adaptive filter theory - egloospds9.egloos.com/pds/200806/18/35/s03_adaptive_filte… ·  ·...

59
DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul, Korea (Office) +82-2-2220-0390 (Mobile) +82-10-5412-5178 [email protected] [email protected]

Upload: trinhtu

Post on 04-May-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

0

Adaptive Filter Theory

Sung Ho Cho

Hanyang UniversitySeoul, Korea

(Office) +82-2-2220-0390(Mobile) +82-10-5412-5178

[email protected]@hanyang.ac.kr

Page 2: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

1

Table of Contentsf

Wiener Filters

Gradient Search by Steepest Descent Method

Stochastic Gradient Adaptive Algorithms

Recursive Least Square (RLS) Algorithm

Page 3: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

2

Wiener Filters

Page 4: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

3

Filter‐Optimization Problemp

Wiener FilteringA priori knowledge of the signal statistics or at least their estimates are requiredA priori knowledge of the signal statistics or at least their estimates are required.

Complex and expensive hardware systems are necessary (particularly, in nonstationary environments).

Adaptive FilteringComplete knowledge of the signal statistics is not required.

Filter weights eventually converge to the optimum Wiener solutions for stationary processes.

Filter weights show tracking capability in slowly time-varying nonstationary environments.

Complex and expensive hardware systems are not, in general, necessary.

Page 5: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

4

Wiener Filters (1/6)

Objectives:We want to design a filter that minimizes the mean squared estimation error so that theh { }2( )EWe want to design a filter that minimizes the mean-squared estimation error so that the estimated signal best approximates d(n).

ih { }2( )E e n)(ˆ nd

Desired

Estimation Error Signal

ˆ( ) ( ) ( )e n d n d n= −( )d nSignal

( ) ( ) ( )e n d n d n( )d n

ReferenceSignal

ih10 −≤≤ Ni

Estimated Signal

1

0

ˆ( ) ( )N

ii

d n h x n i−

== −∑( )x n

Page 6: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

5

Wiener Filters (2/7)

Basic Structure:

1

0( ) ( ) ( )

( ) ( )

N

ii

T

e n d n h x n i

d n H X n

== − −∑

h

( )d n

z‐1

( )x n( ) ( )d n H X n= −

0h

h

z‐1( 1)x n −

ˆ( )d n

1h

h( 2)x n −

2hLinear combination of 

the current and past input signals

z‐1

( 1)x n N− +1Nh −

( 1)x n N− +

Page 7: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

6

Wiener Filters (3/7)

Basic Assumptions:d(n) and x(n) are zero-mean.d(n) and x(n) are zero mean.d(n) and x(n) are jointly wide-sense stationary.

Notations:Notations:Filter Coefficient Vector:

Reference Input Vector: [ ]( ) ( ) ( 1) ( 1) TX n x n x n x n N= − − +L

[ ]0 1 1, , , TNH h h h −= L

Reference Input Vector:

Estimation Error Signal:

[ ]( ) ( ), ( 1), , ( 1)X n x n x n x n N= +

1

0( ) ( ) ( )

N

ii

e n d n h x n i−

== − −∑

Autocorrelation Matrix:

( ) ( )Td n H X n= −

{ }( ) ( )TXXR E X n X n=

Cross-correlation Vector:

{ }

{ }( ) ( )dXR E d n X n=

TOptimum Filter Coefficient Vector: 0, 1, 1,, , ,T

opt opt opt N optH h h h −⎡ ⎤= ⎣ ⎦L

Page 8: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

7

Wiener Filters (4/7)

Performance Measure (Cost Function):

{ }2( )Eξ { }( )

2

2

( )

( ) ( )T

E e n

E d n H X n

ξ =

⎧ ⎫= −⎨ ⎬⎩ ⎭

{ } { } { }{ }

2

2

( ) 2 ( ) ( ) ( ) ( )

( ) 2

T T T

T TdX XX

E d n H E d n X n H E X n X n H

E d n H R H R H

= − +

= − +

We now want to minimize with respect to H:

∂ξ

ξ

Wiener Hopf Solution (1931):

022 =+−=∂∂ HRRH XXdXξ

RHRWiener-Hopf Solution (1931):dXoptXX RHR =

dXopt RRHXX

1−=

Page 9: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

8

Wiener Filters (5/7)

Autocorrelation Matrix RXX: { }( ) ( )TXXR E X n X n=

(0) (1) ( 1)(1) (0) ( 2)

xx xx xx

xx xx xx

r r r Nr r r N

−⎡ ⎤⎢ ⎥−⎢ ⎥=⎢ ⎥⎢ ⎥

L

L

M M O M

RXX is symmetric and Toeplitz.

( 1) ( 2) (0)xx xx xxr N r N r⎢ ⎥− −⎣ ⎦L

Is RXX invertible?Yes, almost always.

RXX is almost always a positive definite matrix.

A symmetric matrix A is called positive definite if xTAx > 0 for every nonzero x.All the eigenvalues of A is positive.

The determinant of every principal submatrix of A is positive.

Since the determinant of A is not zero, A is invertible.,

Page 10: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

9

Wiener Filters (6/7)

Let XB(n) denote the vector obtained by rearranging the elements of X(n) backward, i.e.,

[ ]TThen

[ ]( ) ( 1), ( 2), , ( ) TBX n x n N x n N x n= − + − + L

{ }( ) ( )TB B XXE X n X n R=

Cross-correlation Vector RdX:

{ }

{ }

(0)(1)

( ) ( )

dx

dxdX

rr

R E d n X n

⎡ ⎤⎢ ⎥⎢ ⎥= =⎢ ⎥⎢ ⎥

M

Minimum Estimation Error:

( 1)dxr N⎢ ⎥−⎣ ⎦

Minimum Estimation Error:

min ( ) ( ) ( )

( ) ( )

Topt

T

e n d n H X n

d X H

= −

( ) ( )Toptd n X n H= −

Page 11: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

10

Wiener Filters (7/7)

Minimum Mean-Squared Estimation Error: { }{ }

2min min ( )E e nξ =

( ){ }{ }

2

2

( ) ( )

( )

Topt

Topt dX

E d n H X n

E d n H R

= −

= −{ }{ }2( )

p

Topt XX optE d n H R H= −

Example:

ξ N = 1

ξN = 2

Error

ξ

minξError

Surface

Surfaceminξ

0h( )

1h

0,opth ( )0, 1,,opt opth h0h

Page 12: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

11

Orthogonality Principle:g y p

( )d nmin ( )e n

ˆ( )d n

min ( )

PlaneM

θ

The plane M is spanned by [ ]( ) ( ) ( 1) ( 1) TX n x n x n x n N +

( )d nPlane M

The plane M is spanned by .

1ˆ( ) ( )

N

id n h x n i−

= −∑

[ ]( ) ( ), ( 1), , ( 1)X n x n x n x n N= − − +L

The plane

0i=∑

)(min neM ⊥

{ }min ( ) ( ) 0NE e n X n =

The perfect estimation is possible if θ = 0, and the estimation fails if θ = π/2.

Page 13: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

12

Some Drawbacks of the Wiener Filter:f

Signal statistics must be known a priori. We must know R and R or at least their estimatesWe must know RXX and RdX or at least their estimates.

A matrix inversion operation is required.Heavy computational load.

Not proper for real-time applications.

Situations get worse in nonstationary environments.We have to compute RXX(n) and RdX(n) at every time n.

We must compute the matrix inversion operation at every time n.We must compute the matrix inversion operation at every time n.

Page 14: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

13

Gradient Search by Steepest Descent Method

Page 15: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

14

Steepest Descent Method (1/5)p

Objectives:We want to design a filter in a recursive form in order to avoid the matrix inversion operation( )hWe want to design a filter in a recursive form in order to avoid the matrix inversion operation required in Wiener solution.

( )ih n

ˆ( ) ( ) ( )e n d n d n= −( )d n

10 −≤≤ Ni( )x n hi(n)

1ˆ( ) ( ) ( )

Nd h i

∑10 ≤≤ Ni0

( ) ( ) ( )ii

d n h n x n i=

= −∑

Page 16: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

15

Steepest Descent Method (2/5)p

Basic Structure:

1

0( ) ( ) ( ) ( )

( ) ( ) ( )

N

ii

T

e n d n h n x n i

d n H n X n

== − −

= −

∑( )d n

z‐1

( )x n( ) ( ) ( )

0 ( )h n

z‐1( 1)x n −

( 2)

ˆ( )d n1( )h n

( 2)x n −2 ( )h n

z‐1

( 1)x n N− +( )h n1 ( )Nh n−

Page 17: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

16

Steepest Descent Method (3/5)p

Basic Assumptions:d(n) and x(n) are zero-mean.d(n) and x(n) are zero mean.d(n) and x(n) are jointly wide-sense stationary.

Notations:Notations:Filter Coefficient Vector:

Reference Input Vector: [ ]( ) ( ) ( 1) ( 1) TX n x n x n x n N= − − +L

[ ]0 1 1( ) ( ), ( ), , ( ) TNH n h n h n h n−= L

Reference Input Vector:

Estimation Error Signal:

[ ]( ) ( ), ( 1), , ( 1)X n x n x n x n N= +

1

0( ) ( ) ( ) ( )

N

ii

e n d n h n x n i−

== − −∑

Autocorrelation Matrix:

( ) ( ) ( )Td n H n X n= −

{ }( ) ( )TXXR E X n X n=

Cross-correlation Vector:

{ }

{ }( ) ( )dXR E d n X n=

TOptimum Filter Coefficient Vector: 0, 1, 1,, , ,

Topt opt opt N optH h h h −⎡ ⎤= ⎣ ⎦L

Page 18: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

17

Steepest Descent Method (4/5)p

The filter coefficient vector at time n+1 is equal to the coefficient vector at time n plus a change proportional to the negative gradient of the mean-squared error i eproportional to the negative gradient of the mean-squared error, i.e.,

( )1( 1) ( ) ( )2 H nH n H n n+ = − μ∇

[ ]( ) ( ) ( ) ( ) TH n h n h n h n= L

μ = Adaptation Step-size

[ ]0 1 1( ) ( ), ( ), , ( )NH n h n h n h n−= L

Performance Measure (Cost Function):

{ }2( ) ( )n E e nξ =

{ }2( ) 2 ( ) ( ) ( )T TdX XXE d n H n R H n R H n= − +

Page 19: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

18

Steepest Descent Method (5/5)p

The Gradient of the Mean-Squared Error:

( )( )( )( )

2 2 ( )

H n

dX XX

nnH n

R R H n

∂ξ∇ =

∂= − +

Therefore, the recursive update equation for the coefficient vector becomes

( )dX XX

[ ]( 1) ( )N XX dXH n I R H n R+ = − μ + μ

Misalignment Vector:

( ) ( ) optV n H n H= −

[ ]( 1) ( )N XXV n I R V n+ = − μ

Page 20: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

19

Convergence of Steepest Descent Method (1/2)g f p

Convergence (or Stability) Condition:

1 1i− μλ <

20 , i< μ < ∀λ

(λi = the i-th eigenvalue of RXX)

max

20 , i⇒ < μ < ∀λ

Slow convergence if is large.maxλλ

max

minλ

Page 21: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

20

Convergence of Steepest Descent Method (2/2)g f p

Time Constant:The convergence behavior of the i-th element of the misalignment vector:The convergence behavior of the i th element of the misalignment vector:

( )( 1) 1 ( )i i iv n v n+ = − μλ

( )n

Time constant for the i-th element of the misalignment vector:

( )( ) 1 (0)ni i iv n v⇒ = − μλ

g

11 expii

⎛ ⎞− μλ = −⎜ ⎟τ⎝ ⎠

( )1 1 (samples) for 1

ln 1ii i

−⇒ τ = ≈ μ

− μλ μλ

Steady-State Value: ( ) or ( ) 0opt NH H V∞ = ∞ =

We still need a priori knowledge of signal statistics.

Page 22: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

21

Stochastic Gradient Adaptive Algorithms

Page 23: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

22

Stochastic Gradient Adaptive Filtersp

Motivations:No a priori information about signal statisticsNo a priori information about signal statistics

No matrix inversion

Tracking capability

S lf d i i (R i th d)Self-designing (Recursive method)

The filter gradually learns the required correlation of the input signals and adjusts its coefficient vector recursively according to some suitably chosen instantaneous error criterion.

Evaluation Criteria:Rate of convergence

Misadjustment (Deviation from the optimum solution)

Robustness for ill-conditioned dataRobustness for ill-conditioned data

Computational costs

Hardware implementation costs

Numerical problemsNumerical problems

Page 24: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

23

Applications of Stochastic Gradient Adaptive Filters (1/2)

System Identifications: )(nξ

ΣΣUnknownSystem

)(nx )(ne)(nd

Adaptive

Adaptive Prediction:

Filter

Σ )(ne)(nd

Δ−

AdaptiveFilter)()( Δ−= ndnx

Δz

)()( ndnx

Page 25: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

24

Applications of Stochastic Gradient Adaptive Filters (1/2)

Noise Cancellation:Σ )(ne)(ny Σ

)()()( nnynd ξ+=

?

)(nξ

AdaptiveFilter

)(nx)(ˆ nξ

Inverse Filtering:Σ )(neΔ− )(ndΣ )(neΔz

TrainingSignal(RX) Received

Si lAdaptive

Filter)(nx

ΣUnknownChannelTraining

Signal

Signal

)(nξ

Signal(TX)

Page 26: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

25

Classification of Adaptive Filtersf f p

System Identification:System Identificationy

Layered Earth Modeling

Adaptive Prediction:Linear Predictive Coding

Autoregressive Spectral Analysis

ADPCM

Noise Cancellation:Adaptive Noise Cancellation

Adaptive Echo CancellationAdaptive Echo Cancellation

Active Noise Control

Adaptive Beamforming

Inverse Filtering:Adaptive Equalization

Deconvolution

Blind Equalization

Page 27: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

26

Stochastic Gradient Adaptive Algorithms (1/6)p g

ˆ( ) ( ) ( )e n d n d n= −( )d n( )

h (n) 1ˆ

N −

( ) ( ) ( ) ( )Td H X

10 −≤≤ Ni( )x n hi(n)

0( ) ( ) ( )i

id n h n x n i

== −∑

( )( 1) ( ) ( )H nH n H n nμ+ = − ∇

α

( ) ( ) ( ) ( )Te n d n H n X n= −AdaptiveAlgorithm

Various forms according to the choice of the “performance measure.”

α

∂( ) ( ) ( )

( )H n n e nH n

α∂∇ =

If no correlation between d(n) and x(n), then no estimation can be made.

Page 28: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

27

Stochastic Gradient Adaptive Algorithms (2/6)p g

Notations:Filter Coefficient Vector: [ ]( ) ( ) ( ) ( ) TH h h hFilter Coefficient Vector:

Reference Input Vector: [ ]( ) ( ), ( 1), , ( 1) TX n x n x n x n N= − − +L

[ ]0 1 1( ) ( ), ( ), , ( )NH n h n h n h n−= L

Estimation Error Signal:1

0( ) ( ) ( ) ( )

( ) ( ) ( )

N

ii

T

e n d n h n x n i

d n H n X n

== − −

=

Autocorrelation Matrix:

( ) ( ) ( )d n H n X n= −

{ }( ) ( )TXXR E X n X n=

Cross-correlation Vector:

Optimum Filter Coefficient Vector:

{ }( ) ( )dXR E d n X n=

0, 1, 1,, , ,T

opt opt opt N optH h h h −⎡ ⎤= ⎣ ⎦L

Misalignment Vector:

⎣ ⎦

( ) ( ) optV n H n H= −

Covariance Matrix of the Misalignment Vector: { }( ) ( ) ( )TK n E V n V n=

Page 29: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

28

Stochastic Gradient Adaptive Algorithms (3/6)p g

Sign Algorithm: α = 1

The sign algorithm tries to minimize the instantaneous absolute error value at each iteration.

( ) ( ) ( ) ( )Td H X

( )( )

( )( )H n

e nn

H∂

∇ =∂

( ) ( ) ( ) ( )Te n d n H n X n= −

Filter Coefficient Updates:

( ) ( )n H n∂

{ }( 1) ( ) ( )sign ( )H n H n X n e n+ = − μ

1 ( ) 0⎧{ }1, ( ) 0

sign ( )1, ( ) 0

e ne n

e n≥⎧

= ⎨− <⎩

Page 30: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

29

Stochastic Gradient Adaptive Algorithms (4/6)p g

Least Mean Square (LMS) Algorithm: α = 2

The LMS algorithm tries to minimize the instantaneous squared error value at each iteration.

( ) ( ) ( ) ( )Td H X

2

( )( )( )( )H n

e nnH

∂∇ =

( ) ( ) ( ) ( )Te n d n H n X n= −

Filter Coefficient Updates:

( ) ( )( )H n H n∂

( 1) ( ) ( ) ( )H n H n X n e n+ = − μ

Page 31: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

30

Stochastic Gradient Adaptive Algorithms (5/6)p g

Least Mean Absolute Third (LMAT) Algorithm: α = 3

The LMAT algorithm tries to minimize the instantaneous absolute error value to the third power at each iteration.

3( )e n∂

( ) ( ) ( ) ( )Te n d n H n X n= −

( )( )

( )( )H n

e nn

H n∂

∇ =∂

Filter Coefficient Updates:

{ }2( 1) ( ) ( ) ( )sign ( )H n H n X n e n e n+ = − μ

Page 32: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

31

Stochastic Gradient Adaptive Algorithms (6/6)p g

Least Mean Fourth (LMF) Algorithm: α = 4

The LMF algorithm tries to minimize the instantaneous error value to the fourth power at each iteration.

T

4

( )( )( )H

e nn ∂∇ =

( ) ( ) ( ) ( )Te n d n H n X n= −

Filter Coefficient Updates:

( ) ( )( )H n n

H n∇

3( 1) ( ) ( ) ( )H n H n X n e n+ = − μ

Page 33: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

32

Convergence of the Adaptive Algorithms (1/2)g f p g

Basically, we need to know the mean and mean-squared behavior of the algorithms.

For the analysis of the statistical mean behavior:We want to know a set of statistical difference equations that characterizes E{H(n)} or E{V(n)}.

We also need to check

Stability conditions

Convergence speed

Unbiased estimation capability

For the analysis of the statistical mean-squared behavior:y qWe want to know a set of statistical difference equations that characterizes

and .

We also need to check

{ }2 2( ) ( )e n E e nσ =

{ }( ) ( ) ( )TK n E V n V n=

We also need to check

Stability conditions

Convergence speed

Estimation precisionEstimation precision

Page 34: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

33

Convergence of the Adaptive Algorithms (2/2)g f p g

Basic Assumptions for the Convergence Analysis:

The input signals d(n) and x(n) are zero-mean, jointly wide-sense stationary, and jointly Gaussian with finite variances.

A f thi ti i th t th ti ti ( ) d( ) HT( )X( ) i lA consequence of this assumption is that the estimation error e(n) = d(n) – HT(n)X(n) is also a zero-mean and Gaussian when conditioned on the coefficient vector H(n).

I d d A tiIndependence Assumption:

“The input pair {d(n), X(n)} at time n is independent of {d(k), X(k)} at time k, if n is not equal to k.”

This assumption is seldom true in practice, but is valid when the step-size μ is chosen to be ffi i tl llsufficiently small.

One direct consequence of the independence assumption is that the coefficient vector H(n) is uncorrelated with the input pair {d(n), X(n)}, since H(n) depends only on inputs at time n-1 and beforebefore..

Page 35: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

34

Sign Algorithm (1/2)g g

Mean Behavior:

⎡ ⎤{ } { }2 2( 1) ( )

( ) ( )N XX dXe e

E H n I R E H n Rn n

⎡ ⎤μ μ+ = − +⎢ ⎥π σ π σ⎣ ⎦

{ } { }2( 1) ( )( )N XX

eE V n I R E V n

n⎡ ⎤μ

+ = −⎢ ⎥π σ⎣ ⎦

Mean-Squared Behavior:

2 { }2min( ) ( )e XXn tr K n Rσ = ξ +

2 2 μ [ ]2

2

2( 1) ( ) ( ) ( )( )XX XX XXK n K n R K n R R K nn

μ+ = + μ − +

π σ

Page 36: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

35

Sign Algorithm (2/2)g g

Steady-State Mean-Squared Estimation Error:

{ }2min min( )

2 2e XXtr Rμ πσ ∞ ≈ ξ + ξ

Convergence Condition (Weak Convergence):

“The long term time average of the MAE is bounded for any positive value of μ ”The long-term time-average of the MAE is bounded for any positive value of μ.

Very robust, but slow.

Page 37: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

36

LMS Algorithm (1/2)g

Mean Behavior:

{ } [ ] { }( 1) ( )N XX dXE H n I R E H n R+ = − μ + μ

{ } [ ] { }( 1) ( )N XXE V n I R E V n+ = − μ

Mean-Squared Behavior:

{ }2 ( ) ( )n tr K n Rσ = ξ + { }min( ) ( )e XXn tr K n Rσ = ξ +

[ ]( 1) ( ) ( ) ( )XX XXK n K n K n R R K n+ = − μ +[ ]2 2

( ) ( ) ( ) ( )

( ) 2 ( )

XX XX

e N XX XXn I R K n R

μ

⎡ ⎤+ μ σ +⎣ ⎦

Page 38: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

37

LMS Algorithm (2/2)g

Steady-State Mean-Squared Estimation Error:

{ }2min min( )

2e XXtr Rμσ ∞ ≈ ξ + ξ

2Mean Convergence:max

20 < μ <λ

Mean-Squared Convergence:{ }20

3 XXtr R< μ <

If , then .min

12LMS signπ

μ = μξ

2 2( ) ( )e LMS e signσ ∞ ≈ σ ∞

The convergence of the algorithm strongly depends on the input signal statistics.

Page 39: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

38

LMAT Algorithm (1/2)g

Mean Behavior:

{ } { }2 2( 1) 2 ( ) ( ) 2 ( )N e XX e dXE H n I n R E H n n R⎡ ⎤

+ = − μ σ + μ σ⎢ ⎥π π⎣ ⎦

{ } { }2( 1) 2 ( ) ( )N e XXE V n I n R E V n⎡ ⎤

+ = − μ σ⎢ ⎥π⎣ ⎦

Mean-Squared Behavior:

2 { }2min( ) ( )e XXn tr K n Rσ = ξ +

[ ]2( 1) ( ) 2 ( ) ( ) ( )K K K R R K[ ]2 2 2

2( 1) ( ) 2 ( ) ( ) ( )

3 ( ) ( ) 3 ( )

e XX XX

e e XX XX XX

K n K n n K n R R K n

n n R R K n R

+ = − μ σ +π

⎡ ⎤+ μ σ σ +⎣ ⎦⎣ ⎦

Page 40: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

39

LMAT Algorithm (2/2)g

Steady-State Mean-Squared Estimation Error:

{ }2min min min

3( )4 2e XXtr Rμ π

σ ∞ ≈ ξ + ξ ξ

Mean Convergence:max

10 ,2 ( )e

nn

π< μ < ∀

λ σ

Very fast, but must be careful.

The convergence of the LMAT algorithm depends on the initial choice of the coefficient vector.

If then2 2 1μ μ 2 2( ) ( )∞ ∞If , then .

min3LMAT LMSμ = μπ ξ

2 2( ) ( )e LMAT e LMSσ ∞ ≈ σ ∞

Page 41: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

40

LMF Algorithm (1/2)g

Mean Behavior:

{ } { }2 2( 1) 3 ( ) ( ) 3 ( )N e XX e dXE H n I n R E H n n R⎡ ⎤+ = − μσ + μσ⎣ ⎦

{ } { }2( 1) 3 ( ) ( )N e XXE V n I n R E V n⎡ ⎤+ = − μσ⎣ ⎦

Mean-Squared Behavior:

{ }2 ( ) ( )n tr K n Rσ = ξ + { }min( ) ( )e XXn tr K n Rσ = ξ +

[ ]2( 1) ( ) 3 ( ) ( ) ( )e XX XXK n K n n K n R R K n+ = − μσ +[ ]4 215 ( ) ( ) 6 ( )

e XX XX

e e N XX XXn n I R K n R⎡ ⎤+ μσ σ +⎣ ⎦

Page 42: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

41

LMF Algorithm (2/2)g

Steady-State Mean-Squared Estimation Error:

?

2Mean Convergence:2

max

20 ,3 ( )e

nn

< μ < ∀λ σ

Very fast, but must be careful also.

The convergence of the LMF algorithm also depends on the initial choice of the coefficient vector.

Page 43: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

42

Further Observations (1/2)

Misadjustment: ex

min

( )M ξ ∞ξ

Sign Algorithm:{ }

2 2XXtr R

M μ π≈

ξ

minξ

LMS Algorithm:

min2 2 ξ

{ }XXM tr Rμ≈

LMAT Algorithm:

{ }2 XXM tr R≈

{ }min3

XXM tr Rμ π≈ ξ

LMF Algorithm:

{ }min4 2 XXM tr Rξ

?go : ?

Page 44: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

43

Further Observations (2/2)

The misadjustment M increases with the filter order N.

The misadjustment M is directly proportional to μ.

The convergence speed is inversely proportional to μ.

Convergence Speed:Convergence Speed: (Fast) LMAT – LMF ≈ LMS – Sign (Slow)

Robustness (or Stability):(Good) Sign – LMS – LMAT – LMF (Bad)

Page 45: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

44

Example: System Identification Mode (1/6)p y f

)(nξ

Unknown

)(nξ

)(ndΣΣ

UnknownSystem

)(nx )(ne)(

AdaptiveFilterFilter

[ ]T[ ]0.1, 0.3, 0.5, 0.7, 0.5, 0.3, 0.1 ToptH =

Page 46: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

45

Example: System Identification Mode (2/6)p y f

Two Sets of Reference Inputs:

CASE 1: Eigenvalue Spread Ratio = 25.3

1 1 1 1( ) ( ) 0.9 ( 1) 0.1 ( 2) 0.2 ( 3)x n n x n x n x n= ζ + − − − − −

CASE 2: Eigenvalue Spread Ratio = 185.8

1 1 1 1

2 2 2 2( ) ( ) 1.5 ( 1) ( 2) 0.25 ( 3)x n n x n x n x n= ζ + − − − − −

Measurement Noise ζ(n): White Gaussian Process

2 2 2 2( ) ( ) ( ) ( ) ( )ζ

Convergence Parameter μ:

Sign LMS LMAT LMF

0.00016 0.002 0.011 0.002

Page 47: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

46

Example: System Identification Mode (3/6)p y f

CASE 1: Eigenvalue Spread Ratio = 25.3

1 1 1 1( ) ( ) 0.9 ( 1) 0.1 ( 2) 0.2 ( 3)x n n x n x n x n= ζ + − − − − −

1 0

0

B

1 : L M A T2 : L M S

-1 0

MSE

indB

4

3 : L M F4 : S IG N

0 4 0 0 0 8 0 0 0 1 2 0 0 0 1 6 0 0 0 2 0 0 0 0-2 0 1

2

3

Mean-Squared Behavior of the Coefficients

0 4 0 0 0 8 0 0 0 1 2 0 0 0 1 6 0 0 0 2 0 0 0 0# o f I te r a t io n

Page 48: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

47

Example: System Identification Mode (4/6)p y f

0 .1 6

0 .1 22 4

1 : L M A T2 : L M S3 : L M F4 : S IG N

0 0 4

0 .0 8

E(h1

( n))

1 3

0 4 0 0 0 8 0 0 0 1 2 0 0 0 1 6 0 0 0 2 0 0 0 00 .0 0

0 .0 4

Mean Behavior of the Coefficients

0 4 0 0 0 8 0 0 0 1 2 0 0 0 1 6 0 0 0 2 0 0 0 0# o f I te r a t io n

Page 49: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

48

Example: System Identification Mode (5/6)p y f

CASE 2: Eigenvalue Spread Ratio = 185.8

2 2 2 2( ) ( ) 1.5 ( 1) ( 2) 0.25 ( 3)x n n x n x n x n= ζ + − − − − −

1 0

0

dB

1 : L M A T2 : L M S

- 1 0

MSE

ind 2 : L M S

3 : L M F4 : S I G N

4

0 4 0 0 0 8 0 0 0 1 2 0 0 0 1 6 0 0 0 2 0 0 0 0- 2 0 1 2

3

0 4 0 0 0 8 0 0 0 1 2 0 0 0 1 6 0 0 0 2 0 0 0 0# o f Ite ra tio n

Mean-Squared Behavior of the Coefficients

Page 50: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

49

Example: System Identification Mode (6/6)p y f

0 . 1 24

0 . 0 8)

1 2 3

4

0 . 0 4

E(h1

(n)

1 : L M A T2 : L M S3 : L M F4 : S I G N

0 4 0 0 0 8 0 0 0 1 2 0 0 0 1 6 0 0 0 2 0 0 0 00 . 0 0

Mean Behavior of the Coefficients

0 4 0 0 0 8 0 0 0 1 2 0 0 0 1 6 0 0 0 2 0 0 0 0# o f Ite ra tio n

Page 51: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

50

Other Algorithms (1/2)g

Signed Regressor Algorithm: { }( 1) ( ) sign ( ) ( )H n H n X n e n+ = + μ

Sign-Sign Algorithm: { } { }( 1) ( ) sign ( ) sign ( )H n H n X n e n+ = + μ

Normalized LMS Algorithm:

{ } { }μ

( 1) ( ) ( ) ( )H n H n X n e nμ+ +Normalized LMS Algorithm: ( 1) ( ) ( ) ( )

( ) ( )TH n H n X n e nX n X n

μ+ = +

Complex LMS Algorithm: *( 1) ( ) ( ) ( )H n H n X n e n+ = + μ

Page 52: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

51

Other Algorithms (2/2)g

Hybrid Algorithm #1: LMS + LMF

{ }{ }2 4

( )( ) (1 ) ( )

( ) , 0 1( )H n

e n e nn

H n

∂ φ + − φ∇ = ≤ φ ≤

{ }3( 1) ( ) ( ) ( ) 2(1 ) ( ) ( )H n H n X n e n X n e n+ = + μ φ + − φ

Hybrid Algorithm #2: Sign + LMAT

{ }3( ) (1 ) ( )∂ φ φ{ }3

( )

( ) (1 ) ( )( ) , 0 1

( )H n

e n e nn

H n

∂ φ + −φ∇ = ≤ φ ≤

{ } { }2( 1) ( ) ( ) 3(1 ) ( ) ( ) sign ( )H n H n X n X n e n e n+ = + μ φ + − φ

Page 53: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

52

Recursive Least Square (RLS) Algorithm

Page 54: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

53

RLS Algorithm (1/5)g

Cost Function: 2

1( ) ( , ) ( )

n

in n i e i

=ε = β∑

where n = Length of the observable data

1i

Error signal at time instance i:

The coefficient vector H(n) remains fixed during the observation interval .

( ) ( ) ( ) ( )Te i d i H n X i= −

ni ≤≤1( ) g

Weight Vector: (Normally, , λ = Forgetting Factor)

ni ≤≤1

0 ( , ) 1n i< β ≤ ( , ) n in i −β = λ

By the method of exponentially weighted least squares, we want to minimize

2( ) ( )n

n i i−λ∑Very fast, but computationally very complex.

h l i h i f l h h b f i d i ll

2

1( ) ( )n i

in e i

=ε = λ∑

The algorithm is useful when the number of taps required is small.

Page 55: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

54

RLS Algorithm (2/5)g

Normal Equation: ( ) ( ) ( )n H n nΦ = Θ

1( ) ( ) ( )

nn i T

in X i X i−

=Φ = λ∑where

1( ) ( ) ( )

nn i

in d i X i−

=Θ = λ∑

We write1

1( ) ( ) ( ) ( ) ( )n

n i T Tn X i X i X n X n−

− −⎡ ⎤Φ = λ λ +⎢ ⎥∑

1( ) ( ) ( ) ( ) ( )

( 1) ( ) ( )i

Tn X n X n=

⎢ ⎥⎣ ⎦

= λΦ − +

( ) ( 1) ( ) ( )n n d n X nΘ = λΘ − +

Do we need a matrix inversion? ⇒ No!

Page 56: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

55

RLS Algorithm (3/5)g

Matrix Inversion Lemma:1

where A and B = N × N Positive Definite

( ) 11 1 1If , then .T T TA B CD C A B BC D C BC C B−− − −= + = − +

C = N × M

D = M × M Positive Definite

Letting we express in a recursive form:1( ), ( 1), ( ), 1,A n B n C X n D−= Φ = λΦ − = =

1 2 1 11

1 1( 1) ( 1) ( ) ( ) ( 1)( )

1 ( ) ( 1) ( )

T

Tn n X n X n nn

X n n X n

− − − −−

− −Φ − λ Φ − Φ −

Φ = −λ + λ Φ1 ( ) ( 1) ( )X n n X nλ + λ Φ −

K(n)K(n)

Page 57: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

56

RLS Algorithm (4/5)g

Define 1( ) ( ) ( )n n N N−Ρ = Φ ×

1

1( 1) ( )( ) ( 1)

1 ( ) ( 1) ( )Tn X nn N

X n n X n

−λ Ρ −

Κ = ×+ λ Ρ −

1 1( ) ( ) ( 1) ( ) ( 1) ( )Tn X n n X n n X n− −⇒ Κ + λ Ρ − = λ Ρ −

{ }1 1{ }1 1( ) ( 1) ( ) ( 1) ( )Tn n X n n X n− −⇒ Κ = λ Ρ − − λ Ρ −

( ) ( ) ( )n n X n⇒ Κ = Ρ

1( ) ( ) ( )n n X n−⇒ Κ = Φ

Therefore, 1 1( ) ( 1) ( ) ( ) ( 1)Tn n n X n n− −Ρ = λ Ρ − − λ Κ Ρ −

Page 58: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

57

RLS Algorithm (5/5)g

Time Update for H(n):11( ) ( ) ( )

( ) ( )( ) ( 1) ( ) ( ) ( )

H n n nn n

n n d n n X n

−= Φ Θ= Ρ Θ= λΡ Θ − + Ρ

1 1

( ) ( ) ( ) ( ) ( )

( 1) ( 1) ( ) ( ) ( 1) ( 1) ( ) ( )

( 1) ( 1) ( ) ( ) ( 1) ( 1) ( ) ( )

T

T

n n n X n n n d n n

n n n X n n n d n n− −

= Ρ − Θ − − Κ Ρ − Θ − + Κ

= Φ − Θ − − Κ Φ − Θ − + Κ

( ) ( 1) ( ) ( ) ( ) ( 1)TH n H n n d n X n H n⎡ ⎤⇒ = − + Κ − −⎣ ⎦

Innovation: ( ) ( ) ( ) ( 1)Tn d n X n H nα = − −“A priori estimation error”

)()()1()( nnnHnH αΚ+−=

A posteriori Estimation error e(n): ( ) ( ) ( ) ( )Te n d n X n H n= −

Page 59: Adaptive Filter Theory - Egloospds9.egloos.com/pds/200806/18/35/s03_Adaptive_Filte… ·  · 2008-06-17DSP everywhere! 0 Adaptive Filter Theory Sung Ho Cho Hanyang University Seoul,

DSP everywhere!

58

Summary of the RLS Algorithmy f g

Initialization:

D t i th f tti f t λ (N ll 0 9≤λ<1)Determine the forgetting factor λ (Normally, 0.9≤λ<1)

1( ) : (0) , ( a small positive number)NN N I−× Ρ = δ δ =

Main Iteration:

( ) : (0) 0NN N H× =

1

1( 1) ( )( 1) : ( )

1 ( ) ( 1) ( )Tn X nN n

X n n X n

−λ Ρ −

× Κ =+ λ Ρ −

(1 1) : ( ) ( ) ( ) ( 1)Tn d n X n H n× α = − −

( 1) : ( ) ( 1) ( ) ( )N H n H n n n× = − + Κ α( 1) : ( ) ( 1) ( ) ( )N H n H n n n+ Κ α

1 1( 1) : ( ) ( 1) ( ) ( ) ( 1)TN n n n X n n− −× Ρ = λ Ρ − − λ Κ Ρ −

(1 1) : ( ) ( ) ( ) ( )Te n d n X n H n× = − (if necessary)