena to True. The topmost receive channel ischanged to green because it has been enabled. Set ddcmux_sel_a to I=ADC2/Q=ADC3; this selectsthe afe8406 digital rxin_c and rxin_d input ports as the I and Q data sources. If the UMTS signal is tobe provided externally, set ddcmux_sel_a to I=ADC0/Q=ADC0.

14. Double-click on the Receive Channel 0 block to push down into this channel. The block diagram nowshows the subblocks in the receive channel, and the registers to configure it. Select the mixer/NCOblock (leftmost block). Set a_frequency to –15.36 MHz. The b_frequency setting is not used when thechannel is in UMTS mode. GC Studio calculates the required values for the phase_add registers andupdates the values after the experiment is run. Set zero_qsample to True. Verify the settings matchthose shown in the following panel.

22 Setting up the System SLWU034–May 2006Submit Documentation Feedback

www.ti.com

C022

C023

Creating a New GC Studio Project

15. Select the Delay Adjust and Zero Stuff block. Because the input sample rate is set to 1/2 the RXCLKrate, this block is automatically configured by GC Studio to interpolation by 2, inserting a zero samplebetween each actual sample before being applied to the CIC filter. This moves the 61.44-Msps inputsignal stream to the 122.88-Msps RXCLK rate. The tadj_offset_coarse and tadj_offset_fine settingsallow the user to adjust the delay between various receive channels if desired.

16. Click on the CIC filter block and set the registers as shown in the following panel. The decimation inthe CIC is set to 8 , resulting in a 15.36-Msps CIC output rate.

17. Select the CFIR block, set cfir_gain to 2.00E-18, and set cra_starttap_cfir to 32 taps. Next, select thecfir_coeff register setting by clicking on it, and then click on the browse button, circled in red on thepreceding panel, to open the Edit Filter window and fill in the CFIR filter tap weights.

SLWU034–May 2006 Setting up the System 23Submit Documentation Feedback

www.ti.com

C024

C025

Creating a New GC Studio Project

18. The CFIR tap weights are entered as shown. Note that the first 20 taps are entered as the first 20entries, and then 12 lines are skipped before entering the second 20. This is due to the AFE8406coefficient RAM being split into two blocks of 32 words. See the AFE8406 data sheet (SLWS168) formore details if necessary. For this example, the CFIR tap weights are:

24 Setting up the System SLWU034–May 2006Submit Documentation Feedback

www.ti.com

C026

C027

Creating a New GC Studio Project

19. Select the PFIR block, set pfir_gain to 2.00E-18, and set crastarttap_pfir to 64. Select the pfir_coeffregister, and again select the browse button.

20. The PFIR tap weights are entered as shown. For the 64-tap PFIR in this example, all coefficients areused. For this example, the PFIR tap weights are:

SLWU034–May 2006 Setting up the System 25Submit Documentation Feedback

www.ti.com

C028

C029

Creating a New GC Studio Project

21. Select the AGC block and set the registers as shown in the following panel. The gain_for_A value isset to unity, and the agc_freeze and agc_clear are both set to True for this example. This puts theAGC in unity fixed-gain mode. GC Studio calculates the required values for the agc_gain registers andupdates the values after the experiment is run.

22. Select the Serial Interface block and set the parameters as indicated.

26 Setting up the System SLWU034–May 2006Submit Documentation Feedback

www.ti.com

C030

Creating a New GC Studio Project

23. After verifying the values for the serial interface, click the arrow circled in red in the preceding panel topop up one level in the AFE8406 hierarchy.Through the preceding steps, receive channel 0 has now been configured as follows:

– UMTS input signal at 61.44 Msps with a 15.36-MHz IF– Mixer/NCO block shifts the signal to dc.– Zero-stuff block interpolates by 2 , moving the 61.44-Msps signal to 122.88 Msps.– CIC block decimates by 8 to 15.36 Msps.– 32-tap CFIR compensates for the CIC droop, filters and decimates the signal to 7.68 Msps.– 64-tap PFIR filters the signal.– Channel AGC is set to a fixed gain of 1.– Serial interface is used to output the baseband signal.AThe AFE8406 daughtercard configuration uses rx_sync_out_6 as the strobe indicating when the serialoutput data starts each transfer. In the following step, the receive channel-0 configuration is copied toreceive channel 6 so the strobe is present in the captured GC101 data.

24. Select AFE8406 Channel Copy from the Parameters menu to bring up the Channel Copy panel. Withchannel 0 selected as the source and channel 6 selected as the destination, click Copy, and then clickOK. The block diagram should now show both channels 0 and 6 active (green).

SLWU034–May 2006 Setting up the System 27Submit Documentation Feedback

www.ti.com

C031

C032

Creating a New GC Studio Project

25. In this example, the input data presented to the AFE8406 comes from data files. Two input file iconscan be seen in the block diagram to the left of the Input Interface block. The upper file icon isconnected to the AFE8406 digital rxin_c input port, and the lower icon is connected to the digital rxin_dinput port. Click on the top icon to show the Receive Input Port 0 menu. Following this, click on thebrowse button to bring up the open file window.

26. Navigate to the AFE8406_UMTS_EX folder and select TM1_600k_1carrier_IF15.36_Fs61.44_I.gcin.Repeat for the lower input file icon, selecting in this case theTM1_600k_1carrier_IF15.36_Fs61.44_Q.gcin file.

28 Setting up the System SLWU034–May 2006Submit Documentation Feedback

www.ti.com

C033

C034

Creating a New GC Studio Project

27. Click on the graph button, circled in red, to open the graph panel.

28. Click the Add New Data Source button and select Receive Output Port A 0.

SLWU034–May 2006 Setting up the System 29Submit Documentation Feedback

www.ti.com

C035

C036

Creating a New GC Studio Project

29. In the graph panel, set the Plot Type to Spectral Magnitude, check the Logarithmic check box, andselect Normalize by Maximum.

30. Connect the GC101 motherboard, AFE8406 daughtercard, and TSW2100 board as described inSection 3.1.

30 Setting up the System SLWU034–May 2006Submit Documentation Feedback

www.ti.com

C047

C048

C037

Creating a New GC Studio Project

31. Configure the TSW2100 board, shown following. If sharing the parallel port for the TSW2100 boardand the GC101 motherboard, release the port on GC Studio before programming the TSW2100 bytoggling the Connect/Disconnect button.

32. On the GC Studio panel, toggle the Connect/Disconnect button and then click on the Build button. Thedefault settings in the GC Studio are set to load and capture automatically after the project is built.

SLWU034–May 2006 Setting up the System 31Submit Documentation Feedback

www.ti.com

C038

Creating a New GC Studio Project

The graph window is automatically updated with the results.

32 Setting up the System SLWU034–May 2006Submit Documentation Feedback

4.1 Saving the Output to a File

C039

Chapter 4SLWU034–May 2006

Other Options in GC Studio

GC Studio offers much flexibility in evaluating the data processed by the AFE8406.Following is a list of some of these capabilities:

GC Studio allows one to save the data of the AFE8406 to a text file for further analysis by any commercialnumerical analysis software. In this example, the Receive Output Port A0 is saved.

1. Double-click on the AFE8406 block to go into its block diagram. Once there, click on the filecorresponding to Receive Output Port A 0.

SLWU034–May 2006 Other Options in GC Studio 33Submit Documentation Feedback

www.ti.com

C040

4.2 Changing the Data Capture Size

C041

Changing the Data Capture Size

2. Click on the "Save to File" box and select the file to which the data is to be saved.

3. These steps can be repeated for every signal to be captured. Every time the stream is updated, thefiles are also updated with the latest results. The file is saved in decimal format in two columns with thefirst column corresponding to the real portion of the output and the second column to the imaginaryone.

GC Studio allows you to modify the number of samples to be captured. Standard boards are deliveredwith a 1-megaVector (1024-kSample) memory, so ensure that this number is not exceeded.

1. Select EvalBoard Parameter Editor… from the Parameters menu. Once there, go to the ResponseMemory tab and enter the desired number of samples on the Memory Length box.

34 Other Options in GC Studio SLWU034–May 2006Submit Documentation Feedback

www.ti.com

T0124-01

Stimulus memory

Sync length

Sync offset

Captured data is in this region

C042

Changing the Data Capture Size

2. In the current version of GC Studio, the Response Memory capture is triggered by the StimulusMemory. Improper setting of the Stimulus Memory may result in errors in the captured data. Becauseof this, every time the captured data size is modified, it is necessary to corroborate that the StimulusMemory size and the Sync Offset are set up properly.

3. From the foregoing diagram, it is observed that the Sync Offset must be slightly bigger than theResponse Memory size. Also, it is necessary to verify that the Stimulus Memory size is large enough toencompass the Sync Offset and the Sync Length. To adjust the Stimulus Memory size, selectEvalBoard Parameter Editor… from the Parameters menu and go to the Stimulus Memory tab. Enterthe proper number of samples in the Memory Length box.

SLWU034–May 2006 Other Options in GC Studio 35Submit Documentation Feedback

www.ti.com

C043

4.3 Capturing the AFE8406 Test Bus Output

Capturing the AFE8406 Test Bus Output

4. The last step is to modify the Sync Offset and Sync Length so that they match the selected StimulusMemory size. To do this, select AFE8406 I/O Mode Configuration from the Parameters menu. Oncethere, enter the appropriate Sync Offset and Sync Length values in the corresponding boxes. Sync Aand Sync B should have the same values.

The AFE8406 includes a test bus, allowing the user to view internal digital signals. When the test bus isenabled, the rxin_c and rxin_d input ports become outputs and the dvga_c and dvga_d ports aremultiplexed to carry test bus data, giving a 36-bit-wide output port and three additional signals. Becauserxin_c and rxin_d are the test bus outputs, only the analog inputs rxin_a and rxin_b are available in thiscase.

Test Bus Signal Corresponding Signal

testbus(35:0) rxin_d(15:0), dvga_c(3:2), rxin_c(15:0), dvga_c(5:4)

test bus clock dvga_c(1)

test bus sync dvga_c(0)

test bus aflag dvga_d(5)

Other Options in GC Studio36 SLWU034–May 2006Submit Documentation Feedback

www.ti.com

C044

Capturing the AFE8406 Test Bus Output

The GC101 evaluation platform captures a 36-bit signal into the response memory. When selecting thevarious test bus sources, the signals selected in the I/O Mode Selection window must be set correctly.

1. Select AFE8406 I/O Mode Configuration from the Parameters menu. In this menu, set the OutputMode to Test Bus and OutClk to dvga_c(1).

2. The other signals, captured as SyncOut+, Sp5, and Sp6, should be configured as required for thespecific test bus signal [Sp7 is always dvga_c(5)]. The test bus output clock is used to load theresponse memory, and is controlled by the tst_rate_sel.

Test Bus Signal SyncOut+ Sp5 Sp6 OutClk tst_rate_sel

DDC PFIR in UMTS mode dvga_c(2) dvga_c(3) dvga_c(4) dvga_c(1) 2*CIC decimation

DDC PFIR in CDMA mode dvga_c(2) dvga_c(5) dvga_c(4) dvga_c(1) RXCLK rate

DDC CFIR in UMTS mode dvga_c(2) dvga_c(3) dvga_c(4) dvga_c(1) 2*CIC decimation

DDC PFIR in CDMA mode dvga_c(2) dvga_c(5) dvga_c(4) dvga_c(1) RXCLK rate

DDC TADJ-A dvga_c(2) dvga_c(3) dvga_c(4) dvga_c(1) RXCLK rate

DDC TADJ-B CDMA mode only dvga_c(2) dvga_c(3) dvga_c(4) dvga_c(1) RXCLK rate

DDC NCO-SINE in UMTS mode only dvga_c(2) dvga_c(3) dvga_c(4) dvga_c(1) ADC clock rate

DDC NCO-COSINE in UMTS mode only dvga_c(2) dvga_c(3) dvga_c(4) dvga_c(1) ADC clock rate

DDC CIC in UMTS mode dvga_c(2) dvga_c(3) dvga_c(4) dvga_c(1) CIC decimation

DDC CIC in CDMA mode dvga_c(2) dvga_c(5) dvga_c(4) dvga_c(1) RXCLK rate

DDC AGC in UMTS mode dvga_c(2) dvga_c(3) dvga_c(4) dvga_c(1) 2*CIC decimation

DDC AGC in CDMA mode dvga_c(2) dvga_c(5) dvga_c(4) dvga_c(1) RXCLK rate

DDC MIXER-A dvga_c(2) dvga_c(3) dvga_c(4) dvga_c(1) ADC clock rate

DDC MIXER-B CDMA mode only dvga_c(2) dvga_c(3) dvga_c(4) dvga_c(1) ADC clock rate

DDC DDCMUX-A dvga_c(2) dvga_c(3) dvga_c(4) dvga_c(1) ADC clock rate

DDC DDCMUX-B CDMA mode only dvga_c(2) dvga_c(3) dvga_c(4) dvga_c(1) ADC clock rate

RXIN_A and RXINB FIFO dvga_c(2) dvga_c(3) dvga_c(4) dvga_c(1) ADC clock rate

SLWU034–May 2006 Other Options in GC Studio 37Submit Documentation Feedback

www.ti.com

C045

Capturing the AFE8406 Test Bus Output

3. The raw response memory can be captured in a text format by selecting Options… from the Toolsmenu and going to the Debug tab.

The format of the file is hexadecimal, with the 32-bit response memory as the first 8 characters, aspace, and then a single character for the other four special bits (Sp7, Sp6, Sp5, SyncOut+), shown asfollows:…0000F0A0 00000F0A0 028D80000 028D80000 00000F2C6 00000F2C6 026750000 026750000 00000F580 00000F580 0…A

38 Other Options in GC Studio SLWU034–May 2006Submit Documentation Feedback

www.ti.com

C046

Capturing the AFE8406 Test Bus Output

4. To capture the ADC samples, set tst_select to A-B_FIFO_OUTs, and set tst_rate_sel to generate aclock matching the ADC clock rate.

5. Subsequently, the ADC samples can be directed to a graph or to an output file using the stepsdescribed in Section 4.1.

SLWU034–May 2006 Other Options in GC Studio 39Submit Documentation Feedback

www.ti.com

Capturing the AFE8406 Test Bus Output

Other Options in GC Studio40 SLWU034–May 2006Submit Documentation Feedback

B0134-01

CLK+

SP3

adcclk_c

To/From GC101 SWITCH

External power supply

rx_synca

SIGIN[31:16]

SIGIN[15:0]

rxin_c_ovr

SIGOUT[15:0]

rxclk_out

SYNCOUT+

GC101 GC101

From GC101 To GC101

AFE8406 DIMM board

SP1

SYNC+

SP2

CLKOUT+

dvga_c[5]

dvga_c[4]

dvga_c[3]

dvga_c[2]

SP5

SP6

SP7

rx_sync_out

interrupt

SIGOUT[31:16]rxout_7:3_d:a

adcclk_d

rxout_4:0_d:a

[dvga_c[3:0]:dvga_a[5:0]:

dvga_b[5:0]]

rx_sync_out_6

dvga_c[0]

dvga_d[5]

dvga_c[1]

rxin_d_ovr

rx_sync_out_0

rxin_c[15:0]

rxin_d[15:0]

rx_syncb

AFE8406

Tristate buffercontrol register

TTJTAGMPU Interface[a(6), d(16), rd_n,wr_n, ce_n,reset_n],Power/Gnd

5.1 AFE8406 Daughtercard Pin Description

Chapter 5SLWU034–May 2006

AFE8406 Daughtercard Description

AFE8406 DIMM–GC101 Interface Block Diagram

The AFE8406 daughtercard has a PC-133 form-factor that uses the 168-pin daughtercard memoryconnector. The 168-pin interface signals are divided into groups as listed in Table 5-1 thhrough Table 5-6.

Table 5-1. Memory Input Bus—36 Data Inputs Used to Stimulate the AFE8406 Inputs

Signal Alias Description

SIGIN(35) SP3 Clock gating signal for adcclk_a and adcclk_b

SIGIN(34) SP2 rxin_c_ovr and rxin_d_ovr input signals

SIGIN(33) SP1 rx_syncb input signal

SIGIN(32) SYNC+ rx_synca input signal

SLWU034–May 2006 AFE8406 Daughtercard Description 41Submit Documentation Feedback

www.ti.com

AFE8406 Daughtercard Pin Description

Table 5-1. Memory Input Bus—36 Data Inputs Used to Stimulate the AFE8406 Inputs (continued)

Signal Alias Description

SIGIN(31:16) rxin_c(15:0) input data

SIGIN(15:0) rxin_d(15:0) input data

Table 5-2. Memory Output Bus—36 Data Outputs From Selected AFE8406 Outputs Captured by theGC101

Signal Alias Description

SIGOUT(35) SP7 dvga_c(5)

SIGOUT(34) SP6 dvga_c(4) or rx_sync_out_0

SIGOUT(33) SP5 dvga_c(3), dvga_d(5) or interrupt

SIGOUT(32) SYNCOUT+ rx_sync_out, rx_sync_out_6, dvga_c(0) or dvga_c(2)

SIGOUT(31:16) rxout_7:4_d:a baseband DDC data or rxin_d(15:0) testbus output

SIGOUT(15:0) rxout_3:0_d:a baseband DDC data or rxin_c(15:0) testbus output

Table 5-3. Clock

Signal Description

CLK+ RXCLK clock for AFE8406; can be used as a full-rate or gated clock source when combinedwith the gating signal SP3 for the adcclk_a and adcclk_b inputs.

CLKOUT Clock signal from the daughtercard to the GC101; RXCLK, rxclk_out from the GC5018 ordvga_c(1)

Table 5-4. Microprocessor Control Bus—Bus to Program the Internal Registers

Signal Description

d(15:0) Control data I//O bus, active-high bidirectional I/O pins. This is the 16-bit control data I/Obus. Control registers are written to or read from through these pins. The chip drives thesepins when CE is low, RD is low, and WR is high.

A(10:0) Control address bus, active-high inputs. These pins are used to address the control registerswithin the chip. Each of the control register within the chip is assigned a unique address. Acontrol retister can be written to or read from by having the page register set to theappropriate page and then setting A(10:0) to the register address.

CE, RD, WR, and RST ce_n, rd_n, wr_n and rst_n on the AFE8406

Table 5-5. JTAG

Signal Description

JTAG 5-pin JTAG test port for AFE8406

TRST, TCK, TMS, TDI, TDO trst_n, tck, tms, tdi, and tdo on the AFE8406

Table 5-6. Power and Ground

Signal Description

VDUT1 3.3-V power from GC101 EVM to the daughtercard

GND Return path for the daughtercard

See the GC101 EVM User's Guide (SLWU018) for the 168-pin connector table. Detailed schematics forthe AFE8406 daughtercard can be found in Chapter 6.

AFE8406 Daughtercard Description42 SLWU034–May 2006Submit Documentation Feedback

www.ti.com

5.2 AFE8406 Daughtercard Jumpers

5.3 AFE8406 Daughtercard Power Supplies

5.4 AFE8406 Daughtercard Clock Configurations

AFE8406 Daughtercard Jumpers

The following table describes the various jumpers on the AFE8406 daughtercard card:

Jumper Description

J7 pin_configure signal to ADC. Selects normal operating mode when jumper is in 1:2 (center:on) position (default).Selects serial interface mode when jumper is in 2:3 (off:center) position.

J8 Enables ADC A outputs when jumper is in 1:2 (center:on) position (default). Disables ADC A outputs when jumper isin 2:3 (off:center) position.

J9 Enables ADC B outputs when jumper is in 1:2 (center:on) position (default). Disables ADC B outputs when jumper isin 2:3 (off:center) position.

J11 Clock doubler power down for the CDC5801. Position 1:2 (center:on) 3.3 V, enabled (default). Position 2:3 (off:center)0 V, powered down.

J12 1× or 2× clock select for the CDC5801. Position 1:2 (center:on) 3.3 V, 2× output clock. Position 2:3 (off:center) 0 V, 1×output clock.

W14 3.3-V fuse power for ADC. Position 1:2 (center:on) 3.3 V, normal operation (default). Position 2:3 (off:center) 0 V –DO NOT USE THIS POSITION.

W15 3.3-V fuse power for the GC5018. Position 1:2 (center:on) 3.3 V, normal operation (default). Position 2:3 (off:center) 0V – DO NOT USE THIS POSITION.

J17 Pins 1:2—ADC DLL disabled when jumper removed (default). Pins 3:4—ADC internal reference when installed(default). Pins 5:6—ADC operational when installed (default).

W13 External DVDD power supply. Position 1:2 (center:on) internal 1.5 V to DVDD (default). Position 2:3 (off:center)external 1.5 V through J24.

W25 External AVDD power supply. Position 1:2 (center:on) internal 3.3 V to AVDD (default). Position 2:3 (off:center)external 3.3 V through J29.

W26 External VDDS power supply. Position 1:2 (center:on) internal 3.3 V to VDDS (default). Position 2:3 (off:center)external 3.3 V through J30.

W27 External DRVDD power supply. Position 1:2 (center:on) internal 3.3 V to DRVDD(default). Position 2:3 (off:center)external 3.3 V through J28.

J23 1.5-V regulator software control using c10 register bit – DO NOT INSTALL.

The AFE8406 I/O and core power supplies are 3.3 V and 1.5 V, respectively. The default configuration ofthe AFE8406 daughtercard enables the GC101 motherboard to supply 3.3 V to the daughtercard, whichincludes a 1.5-V regulator. Alternatively, by modifying jumpers W13, W25, W26 and W27, external powersupplies can be used to provide these voltages to the daughtercard.

The AFE8406 daughtercard card allows for the following clock configurations:

1. Default configuration (to be used with TSW2100): AFE8406 daughtercard RX clock SMA input

– Input RX clock rate at J5 (CLKM)– Install 0-Ω resistors in

• R40• R72• R58

– Remove resistors in

• R36• R43• R52• R73

– For CDCF5801 at 1 , install

• J12 jumper between pins 2 and 3– For CDCF5801 at 2 , install

• J12 jumper between pins 1 and 2

SLWU034–May 2006 AFE8406 Daughtercard Description 43Submit Documentation Feedback

new
高亮

www.ti.com

AFE8406 Daughtercard Clock Configurations

– Clock path:J5 → R40 → R72 → C137 → U22 (pin2) → U22 (pin20) → R58 → AFE8406 (ball r22)

2. Configuration for AFE8406 daughtercard RX clock from GC101 (through CDCF5801)

– Install 0-Ω resistors in

• R46• R70• R73• R58

– Remove resistors in

• R36• R43• R52• R72

– For CDCF5801 at 1 , install

• J12 jumper between pins 2 and 3– For CDCF5801 at 2 , install

• J12 jumper between pins 1 and 2– Clock path:

J16A (pin 34) → R46 → C148 → U2 (pin1) → U2 (pin2) → R70 →R73 → C137 → U22 (pin2) →U22 (pin20) → R58 → AFE8406 (ball r22)

3. Configuration for AFE8406 daughtercard RX clock from GC101 (bypass CDCF5801)

– Install 0-Ω resistors in

• R46• R36• R73

– Remove resistors in

• R43• R52• R73• R72• R58

– Clock path:J16A (pin 34) → R46 → C148 → U2 (pin1) → U2 (pin2) → R36 → AFE8406 (ball r22)

4. Configuration for AFE8406 daughtercard RX clock from ADC clock (GC101 separate)

– Install 0-Ω resistors in

• R52• R58

– Remove resistors in

• R36• R43• R52• R72• R73

– For CDCF5801 at 1 , install

• J12 jumper between pins 2 and 3– For CDCF5801 at 2 , install

• J12 jumper between pins 1 and 2– Clock path:

J6 (CLKP) → R52 → C137 → U22 (pin2) → U22 (pin20) → R58 → AFE8406 (ball r22)

44 AFE8406 Daughtercard Description SLWU034–May 2006Submit Documentation Feedback

6.1 PCB Layout

K001

Chapter 6SLWU034–May 2006

Physical Description

This chapter describes the physical characteristics and PCB layout of the AFE8406daughtercard and lists the components used on the module.

The board is constructed on an 8-layer, 5.11-inch x 5.25-inch, 0.056-inch thick PCB using FR-4 material.Figure 6-1 through Figure 6-8 show the PCB layout for the daughtercard.

Figure 6-1. Top Layer 1

SLWU034–May 2006 Physical Description 45Submit Documentation Feedback

www.ti.com

K002

PCB Layout

Figure 6-2. Ground Plane Layer 2

46 Physical Description SLWU034–May 2006Submit Documentation Feedback

www.ti.com

K003

PCB Layout

Figure 6-3. Signal Layer 3

SLWU034–May 2006 Physical Description 47Submit Documentation Feedback

www.ti.com

K004

PCB Layout

Figure 6-4. Signal Layer 4

48 Physical Description SLWU034–May 2006Submit Documentation Feedback

www.ti.com

K005

PCB Layout

Figure 6-5. Power Plane Layer 5

SLWU034–May 2006 Physical Description 49Submit Documentation Feedback

www.ti.com

K006

PCB Layout

Figure 6-6. Signal Layer 6

50 Physical Description SLWU034–May 2006Submit Documentation Feedback

www.ti.com

K007

PCB Layout

Figure 6-7. Ground Plane Layer 7

SLWU034–May 2006 Physical Description 51Submit Documentation Feedback

www.ti.com

K008

6.2 Parts List

Parts List

Figure 6-8. Bottom Layer 8

Table 6-1 lists the parts used in constructing the AFE8406 daughtercard.

Table 6-1. AFE8406 Daughtercard Bill of Materials (BOM)

Part Reference Value Mfr_Name Mfr_Part_Number Quantity Note

C1, C2, C3, C9, C10, C138, C139, 0.01 µF Panasonic ECJ-0EF1E103Z 15C149, C150, C151, C152, C153,C154, C157, C158

C4, C5 10 pF Panasonic ECJ-0EC1H100D 0 Do not install

C6 10 pF Panasonic ECJ-0EC1H100D 1

C7, C8 27 pF Panasonic ECJ-0EC1H270J 0 Do not install

52 Physical Description SLWU034–May 2006Submit Documentation Feedback

www.ti.com

Parts List

Table 6-1. AFE8406 Daughtercard Bill of Materials (BOM) (continued)

Part Reference Value Mfr_Name Mfr_Part_Number Quantity Note

C13, C14, C15, C16, C17, C18, 0.1 µF Panasonic ECJ-0EB1A104K 84C20, C21, C23, C24, C25, C26,C27, C28, C29, C31, C32, C33,C36, C37, C38, C40, C42, C45,C47, C48, C49, C51, C54, C57,C58, C59, C61, C63, C64, C65,C66, C67, C68, C69, C70, C71,C73, C74, C75, C76, C77, C78,C79, C80, C81, C82, C83, C84,C85, C86, C111, C114, C116, C117,C118, C122, C124, C126, C127,C128, C129, C130, C131, C132,C133, C134, C135, C136, C137,C140, C141, C142, C144, C146,C147, C148, C156, 159

C19 0.1 µF Panasonic ECJ-0EB1A104K 0 Do not install

C39, C43, C62, C72, C112, C115, 10 µF Panasonic ECS-T1AX106R 10C119, C123, C145, C155

C110, C125 1 µF Panasonic ECJ-1VB1A105K 2

C113, C120, C121, C143 47 µF Panasonic ECS-T1AD476R 4

C160 12 pF Panasonic ECJ-0EC1H120D 1

FB2, FB3, FB4, FB5, FB6 Ferrite bead Panasonic EXC-ML32A680U 5

FB7 Ferrite bead ? ? 1

FB8 Ferrite bead 0 Do not install

J1, J2, J3, J4, J5, J6, J13 SMA_END_RND Johnson 142-0711-821 7Components

J10 Header Samtec TSW-112-07-L-D 1

J7,J8, J9, J11, J12, W13, W14, Header_1x3_100_430L Samtec TSW-103-07-L-S 11W15, W25, W26, W27

J17 Header_2x3_100_430L Samtec TSW-103-07-L-D 1

J18 TSW-125-07-L-D Samtec TSW-125-07-L-D 1

J19, J20, J21, J22 Standoff Allied 1902CK 4

J23 Header_1x2_100_430L Samtec TSW-102-07-L-S 1

J24, J28, J29, J30 Header_1x2_100_430L On-Shore ED120/2DS 4Technology

PP1 PROBE_POINT 0 Do not install

R2, R17, R23, R25, R40, R46, R57, 0 Ω Panasonic ERJ-3GEY0R00V 13R61, R62, R63, R67, R71, R72

R3, R4, R10, R18, R19, R24 0 Ω Panasonic ERJ-8GEY0R00V 0 Do not install

R5, R6, R7, R8, R11, R12, R13, 24.9 Ω Panasonic ERJ-3EKF24R9V 8R14

R9, R15 174 Ω Panasonic ERJ-2RKF1740X 0 Do not install

R16, R33, R43, R52, R69, R70, 0 Ω Panasonic ERJ-3GEY0R00V 0 Do not installR73, R81, R116

R20, R21, R28, R29 1 Ω Yaego 9C0603A1 JLHFT 4America

R22, R74, R77, R78 49.9 Ω Panasonic ERJ-3EKF49R9V 0 Do not install

R26, R31, R34, R59, R60 10 kΩ Panasonic ERJ-3EKF1002V 5

R47, R48, R49 49.9 kΩ Panasonic ERJ-3EKF4992V 3

R27 49.9 Ω Panasonic ERJ-2RKF49R9X 1

R30 56.2 kΩ Panasonic ERJ-3EKF5622V 1

R32 10 kΩ Panasonic ERJ-3EKF1002V 0 Do not install

R35, R37, R58 10 Ω Panasonic ERJ-3EKF10R0V 3

SLWU034–May 2006 Physical Description 53Submit Documentation Feedback

www.ti.com

Parts List

Table 6-1. AFE8406 Daughtercard Bill of Materials (BOM) (continued)

Part Reference Value Mfr_Name Mfr_Part_Number Quantity Note

R36 10 Ω Panasonic ERJ-3EKF10R0V 0 Do not install

R38, R39 130 Ω Panasonic ERJ-3EKF1300V 0 Do not install

R41 6.81 kΩ Panasonic ERJ-3EKF6811V 1

R42 30.1 kΩ Panasonic ERJ-3EKF3012V 1

R44, R45 100 Ω Panasonic ERJ-3EKF1000V 2

R50, R51, R53, R54, R55, R56, 4.75 kΩ Panasonic ERJ-3EKF4751V 16R64, R107, R108, R109, R110,R111, R112, R113, R114, R115

R65, R66 130 Ω Panasonic ERJ-3EKF1300V 2

R68 4.75 kΩ Panasonic ERJ-3EKF4751V 0 Do not install

R75, R76 0 Ω Panasonic ERJ-3GEY0R00V 0 Do not install

R79, R105 150 Ω Panasonic ERJ-2RKF1500X 0 Do not install

R80, R82, R83, R84, R85, R86, 130 Ω Panasonic ERJ-2RKF1740X 24R87, R88, R89, R90, R91, R92,R93, R94, R95, R96, R97, R98,R99, R100, R101, R102, R103,R104

SW1 EVQPJX Panasonic EVQPJX04M 1

T1, T2, T3 ADT1-1WT Minicircuits ADT1-1WT 3

TP1, TP2, TP3, TP7, TP8, TP9, Red Keystone 5000 10TP10, TP11, TP12, TP15

TP4, TP5, TP6, TP13 Blk Keystone 5001 4

U1 AFE8406 TI AFE8406IZDQ 1

U2 CDCVF2505 TI CDCVF2505D 1

U3 74LVC1G02 TI 74LVC1G02DBV 1

U4, U9, U21, U23, U24 SN74LVC1G04 TI SN74LVC1G04DBV 5

U5, U6, U19, U20 SN74CBTLV1G125 TI SN74CBTLV1G125DBV 4

U7 SN74ALVTH16374 TI SN74ALVTH16374GR 1

U8 TPS75701 TI TPS75701KTT 1

U10 SN74LVC08A TI SN74LVC08APWR 1

U11, U12, U13, U14, U15 SN74CBTLV16210 TI SN74CBTLV16210GR 5

U16, U17, U18 SN74CBTLV3253 TI SN74CBTLV3253PWR 3

U22 CDCF5801 TI CDCF5801DBQ 1

U25, U26 AA113-310 Skyworks AA113-310 2

U27, U28 SN74LVCC3245A TI SN74LVCC3245APWR 2

U29 CDCVF2505 TI CDCVF2505PW 1

Physical Description54 SLWU034–May 2006Submit Documentation Feedback

Chapter 7SLWU034–May 2006

AFE8406 Daughtercard Schematics

This chapter contains the AFE8406 schematic diagrams.

SLWU034–May 2006 AFE8406 Daughtercard Schematics 55Submit Documentation Feedback

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

INPA

GCD0GCD1GCD2GCD3GCD4GCD5GCD6GCD7GCD8GCD9GCD10GCD11GCD12GCD13GCD14

INPBINMB

50ohm_6 Diffpair_6

GCA0GCA1GCA2GCA3GCA4GCA5

GCD15

DVGA0DVGA1DVGA2DVGA3DVGA4DVGA5

DVGA6DVGA7DVGA8DVGA9DVGA10DVGA11

DVGA12DVGA13DVGA14DVGA15

DVGAD0DVGAD1DVGAD2DVGAD3DVGAD4DVGAD5

50ohm_5Diffpair_5Diffpair_5

INMA

+3.3V

+3.3V

+3.3V+3.3V

+3.3V

+3.3V

CMA

CMB

CLKPA

CLKMA

CLKPACLKMA

SCLKSEN

SDI

ADCCLK

RXCLK

GCD[0..15]

GCA[0..5]

DVGA[0..15]

DVGAD[0..5]

DVGA_C5DVGA_C4

CLKIN

SP2

INTERRUPT

TDO

RD_NWR_NCE_N

GCRSTN

TDITMS

TCLKC11

SDISENSCLK

CLKIN

INPAINMAINPBINMB

Title

Size Document Number Rev

Date: Sheet ofAFE8406 EVM SCH D2

AFE8406 EVM

B1 7Tuesday, May 02, 2006

Title

Size Document Number Rev

Date: Sheet ofAFE8406 EVM SCH D2

AFE8406 EVM

B1 7Tuesday, May 02, 2006

Title

Size Document Number Rev

Date: Sheet ofAFE8406 EVM SCH D2

AFE8406 EVM

B1 7Tuesday, May 02, 2006

(2-3)

(1-2)(3-4)(5-6)

(1-2)

(1-2)

(Sh 6)

(Sh 6)

(Sh 7) (Sh 7)

(Sh 7)

(Sh 5)

(Sh 5)

(Sh 7)

(Sh 5)

(Sh 7)(Sh 7)(Sh 7)

(Sh 6)

(Sh 2)

(Sh 5)

(Sh 3)

(Sh 3)

(Sh 3)

(Sh 3)

(Sh 3)

(Sh 3)

(Sh 3)

ASHLEY TRAN

12500 TI Boulevard. Dallas, Texas 75243

Engineer:

Drawn By:

J. SETON

FILE:

R21 20

5%1/10W

R21 20

5%1/10W

R330

1%1/10W

DNIR330

1%1/10W

DNI

C15.1UFC15.1UF

12

SW1

EVQPJX

SW1

EVQPJX

21

R24 0Do Not Install

5%1/4W

R24 0Do Not Install

5%1/4W

R105150

1%1/16WDNIR105150

1%1/16WDNI

C20.1UFC20.1UF

12

R3110K

1%1/10W

R3110K

1%1/10W

R4949.9K

1%1/10W

R4949.9K

1%1/10W

R400

1%1/10W

R400

1%1/10W

C13

.1UF

DNIC13

.1UF

DNI

1 2

R644.75K

1%1/10W

R644.75K

1%1/10W

R1160

1%1/10W

Do Not InstallR1160

1%1/10W

Do Not Install

C14.1UFC14.1UF

12R22

49.9

1%1/10W

Do Not InstallR2249.9

1%1/10W

Do Not Install

C10

.01UF

C10

.01UF

1 2

MS A

DE N

J5CLKM

MS A

DE N

J5CLKM

1

5234

R250

1%1/10W

R250

1%1/10WR43 0

1%1/10WDo Not Install

R43 0

1%1/10WDo Not Install

C16

.1UF

DNIC16

.1UF

DNI

1 2

R230

1%1/10W

R230

1%1/10W

C18.1UFC18.1UF

12

J7J7123

R3056.2K

1%1/10W

R3056.2K

1%1/10W

R4749.9K

1%1/10W

R4749.9K

1%1/10W

R79150

1%1/10W

DNIR79150

1%1/10W

DNI

J9J9123

R19 0Do Not Install

5%1/4W

R19 0Do Not Install

5%1/4W

R2749.9

1%1/16W

R2749.9

1%1/16W

T3ADT1-1WT

T3ADT1-1WT

3

2

1 6

5

4

R3210K

1%1/10W

Do Not InstallR3210K

1%1/10W

Do Not Install

C9

.01UF

C9

.01UF

1 2

R28 20

5%1/10W

R28 20

5%1/10W

R62 0

1%1/10W

R62 0

1%1/10W

R7849.9

1%1/10W

Do Not InstallR7849.9

1%1/10W

Do Not Install

J8J8123

R20 20

5%1/10W

R20 20

5%1/10W

J17J1713

24

56

MS A

DE N

J6CLKP

MS A

DE N

J6CLKP

1

5234

R29 20

5%1/10W

R29 20

5%1/10WC17.1UFC17.1UF

12

R520

1%1/10W

Do Not InstallR520

1%1/10W

Do Not Install

U1D

AFE8406

U1D

AFE8406

INPAF3INMAF4INPBV4INMBV3

CLKPAH1CLKMAJ1CLKPBR1CLKMBT1

REFPAL3REFMAK3REFPBP3REFMBN3

IREFM3

PIN_CONFIGT5

dll_enable/SDIN10pwdn/SCLKM9ext_ref/SENM10

OEAL9OEBN9

FUSE_SELH5RXCLKR22

ADCCLK_CAA11ADCCLK_DAB11

RXIN_A_OVRG6RXIN_B_OVRN8RXIN_C_OVRAB6RXIN_D_OVRV12

D0Y22D1Y21D2AB20D3AA20D4Y20D5W20D6V20D7AB19D8AA19D9Y19D10W19D11V19D12AB18D13AA18D14Y18D15W18

A0T20A1U22A2U21A3W22A4V21A5W21

RD_NT22WR_NR20CE_NT21RESET_NR21

TDIK22TMSK21TRST_NJ22TCLKL20

TDO L21

INTERRUPT M21

CMA H3

CMB T3

DVGA_A_0 C8DVGA_A_1 A7DVGA_A_2 B7DVGA_A_3 C7DVGA_A_4 D8DVGA_A_5 D7

DVGA_B_0 B9DVGA_B_1 C9DVGA_B_2 D10DVGA_B_3 D9DVGA_B_4 A8DVGA_B_5 B8

DVGA_C_0 AA16DVGA_C_1 Y16DVGA_C_2 W16DVGA_C_3 V16DVGA_C_4 AB15DVGA_C_5 AA15

DVGA_D_0 V18DVGA_D_1 AB17DVGA_D_2 AA17DVGA_D_3 W17DVGA_D_4 V17DVGA_D_5 AB16

R4849.9K

1%1/10W

R4849.9K

1%1/10W

C19.1UFDNI

C19.1UFDNI

12

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

RXIN_D0RXIN_D1RXIN_D2RXIN_D3RXIN_D4RXIN_D5RXIN_D6RXIN_D7RXIN_D8RXIN_D9RXIN_D10RXIN_D11RXIN_D12RXIN_D13RXIN_D14RXIN_D15

RXIN_C0RXIN_C1RXIN_C2RXIN_C3RXIN_C4RXIN_C5RXIN_C6RXIN_C7RXIN_C8RXIN_C9RXIN_C10RXIN_C11RXIN_C12RXIN_C13RXIN_C14RXIN_C15

RXOUT16RXOUT17RXOUT18RXOUT19

RXOUT20RXOUT21RXOUT22RXOUT23

RXOUT24RXOUT25RXOUT26RXOUT27

RXOUT28RXOUT29RXOUT30RXOUT31

RXOUT12RXOUT13RXOUT14RXOUT15

RXOUT11RXOUT10RXOUT9RXOUT8

RXOUT7RXOUT6RXOUT5RXOUT4

RXOUT3RXOUT2RXOUT1RXOUT0

+3.3V

+3.3V

+3.3V

+3.3V

+3.3V+3.3V

+3.3V

+3.3V

CLK+

RXCLK

CLKOUT

C7

ADCCLK

RX_SYNCBRX_SYNCA

RXIN_C[0..15]

RXIN_D[0..15]

RXOUT[0..15]RXOUT[16..31]

RX_SYNC_OUTRXCLK_OUT

RX_SYNC_OUT_6

SP3

RX_SYNC_OUT_0

CLKIN

BUFFIN

Title

Size Document Number Rev

Date: Sheet ofAFE8406 EVM SCH D2

AFE8406 EVM

B2 7Tuesday, May 02, 2006

Title

Size Document Number Rev

Date: Sheet ofAFE8406 EVM SCH D2

AFE8406 EVM

B2 7Tuesday, May 02, 2006

Title

Size Document Number Rev

Date: Sheet ofAFE8406 EVM SCH D2

AFE8406 EVM

B2 7Tuesday, May 02, 2006

(Sh 3)

(Sh 6)

(Sh 6)

(Sh 6)

(Sh 5)

(Sh 3)

(Sh 3)

(Sh 3)

(Sh 3)

(Sh 3)

(Sh 1)

(Sh 5)

(Sh 5)

(Sh 6)

ASHLEY TRAN

12500 TI Boulevard. Dallas, Texas 75243

Engineer:

Drawn By:

J. SETON

FILE:

U2CDCVF2505D

U2CDCVF2505D

CLK1 3

CLK2 2

CLK3 5

CLK4 7

CLKOUT 8

REF1

VDD6

GND4

R69 0

1%1/10WDo Not Install

R69 0

1%1/10WDo Not Install

R36 10

1%1/10W

Do Not InstallR36 10

1%1/10W

Do Not Install

R2610K

1%1/10W

R2610K

1%1/10W

C610PFC610PF

12

O

U3

74LVC1G02

O

U3

74LVC1G02

1

23

45

R38130

1%1/10W

Do Not Install

R38130

1%1/10W

Do Not Install

C23

.1UF

C23

.1UF1 2

U674CBTLV1G125U674CBTLV1G125

A2

OE1

B 4V

CC

5G

ND

3

R67 0

1%1/10W

R67 0

1%1/10W

R37 10

1%1/10W

R37 10

1%1/10W

R66130

1%1/10W

R66130

1%1/10W

C24

.1UF

C24

.1UF1 2

PP1 Do Not InstallPP1 Do Not Install1

U4

74LVC1G04

U4

74LVC1G04

42

53

J10J10

1 2468101214161820

3579

111315171921 2223 24

U1E

AFE8406

U1E

AFE8406

RXIN_C_0W11 RXIN_C_1AB10 RXIN_C_2AA10 RXIN_C_3Y10 RXIN_C_4W10 RXIN_C_5AB9 RXIN_C_6AA9 RXIN_C_7Y9 RXIN_C_8W9 RXIN_C_9AB8 RXIN_C_10AA8 RXIN_C_11V10 RXIN_C_12Y8 RXIN_C_13AB7 RXIN_C_14AA7 RXIN_C_15Y7

RXIN_D_15W12RXIN_D_14Y12RXIN_D_13AA12RXIN_D_12AB12RXIN_D_11V13RXIN_D_10W13RXIN_D_9Y13RXIN_D_8AA13RXIN_D_7AB13RXIN_D_6V14RXIN_D_5W14RXIN_D_4AA14RXIN_D_3AB14RXIN_D_2V15RXIN_D_1W15RXIN_D_0Y15

RX_SYNCAP21RX_SYNCBP22RX_SYNCCN20RX_SYNCDN21

TESTMODE0G21TESTMODE1G22SCANENH21

FA002_SCANJ20FA002_CLKH22

ZEROH20

FUSE_OUTF20FUSE_ENAD21FUSE_BIASF21FA002_OUTJ21

RX_SYNC_OUT_7 A20

RX_SYNC_OUT_0 A10RX_SYNC_OUT_1 C12RX_SYNC_OUT_2 B13RX_SYNC_OUT_3 D15RX_SYNC_OUT_4 C16RX_SYNC_OUT_5 C17RX_SYNC_OUT_6 C19

RXOUT_0_A B11RXOUT_0_B C11RXOUT_0_C B10RXOUT_0_D A9

RXOUT_1_A A12RXOUT_1_B B12RXOUT_1_C D12RXOUT_1_D A11

RXOUT_2_A D14RXOUT_2_B A13RXOUT_2_C C13RXOUT_2_D D13

RXOUT_3_A B15RXOUT_3_B C15RXOUT_3_C A14RXOUT_3_D B14

RXOUT_4_A A16RXOUT_4_B B16RXOUT_4_C D16RXOUT_4_D A15

RXOUT_5_A D18RXOUT_5_B B17RXOUT_5_C D17RXOUT_5_D A17

RXOUT_6_A A19RXOUT_6_B B19RXOUT_6_C A18RXOUT_6_D B18

RXOUT_7_A D20RXOUT_7_B C21RXOUT_7_C B20RXOUT_7_D C20

DVDDMON L22DVSSMON M22

RX_SYNC_OUT E22RXCLK_OUT E21

C21.1UFC21.1UF

12

C25

.1UF

C25

.1UF1 2

R3410K

1%1/10W

R3410K

1%1/10W

R70 0

1%1/10W

Do Not InstallR70 0

1%1/10W

Do Not InstallC148

.1UF

C148

.1UF1 2

U574CBTLV1G125U574CBTLV1G125

A2

OE1

B 4

VC

C5

GN

D3

R65130

1%1/10W

R65130

1%1/10W

C142

.1UF

C142

.1UF1 2

R39130

1%1/10W

Do Not Install

R39130

1%1/10W

Do Not Install

R1154.75K

1%1/10W

R1154.75K

1%1/10W

R35 10

1%1/10W

R35 10

1%1/10W

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

GCD0GCD1

GCD3GCD2

GCD4GCD5

GCD6GCD7GCD8GCD9

GCD10GCD11

GCD12GCD13

GCD15GCD14

GCD15GCD14GCD13GCD12GCD11

GCD9GCD8GCD7GCD6GCD5GCD4

GCD2GCD1GCD0

GCA0GCA1GCA2GCA3GCA4GCA5

GCD3

GCD10

DATA_D0DATA_D1DATA_D2DATA_D3DATA_D4DATA_D5DATA_D6DATA_D7DATA_D8DATA_D9DATA_D10DATA_D11DATA_D12DATA_D13DATA_D14DATA_D15

DATA_C0DATA_C1DATA_C2DATA_C3DATA_C4DATA_C5DATA_C6DATA_C7DATA_C8DATA_C9DATA_C10DATA_C11DATA_C12DATA_C13DATA_C14DATA_C15 RXOUT31

RXOUT30RXOUT29RXOUT28RXOUT27RXOUT26RXOUT25RXOUT24RXOUT23RXOUT22RXOUT21RXOUT20RXOUT19RXOUT18RXOUT17RXOUT16

RXOUT15RXOUT14RXOUT13RXOUT12RXOUT11RXOUT10RXOUT9RXOUT8RXOUT7RXOUT6RXOUT5RXOUT4RXOUT3RXOUT2RXOUT1RXOUT0

DATA_C0DATA_C1DATA_C2DATA_C3DATA_C4DATA_C5

DATA_C6DATA_C7DATA_C8DATA_C9DATA_C10DATA_C11

DATA_C12

DATA_C13DATA_C14DATA_C15

RXIN_C0RXIN_C1RXIN_C2RXIN_C3RXIN_C4

RXIN_C5RXIN_C6RXIN_C7RXIN_C8RXIN_C9RXIN_C10RXIN_C11RXIN_C12

RXIN_C13RXIN_C14RXIN_C15

DATA_D4

RXIN_D12

DATA_D5

RXIN_D13

RXIN_D0

DATA_D6

RXIN_D1

RXIN_D14

DATA_D7

RXIN_D2

RXIN_D15

DATA_D8

RXIN_D3

DATA_D9

RXIN_D4

DATA_D10

RXIN_D5

DATA_D11

RXIN_D6

DATA_D12

RXIN_C7

DATA_D13

RXIN_D8

DATA_D0

DATA_D14

RXIN_D9

DATA_D1

DATA_D15

DATA_D2

RXIN_D10

DATA_D3

RXIN_D11

+3.3V

+3.3V

+3.3V

+3.3V+3.3V

+3.3V+3.3V

+3.3V

+3.3V

+5VAV

GCD[0..15]

C0C1

C2C3

C4C5

C6C7C8C9

C10C11

C12C13

C14

GCA[0..5]

GCD[0..15]

TMSTDITDO

TCLK

RD_N

SP5SP6

DVGA_C5

GCRSTN

SYNCOUT

CLKOUT+CLK+

RX_SYNCA

RX_SYNCBSP2SP3

DATA_D[0..15]

DATA_C[0..15]

RXOUT[0..15]

RXOUT[16..31]

DATA_C[0..15]

RXIN_C[0..15]

C1

C12

RXIN_D[0..15]

DATA_D[0..15]

WR_NCE_N

Title

Size Document Number Rev

Date: Sheet ofAFE8406 EVM SCH D2

AFE8406 EVM

B3 7Tuesday, May 02, 2006

Title

Size Document Number Rev

Date: Sheet ofAFE8406 EVM SCH D2

AFE8406 EVM

B3 7Tuesday, May 02, 2006

Title

Size Document Number Rev

Date: Sheet ofAFE8406 EVM SCH D2

AFE8406 EVM

B3 7Tuesday, May 02, 2006

NCNCNCNC

NC

NCNC

NC

NC

NC

NCNC

NCNCNCNC

NC

NC

NC

TEST IN BUS TEST OUT BUS

GC CONTROL BUS

SPARE

(Sh 5)

(Sh 5)

(Sh 5)

(Sh 5)

(Sh 5)

(Sh 5)

(Sh 1)

(Sh 1)

(Sh 1)

(Sh 1)

(Sh 1)

(Sh 1)

(Sh 1)

(Sh 1)

(Sh 2)

(Sh 2)

(Sh 2)

12500 TI Boulevard. Dallas, Texas 75243

TP11

Red

TP11

Red

R46 0

1%1/10W

R46 0

1%1/10W

68FB6 68FB61 2

TP2

Red

TP2

Red

U9

74LVC1G04

U9

74LVC1G04

4 2

53

R504.75K

1%1/10W

R504.75K

1%1/10W

Ferrite BeadFB8

Do Not InstallFerrite BeadFB8

Do Not Install

12

C126

.1UF

C126

.1UF1 2

A

BY

VCC

GND

U10A

SN74LVC08APWR

A

BY

VCC

GND

U10A

SN74LVC08APWR

1

23

147

J16C

168 PIN DIMM

J16C

168 PIN DIMM

SIGOUT<31>85SIGOUT<30>86SIGOUT<29>87SIGOUT<28>88SIGOUT<27>89SIGOUT<26>90SIGOUT<25>91SIGOUT<24>92SIGOUT<23>93SIGOUT<22>94SIGOUT<21>95SIGOUT<20>96SIGOUT<19>97SIGOUT<18>98SIGOUT<17>99SIGOUT<16>100SIGOUT<15>101SIGOUT<14>102SIGOUT<13>103SIGOUT<12>104SIGOUT<11>105SIGOUT<10>106SIGOUT<9>107SIGOUT<8>108SIGOUT<7>109SIGOUT<6>110SIGOUT<5>111SIGOUT<4>112SIGOUT<3>113SIGOUT<2>114SIGOUT<1>115SIGOUT<0>116GND24117

GND25120

CLKOUT+118CLKOUT-119

SYNCOUT+121SYNCOUT-122SP5123SP6124SP7125SP8126

YA

B

U10CSN74LVC08APWR

YA

B

U10CSN74LVC08APWR

9

108

+ C155

10UF

+ C155

10UF

12

C27.1UFC27.1UF

12

C156100PFC156100PF

12

TP1

Red

TP1

Red

U12

SN74CBTLV16210

U12

SN74CBTLV16210

1A121A231A341A451A561A67GND181A791A8101A9111A10122A1132A214VCC152A316GND2172A4182A5192A6202A7212A8222A9232A1024 2B10 252B9 262B8 272B7 282B6 292B5 302B4 31GND3 322B3 332B2 342B1 351B10 361B9 371B8 381B7 391B6 40GND4 411B5 421B4 431B3 441B2 451B1 462OE 471OE 48NC1

J16A

168 PIN DIMM

J16A

168 PIN DIMM

SIGIN<31> 1SIGIN<30> 2SIGIN<29> 3SIGIN<28> 4SIGIN<27> 5SIGIN<26> 6SIGIN<25> 7SIGIN<24> 8SIGIN<23> 9SIGIN<22> 10SIGIN<21> 11SIGIN<20> 12SIGIN<19> 13SIGIN<18> 14SIGIN<17> 15SIGIN<16> 16SIGIN<15> 17SIGIN<14> 18SIGIN<13> 19SIGIN<12> 20SIGIN<11> 21SIGIN<10> 22

SIGIN<9> 23SIGIN<8> 24SIGIN<7> 25SIGIN<6> 26SIGIN<5> 27SIGIN<4> 28SIGIN<3> 29SIGIN<2> 30SIGIN<1> 31SIGIN<0> 32

GND1 33CLK+ 34CLK- 35

GND2 36SYNCIN+ 37SYNCIN- 38

SP1 39SP2 40SP3 41SP4 42

C124.1UFC124.1UF

12

TP4

Blk

TP4

Blk

R44 100

1%1/10W

R44 100

1%1/10WR45 100

1%1/10W

R45 100

1%1/10W

U7

74ALVTH16374

U7

74ALVTH16374

1OE 11Q1 21Q2 3

GND1 41Q3 51Q4 6

VCC1 71Q5 81Q6 9

GND2 101Q7 111Q8 122Q1 132Q2 14

GND3 152Q3 162Q4 17

VCC2 182Q5 192Q6 20

GND4 212Q7 222Q8 232OE 242CLK25 2D826 2D727 GND528 2D629 2D530 VCC331 2D432 2D333 GND634 2D235 2D136 1D837 1D738 GND739 1D640 1D541 VCC442 1D443 1D344 GND845 1D246 1D147 1CLK48

C29.1UFC29.1UF

12

J16D

168 PIN DIMM

J16D

168 PIN DIMM

TMS127TDI128TDO129TCLK130GND26131SCL132SCDATA133RST134CE135WR136RD137CNTLSP138GND27139A<10>140A<9>141A<8>142A<7>143A<6>144A<5>145A<4>146A<3>147A<2>148A<1>149A<0>150GND28151D<0>152D<1>153D<2>154D<3>155D<4>156D<5>157D<6>158D<7>159D<8>160D<9>161D<10>162D<11>163D<12>164D<13>165D<14>166D<15>167GND29168

C127

.1UF

C127

.1UF1 2

U11

SN74CBTLV16210

U11

SN74CBTLV16210

1A121A231A341A451A561A67GND181A791A8101A9111A10122A1132A214VCC152A316GND2172A4182A5192A6202A7212A8222A9232A1024 2B10 252B9 262B8 272B7 282B6 292B5 302B4 31GND3 322B3 332B2 342B1 351B10 361B9 371B8 381B7 391B6 40GND4 411B5 421B4 431B3 441B2 451B1 462OE 471OE 48NC1

YA

B

U10B

SN74LVC08APWR

YA

B

U10B

SN74LVC08APWR

4

56

C117.1UFC117.1UF

12

YA

B

U10D

SN74LVC08APWR

YA

B

U10D

SN74LVC08APWR

12

1311

TP3

Red

TP3

Red

C26.1UFC26.1UF

12

R514.75K

1%1/10W

R514.75K

1%1/10W

EVM

J16B

168 PIN DIMM

EVM

J16B

168 PIN DIMM

GND3 43GND4 44GND5 45GND6 46GND7 47GND8 48GND9 49

GND10 50VDUT1<1> 51VDUT1<2> 52VDUT1<3> 53VDUT1<4> 54VDUT1<5> 55

GND11 56GND12 57GND13 58GND14 59GND15 60GND16 61

VDUT3<1> 62VDUT3<2> 63

GND17 64GND18 65GND19 66

VDUT2<1> 67VDUT2<2> 68VDUT2<3> 69VDUT2<4> 70

GND20 71GND21 72

VDUT4<1> 73VDUT4<2> 74

AGND1 75AGND2 76TYPE4 77TYPE3 78TYPE2 79TYPE1 80TYPE0 81GND22 82GND23 83

3P3V 84

C28.1UFC28.1UF

12

C116.1UFC116.1UF

12

TP15

Red

TP15

Red

Ferrite BeadFB7Ferrite BeadFB7

1 2

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

AVDD

AVDD

DVDD

VDDS

DRVDD

VDDS

+3.3VAVDD

VDDS

DVDD

+3.3V

DRVDD

+3.3V

C10

Title

Size Document Number Rev

Date: Sheet ofAFE8406 EVM SCH D2

AFE8406 EVM

B4 7Tuesday, May 02, 2006

Title

Size Document Number Rev

Date: Sheet ofAFE8406 EVM SCH D2

AFE8406 EVM

B4 7Tuesday, May 02, 2006

Title

Size Document Number Rev

Date: Sheet ofAFE8406 EVM SCH D2

AFE8406 EVM

B4 7Tuesday, May 02, 2006

1.5V REG

(1-2)

(1-2)

ASHLEY TRAN

12500 TI Boulevard. Dallas, Texas 75243

Engineer:

Drawn By:

FILE:

J. SETON

EXT_AVDD

EXT_VDDS

EXT_DRVDD

EXT_DVDD

+ C113

47UF

+ C113

47UF

12

+ C112

10UF

+ C112

10UF

12

C144.1UFC144.1UF

12

W15W15

123

C42.1UFC42.1UF

12

+ C121

47UF

+ C121

47UF

12

TP12

Red

TP12

Red

+ C72

10UF

+ C72

10UF

12

+ C143

47UF

+ C143

47UF

12

R42 30.1K

1%1/10W

R42 30.1K

1%1/10W

C81.1UFC81.1UF

12

W25W25

1 2 3

+ C120

47UF

+ C120

47UF

12

C75.1UFC75.1UF

12

C110

1UF

C110

1UF

C48.1UFC48.1UF

12

C68.1UFC68.1UF

12

C58.1UFC58.1UF

12

C122.1UFC122.1UF

12

J30J30

1 2

C36.1UFC36.1UF

12

C33.1UFC33.1UF

12

C111.1UFC111.1UF

12

C80.1UFC80.1UF

12

C59.1UFC59.1UF

12

C74.1UFC74.1UF

12

C61.1UFC61.1UF

12

+ C123

10UF

+ C123

10UF

12

TP13

Blk

TP13

BlkTP5

Blk

TP5

Blk

C37.1UFC37.1UF

12

C85.1UFC85.1UF

12

C63.1UFC63.1UF

12

C38.1UFC38.1UF

12

+ C145

10UF

+ C145

10UF

12

C47.1UFC47.1UF

12

C32.1UFC32.1UF

12

+ C62

10UF

+ C62

10UF

12

C79.1UFC79.1UF

12

+ C43

10UF

+ C43

10UF

12

U1C

AFE8406

U1C

AFE8406

DVSS1A6DVSS2A21DVSS3A22DVSS4B22DVSS5C6DVSS6C10DVSS7C14DVSS8C18DVSS9C22DVSS10E6DVSS11E7DVSS12E8DVSS13E9DVSS14E20DVSS15F10DVSS16F11DVSS17F12DVSS18F13DVSS19F14DVSS20F15DVSS21F16DVSS22F17DVSS23F18DVSS24F19DVSS25G11DVSS26G12DVSS27G13DVSS28G14DVSS29G15DVSS30G16DVSS31G17DVSS32G18DVSS33G20DVSS34H11DVSS35H12DVSS36H13DVSS37H14DVSS38H15DVSS39H16DVSS40H17DVSS41H18DVSS42J11DVSS43J12DVSS44J13DVSS45J14DVSS46J15DVSS47J16DVSS48J17DVSS49J18DVSS50K11DVSS51K12DVSS52K13DVSS53K14DVSS54K15DVSS55K16DVSS56K17DVSS57K18DVSS58L11DVSS59L12DVSS60L13DVSS61L14DVSS62L15DVSS63L16 DVSS64 L17DVSS65 L18DVSS66 M11DVSS67 M12DVSS68 M13DVSS69 M14DVSS70 M15DVSS71 M16DVSS72 M17DVSS73 M18DVSS74 N11DVSS75 N12DVSS76 N13DVSS77 N14DVSS78 N15DVSS79 N16DVSS80 N17DVSS81 N18DVSS82 N22DVSS83 P11DVSS84 P12DVSS85 P13DVSS86 P14DVSS87 P15DVSS88 P16DVSS89 P17DVSS90 P18DVSS91 R11DVSS92 R12DVSS93 R13DVSS94 R14DVSS95 R15DVSS96 R16DVSS97 R17DVSS98 R18DVSS99 T10DVSS100 T11DVSS101 T12DVSS102 T13DVSS103 T14DVSS104 T15DVSS105 T16DVSS106 T17DVSS107 T18DVSS108 T19DVSS109 U10DVSS110 U20DVSS111 V9DVSS112 W6DVSS113 W8DVSS114 Y5DVSS115 Y6DVSS116 Y11DVSS117 Y14DVSS118 Y17DVSS119 AA5DVSS120 AA22DVSS121 AB5DVSS122 AB21DVSS123 AB22

+ C115

10UF

+ C115

10UF

12

C73.1UFC73.1UF

12

+C119

10UF

+C119

10UF

12

+ C39

10UF

+ C39

10UF

12

C57.1UFC57.1UF

12

W27W27123

C84.1UFC84.1UF

12

C118.1UFC118.1UF

12

U1B

AFE8406

U1B

AFE8406

AVSS1A1AVSS2A2AVSS3A3AVSS4A4AVSS5A5

DRVSS1 H8DRVSS2 H9DRVSS3 J7DRVSS4 J9DRVSS5 K7DRVSS6 K9DRVSS7 M8DRVSS8 P7DRVSS9 P9

DRVSS10 R7DRVSS11 R9DRVSS12 T8DRVSS13 T9

AVSS6B1AVSS7B2AVSS8B3AVSS9B4AVSS10B5AVSS11C1AVSS12C2AVSS13C3AVSS14C4AVSS15C5AVSS16D1AVSS17D2AVSS18D3AVSS19D4AVSS20D5AVSS21E1AVSS22E2AVSS23E3AVSS24E4AVSS25E5AVSS26F1AVSS27F2AVSS28F5AVSS29F6AVSS30F7AVSS31F8AVSS32F9AVSS33G1AVSS34G2AVSS35G3AVSS36G4AVSS37G5AVSS38G7AVSS39G8AVSS40G9AVSS41H2AVSS42J2AVSS43J4AVSS44J5AVSS45J6AVSS46K1AVSS47K2AVSS48K4AVSS49K5AVSS50K6AVSS51L4AVSS52L5AVSS53L6AVSS54L7AVSS55M4AVSS56M5AVSS57M6AVSS58M7AVSS59N4AVSS60N5 AVSS61 N6AVSS62 N7AVSS63 P1AVSS64 P2AVSS65 P4AVSS66 P5AVSS67 P6AVSS68 R2AVSS69 R4AVSS70 R5AVSS71 R6AVSS72 T2AVSS73 U1AVSS74 U2AVSS75 U3AVSS76 U4AVSS77 U5AVSS78 U6AVSS79 U7AVSS80 U8AVSS81 U9AVSS82 V1AVSS83 V2AVSS84 V5AVSS85 V6AVSS86 V7AVSS87 V8AVSS88 W1AVSS89 W2AVSS90 W3AVSS91 W4AVSS92 W5AVSS93 Y1AVSS94 Y2AVSS95 Y3AVSS96 Y4AVSS97 AA1AVSS98 AA2AVSS99 AA3AVSS100 AA4AVSS101 AB1AVSS102 AB2AVSS103 AB3AVSS104 AB4

J28J28

1 2

C54.1UFC54.1UF

12

C40.1UFC40.1UF

12

W13W13

1 2 3

W14W14

123

C66.1UFC66.1UF

12

68FB3 68FB31 2

C31.1UFC31.1UF

12

J29J29 12

R710

1%1/10W

R710

1%1/10W

C78.1UFC78.1UF

12

U8

TPS75701

U8

TPS75701

EN1

IN2

GN

D3

OUT 4

PG 5

TAB 6

C71.1UFC71.1UF

12

68FB5 68FB51 2

R416.81K

1%1/10W

R416.81K

1%1/10W

68FB4 68FB41 2

C45.1UFC45.1UF

12

C69.1UFC69.1UF

12

68FB2 68FB21 2

C83.1UFC83.1UF

12

C1251UFC1251UF

J231.5V EN

J231.5V EN

1 2

W26W26

1 2 3

C77.1UFC77.1UF

12

C114.1UFC114.1UF

12

C51.1UFC51.1UF

12

C70.1UFC70.1UF

12

J24J24

12

TP6

Blk

TP6

Blk

C82.1UFC82.1UF

12

C76.1UFC76.1UF

12

U1A

AFE8406

U1A

AFE8406

VDDS1AA6VDDS2AA21VDDS3B6VDDS4B21VDDS5D6VDDS6D11VDDS7D19VDDS8E10VDDS9E11VDDS10E12VDDS11E13VDDS12E14VDDS13E15VDDS14E16VDDS15E17VDDS16E18VDDS17E19VDDS18K20VDDS19M20VDDS20P20VDDS21U11VDDS22U12VDDS23U13VDDS24U14VDDS25U15VDDS26U16VDDS27U17VDDS28U18VDDS29U19VDDS30V11VDDS31W7

VDDS VFUSED22

DRVDD1H6DRVDD2H7DRVDD3J8DRVDD4K8DRVDD5L8DRVDD6P8DRVDD7R8DRVDD8T6DRVDD9T7

AVDD1 T4AVDD2 R3AVDD3 N2AVDD4 N1AVDD5 M2AVDD6 L2AVDD7 L1AVDD8 J3AVDD9 H4

FUSE AVDD M1

DVDD1 F22DVDD2 G10DVDD3 G19DVDD4 H10DVDD5 H19DVDD6 J10DVDD7 J19DVDD8 K10DVDD9 K19

DVDD10 L10DVDD11 L19DVDD12 M19DVDD13 N19DVDD14 P10DVDD15 P19DVDD16 R10DVDD17 R19DVDD18 V22

C49.1UFC49.1UF

12

R684.75K

1%1/10WDo Not InstallR684.75K

1%1/10WDo Not Install

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

DVGA0DVGA1DVGA2DVGA3DVGA4DVGA5DVGA6DVGA7DVGA8DVGA9DVGA10DVGA11DVGA12DVGA13DVGA14DVGA15

DVGA4

RXOUT12

RXIN_C4

RXOUT12

RXIN_C5

RXOUT13

RXOUT0

RXIN_C6

RXOUT1

RXOUT14

RXIN_C7

RXOUT2

RXOUT15

RXIN_C8

RXOUT3

RXIN_C9

DVGA5

RXOUT4

RXIN_C10

RXOUT5

RXIN_C11

RXOUT6

RXIN_C12

RXOUT7

RXOUT13

RXIN_C13

RXOUT8

RXOUT0

RXIN_C0

RXIN_C14

RXOUT9

RXIN_C1

RXIN_C15

RXIN_C2

RXOUT10

RXIN_C3

RXOUT11

DVGA6

RXOUT1

RXOUT14

DVGA7

RXOUT2

RXOUT15

DVGA8

RXOUT3

DVGA9

RXOUT4

DVGA10

RXOUT5

DVGA11

RXOUT6

DVGA12

RXOUT7

DVGA13

RXOUT8

DVGA0

DVGA14

RXOUT9

DVGA1

DVGA15

DVGA2

RXOUT10

DVGA3

RXOUT11

RXIN_D4

RXOUT28

RXIN_D5

RXOUT29

RXOUT16

RXIN_D6

RXOUT17

RXOUT30

RXIN_D7

RXOUT18

RXOUT31

RXIN_D8

RXOUT19

RXIN_D9

RXOUT20

RXIN_D10

RXOUT21

RXIN_D11

RXOUT22

RXIN_D12

RXOUT23

RXIN_D13

RXOUT24

RXIN_D0

RXIN_D14

RXOUT25

RXIN_D1

RXIN_D15

RXIN_D2

RXOUT26

RXIN_D3

RXOUT27

DVGAD0DVGAD1DVGAD2DVGAD3DVGAD4DVGAD5

+3.3V+3.3V

+3.3V+3.3V

+3.3V+3.3V

+3.3V

+3.3V

+3.3V

+3.3V

+3.3V

+3.3V +3.3V

+3.3V +3.3V

+3.3V +3.3V

DVGA[0..15]

C0

RXOUT[0..15]

RXIN_C[0..15]

RXOUT[0..15]

DVGA[0..15]

RXOUT[16..31]

RXIN_D[0..15]

DVGA14DVGA12RX_SYNC_OUTRX_SYNC_OUT_6

SYNCOUT

C9C8

CLKOUTDVGA13RXCLK_OUT

CLKOUT+

C3C2

DVGA15DVGAD5INTERRUPT

SP5

C5C4

C1

C12

DVGA_C4DVGA_C5

DVGAD[0..5]

Title

Size Document Number Rev

Date: Sheet ofAFE8406 EVM SCH D2

AFE8406 EVM

B5 7Tuesday, May 02, 2006

Title

Size Document Number Rev

Date: Sheet ofAFE8406 EVM SCH D2

AFE8406 EVM

B5 7Tuesday, May 02, 2006

Title

Size Document Number Rev

Date: Sheet ofAFE8406 EVM SCH D2

AFE8406 EVM

B5 7Tuesday, May 02, 2006

NC

NC

NC

(Sh 2)

(Sh 1)

(Sh 1)

(Sh 1)

(Sh 1)(Sh 1)

(Sh 2)

(Sh 2)

(Sh 2)

(Sh 2)(Sh 3)

(Sh 3)

(Sh 2)(Sh 2)

(Sh 2)

(Sh 2)

(Sh 1)

ASHLEY TRAN

12500 TI Boulevard. Dallas, Texas 75243

Engineer:

Drawn By:

J. SETON

FILE:

R534.75K

1%1/10W

R534.75K

1%1/10W

R544.75K

1%1/10W

R544.75K

1%1/10W

R1074.75K

1%1/10W

R1074.75K

1%1/10W

U13

SN74CBTLV16210

U13

SN74CBTLV16210

1A121A231A341A451A561A67GND181A791A8101A9111A10122A1132A214VCC152A316GND2172A4182A5192A6202A7212A8222A9232A1024 2B10 252B9 262B8 272B7 282B6 292B5 302B4 31GND3 322B3 332B2 342B1 351B10 361B9 371B8 381B7 391B6 40GND4 411B5 421B4 431B3 441B2 451B1 462OE 471OE 48NC1

U23

74LVC1G04<Note>

U23

74LVC1G04<Note>

4 2

53

R1144.75K

1%1/10W

R1144.75K

1%1/10W

C146

.1UF

C146

.1UF1 2

C128

.1UF

C128

.1UF1 2

R1084.75K

1%1/10W

R1084.75K

1%1/10W

U24

74LVC1G04<Note>

U24

74LVC1G04<Note>

4 2

53

C132

.1UF

C132

.1UF1 2

R1104.75K

1%1/10W

R1104.75K

1%1/10W

U16

SN74CBTLV3253

U16

SN74CBTLV3253

1A7

2A9

S014S121OE12OE15

GND8

1B1 61B2 51B3 41B4 3

2B1 102B2 112B3 122B4 13

VCC 16C129

.1UF

C129

.1UF1 2

U15

SN74CBTLV16210

U15

SN74CBTLV16210

1A121A231A341A451A561A67GND181A791A8101A9111A10122A1132A214VCC152A316GND2172A4182A5192A6202A7212A8222A9232A1024 2B10 252B9 262B8 272B7 282B6 292B5 302B4 31GND3 322B3 332B2 342B1 351B10 361B9 371B8 381B7 391B6 40GND4 411B5 421B4 431B3 441B2 451B1 462OE 471OE 48NC1

J18J18

1 2468101214161820222426283032

3579

11131517192123252729

33 3435 3637 3839 4041 4243 4445 4647 4849 50

31

R1094.75K

1%1/10W

R1094.75K

1%1/10W

R554.75K

1%1/10W

R554.75K

1%1/10W

U14

SN74CBTLV16210

U14

SN74CBTLV16210

1A121A231A341A451A561A67GND181A791A8101A9111A10122A1132A214VCC152A316GND2172A4182A5192A6202A7212A8222A9232A1024 2B10 252B9 262B8 272B7 282B6 292B5 302B4 31GND3 322B3 332B2 342B1 351B10 361B9 371B8 381B7 391B6 40GND4 411B5 421B4 431B3 441B2 451B1 462OE 471OE 48NC1

TP7

Red

TP7

Red

C130

.1UF

C130

.1UF1 2

TP8

Red

TP8

Red

U18

SN74CBTLV3253

U18

SN74CBTLV3253

1A7

2A9

S014S121OE12OE15

GND8

1B1 61B2 51B3 41B4 3

2B1 102B2 112B3 122B4 13

VCC 16

C147

.1UF

C147

.1UF1 2

TP9

Red

TP9

Red

R1134.75K

1%1/10W

R1134.75K

1%1/10W

C131

.1UF

C131

.1UF1 2

R1114.75K

1%1/10W

R1114.75K

1%1/10W

U17

SN74CBTLV3253

U17

SN74CBTLV3253

1A7

2A9

S014S121OE12OE15

GND8

1B1 61B2 51B3 41B4 3

2B1 102B2 112B3 122B4 13

VCC 16

R1124.75K

1%1/10W

R1124.75K

1%1/10W

C133

.1UF

C133

.1UF1 2

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

+3.3V

+3.3V

+3.3V

+3.3V

+3.3V

+3.3V +3.3V

+3.3V

+3.3V

+3.3V

+3.3V

SP6

C6

DVGA_C4

RX_SYNC_OUT_0

CLKIN

RXCLKBUFFIN

Title

Size Document Number Rev

Date: Sheet ofAFE8406 EVM SCH D2

AFE8406 EVM

B6 7Tuesday, May 02, 2006

Title

Size Document Number Rev

Date: Sheet ofAFE8406 EVM SCH D2

AFE8406 EVM

B6 7Tuesday, May 02, 2006

Title

Size Document Number Rev

Date: Sheet ofAFE8406 EVM SCH D2

AFE8406 EVM

B6 7Tuesday, May 02, 2006

Place .01uf caps near pins 1, 10 & 16.

Place .1uf caps near pins 3 & 22.

(1-2)

(2-3)

(Sh 1)

(Sh 2)

(Sh 2)

(Sh 2)(Sh 1,2)

ASHLEY TRAN

12500 TI Boulevard. Dallas, Texas 75243

Engineer:

Drawn By:

J. SETON

FILE:

EXT_RXCLK

C16012pFC16012pF

12

C137

.1UF

C137

.1UF1 2

R75 1K

1%1/10W

DNIR75 1K

1%1/10W

DNI

C135

.1UF

C135

.1UF1 2

J22Stand Off

J22Stand Off

1

R73 0

1%1/10W

Do Not Install

R73 0

1%1/10W

Do Not Install

U29

CDCVF2505

U29

CDCVF2505

CLKIN11Y121Y03GND4 1Y2 5VDD 61Y3 7CLKOUT 8

U2074CBTLV1G125U2074CBTLV1G125

A2

OE1

B 4

VC

C5

GN

D3

C138.01UFC138.01UF

12

C136

.1UF

C136

.1UF1 2

TP10

Red

TP10

Red

U22

CDCF5801

U22

CDCF5801

VDDREF1REFCLK2VDDP3GNDP4GND5LEADLAG6DLYCTRL7GNDPA8VDDPA9VDDPD10STOPB11PWRDNB12 P2 13MULT1 14MULT0 15VDDO1 16GNDO1 17CLKOUTB 18NC 19CLKOUT 20GNDO2 21VDDO2 22P1 23P0 24

J20Stand Off

J20Stand Off

1

MSA

D EN

J13MSA

D EN

J131

5234R76 1K

1%1/10WDNI

R76 1K

1%1/10WDNI

C140.1UFC140.1UF

12

J12J12123

U21

74LVC1G04

U21

74LVC1G04

42

53

R72 0

1%1/10W

R72 0

1%1/10W

R61 0

1%1/10W

R61 0

1%1/10W

C134

.1UF

C134

.1UF1 2

C141.1UFC141.1UF

12

J19Stand Off

J19Stand Off

1

J21Stand Off

J21Stand Off

1

R57 0

1%1/10W

R57 0

1%1/10W

C139.01UFC139.01UF

12

C159

.1UF

C159

.1UF1 2

R63 0

1%1/10W

R63 0

1%1/10W

J11J11123

R5910K

1%1/10W

R5910K

1%1/10W

R6010K

1%1/10W

R6010K

1%1/10W

C3.01UFC3.01UF

12

R58 10

1%1/10W

R58 10

1%1/10W

R564.75K

1%1/10W

R564.75K

1%1/10W

U1974CBTLV1G125U1974CBTLV1G125

A2

OE1

B 4

VC

C5

GN

D3

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

50ohm_1 Diffpair_1

Diffpair_250ohm_2

Diffpair_3

Diffpair_450ohm_4

A_C

TL1

A_C

TL2

A_C

TL4

A_C

TL8

A_C

TL16

B_C

TL05

B_C

TL1

B_C

TL2

B_C

TL8

B_C

TL16

50ohm_3

A_C

TL05

+5VAV

+5VAV

+5VAV

+5VAV

+3.3V

+3.3V

CMA

CMB

INPA

INMA

INPB

INMB

A_CTL05A_CTL1A_CTL2A_CTL4A_CTL8A_CTL16

B_CTL05B_CTL1B_CTL2B_CTL4B_CTL8B_CTL16

DVGA0

DVGA1

DVGA2

DVGA3

DVGA4

DVGA5

DVGA6

DVGA7

DVGA8

DVGA9

DVGA10

DVGA11

A_C

TL05

A_C

TL1

A_C

TL2

A_C

TL4

A_C

TL8

A_C

TL16

B_C

TL16

B_C

TL05

B_C

TL1

B_C

TL2

B_C

TL4

B_C

TL8

Title

Size Document Number Rev

Date: Sheet ofAFE8406 EVM SCH D2

AFE8406 EVM

B7 7Tuesday, May 02, 2006

Title

Size Document Number Rev

Date: Sheet ofAFE8406 EVM SCH D2

AFE8406 EVM

B7 7Tuesday, May 02, 2006

Title

Size Document Number Rev

Date: Sheet ofAFE8406 EVM SCH D2

AFE8406 EVM

B7 7Tuesday, May 02, 2006

(Sh 1)

(Sh 1)

(Sh 1)

(Sh 1)

(Sh 1)

(Sh 1)

(Sh 1)

(Sh 1)

(Sh 1)

(Sh 1)

(Sh 1)

(Sh 1)

(Sh 1)

(Sh 1)

(Sh 1)

(Sh 1)

(Sh 1)

(Sh 1)

ASHLEY TRAN

12500 TI Boulevard. Dallas, Texas 75243

Engineer:

Drawn By:

FILE:

J. SETON

R15174

Do

Not

Inst

all

1%1/16W

R15174

Do

Not

Inst

all

1%1/16W

C151

.01UF

C151

.01UF

12

C86

.1UF

C86

.1UF12

R5 24.9

1%1/10W

R5 24.9

1%1/10W

MS A

DE N

J1AIN_A

MS A

DE N

J1AIN_A

1

5234

R93

130

R93

130

R92

130

R92

130

R10 0

Do Not Install5%1/4W

R10 0

Do Not Install5%1/4W

C65

.1UF

C65

.1UF1 2

R7449.9

1%1/10W

Do Not Install

R7449.9

1%1/10W

Do Not Install

C67

.1UF

C67

.1UF1 2

C510PF

Do Not Install

C510PF

Do Not Install

12

JP2JP21

32

R98

130

R98

130

MS A

DE N

J4AIN_B

MS A

DE N

J4AIN_B

1

5234

R6 24.9

1%1/10W

R6 24.9

1%1/10W

R8 24.9

1%1/10W

R8 24.9

1%1/10W

C410PF

Do Not Install

C410PF

Do Not Install

12

JP1JP1

1

32

R16 0

1%1/10WDo Not Install

R16 0

1%1/10WDo Not Install

C727PF

Do Not Install

C727PF

Do Not Install

12

R86

130

R86

130

C153

.01UF

C153

.01UF

12

R20

1%1/10W

R20

1%1/10W

C158

.022UF

C158

.022UF

12

R85

130

R85

130

R170

1%1/10W

R170

1%1/10W

MS A

DE N

J3AIN_B2

MS A

DE N

J3AIN_B2

1

5234

R97

130

R97

130

C1.01UFC1

.01UF

12

C149

.01UF

C149

.01UF12

R7 24.9

1%1/10W

R7 24.9

1%1/10W

R9174

Do Not Install1%1/16W

R9174

Do Not Install1%1/16W

R11 24.9

1%1/10W

R11 24.9

1%1/10W

R87

130

R87

130

R104

130

R104

130

R84

130

R84

130

R96

130

R96

130

C152

.01UF

C152

.01UF

12

R7749.9

1%1/10W

Do Not Install

R7749.9

1%1/10W

Do Not Install

T1

ADT1-1WT

T1

ADT1-1WT

3

5

1 4

2

6

R103

130

R103

130

R12 24.9

1%1/10W

R12 24.9

1%1/10W

R14 24.9

1%1/10W

R14 24.9

1%1/10W

R83

130

R83

130

R88

130

R88

130

R81 0

1%1/10WDo Not Install

R81 0

1%1/10WDo Not Install

C827PF

Do

Not

Inst

all

C827PF

Do

Not

Inst

all

12

U25AA113-310

U25AA113-310

GND11GND22GND33GND44J15GND56GND67GND78

GN

D8

9G

ND

910

GN

D10

11G

ND

1112

GN

D12

13G

ND

1314

GN

D14

15G

ND

1516

GND16 17GND17 18GND18 19J2 20GND19 21GND20 22VCC 23C1 24

C2

25V

SS

26C

TL16

27C

TL8

28C

TL4

29C

TL2

30C

TL1

31C

TL05

32G

ND

33

R18 0

Do Not Install5%1/4W

R18 0

Do Not Install5%1/4W

T2

ADT1-1WT

T2

ADT1-1WT

3

5

1 4

2

6

R91

130

R91

130

R3 0

Do Not Install5%1/4W

R3 0

Do Not Install5%1/4W

C157

.022UF

C157

.022UF

12

R95

130

R95

130

U26AA113-310

U26AA113-310

GND11GND22GND33GND44J15GND56GND67GND78

GN

D8

9G

ND

910

GN

D10

11G

ND

1112

GN

D12

13G

ND

1314

GN

D14

15G

ND

1516

GND16 17GND17 18GND18 19J2 20GND19 21GND20 22VCC 23C1 24

C2

25V

SS

26C

TL16

27C

TL8

28C

TL4

29C

TL2

30C

TL1

31C

TL05

32G

ND

33

JP4JP41

32

R82

130

R82

130

U28

SN74LVCC3245A

U28

SN74LVCC3245A

VCCA1

DIR2OE22

A13A24A35A46A57A68A79A810

VCCB 24

B1 21B2 20B3 19B4 18B5 17B6 16B7 15B8 14

GND1 11GND2 12GND3 13NC23

R102

130

R102

130

R89

130

R89

130

R13 24.9

1%1/10W

R13 24.9

1%1/10W

R100

130

R100

130

R94

130

R94

130

C150

.01UF

C150

.01UF12

C64

.1UF

C64

.1UF1 2

JP3JP3

1

32

C2.01UFC2

.01UF

12

R80

130

R80

130

R101

130

R101

130

R99

130

R99

130

C154

.01UF

C154

.01UF

12

R4 0

Do Not Install5%1/4W

R4 0

Do Not Install5%1/4W

R90

130

R90

130

U27

SN74LVCC3245A

U27

SN74LVCC3245A

VCCA1

DIR2OE22

A13A24A35A46A57A68A79A810

VCCB 24

B1 21B2 20B3 19B4 18B5 17B6 16B7 15B8 14

GND1 11GND2 12GND3 13NC23

MS A

DE N

J2AIN_A2

MS A

DE N

J2AIN_A2

1

5234