a sub-band filter design approach for sound field reproduction

26
Purdue University Purdue University Purdue e-Pubs Purdue e-Pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 12-11-2020 A Sub-band Filter Design Approach for Sound Field Reproduction A Sub-band Filter Design Approach for Sound Field Reproduction Yongjie Zhuang Purdue University, [email protected] Guochenhao Song Purdue University, [email protected] Yangfan Liu Purdue University, [email protected] Follow this and additional works at: https://docs.lib.purdue.edu/herrick Zhuang, Yongjie; Song, Guochenhao; and Liu, Yangfan, "A Sub-band Filter Design Approach for Sound Field Reproduction" (2020). Publications of the Ray W. Herrick Laboratories. Paper 225. https://docs.lib.purdue.edu/herrick/225 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information.

Upload: others

Post on 17-Mar-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering

12-11-2020

A Sub-band Filter Design Approach for Sound Field Reproduction A Sub-band Filter Design Approach for Sound Field Reproduction

Yongjie Zhuang Purdue University, [email protected]

Guochenhao Song Purdue University, [email protected]

Yangfan Liu Purdue University, [email protected]

Follow this and additional works at: https://docs.lib.purdue.edu/herrick

Zhuang, Yongjie; Song, Guochenhao; and Liu, Yangfan, "A Sub-band Filter Design Approach for Sound Field Reproduction" (2020). Publications of the Ray W. Herrick Laboratories. Paper 225. https://docs.lib.purdue.edu/herrick/225

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information.

PURDUE UN IVERS IT Y @

A Sub-band Filter Design Approach for Sound Field Reproduction

Yongjie Zhuang Guochenhao Song

Yangfan Liu

Ray W. Herrick Laboratories, school of Mechanical Engineering,

Purdue University [email protected]

PURDUE ~ RAY W. HERRICK1111 pi~

UNIVERSITY . LABORATORIES

Content โ€ข Introduction

โ€ข Methodology

โ€ข Results

โ€ข Conclusions

PURDUE ~ RAY W. HERRICK1111 pi~

UNIVERSITY . LABORATORIES

Content โ€ข Introduction

โ€ข Methodology

โ€ข Results

โ€ข Conclusions

PURDUE UNIVERSITY .

....

....

l

....

\

~ RAY W. HERRICK1111 pi~ LABORATORIES

Statement of research problem

Sound field reproduction uses loudspeakers to produce desired sound at locations.

When designing filter for sound that spans a wide frequency range:

Low frequency band longer time span Large number of filter coefficients High frequency band higher sampling frequency

Impulse response

๐‘›๐‘›

long time span

high sampling frequency

PURDUE ~ RAY W. HERRICK1111 pi~

UNIVERSITY . LABORATORIES

Statement of research problem

An approach is proposed to design filter in a sub-band form:

Design all sub-band filters directly in one optimization problem:

The transition region between two sub-band filters can be designed conveniently

The computational load can be reduced even if sub-band filters structure is not required

PURDUE ~ RAY W. HERRICK1111 pi~

UNIVERSITY . LABORATORIES

Content โ€ข Introduction

โ€ข Methodology

โ€ข Results

โ€ข Conclusions

,Ir

PURDUE ~ RAY W. HERRICK1111 pi~

UNIVERSITY . LABORATORIES

Designing filter directly

๐’Œ๐’Œ๐’Œ๐’Œ desired

added delay signal d(n)

ฮฃy(n) +

e(n) -r(n) ๐‘พ๐‘พ๐’™๐’™ x(n)

๐‘ฏ๐‘ฏ output error filtered original

filter signal system signal signal signal response

Example: Cost function: Constraints: Use loudspeaker to produce Minimizing the power of Filter response ๐‘พ๐‘พ๐‘ฅ๐‘ฅ(f) desired sound at certain locations error signal ๐’†๐’†

-.

;-- - - - - - - - - - - -I

I I

I I I

I I

I ,Ir

I ,. I , . - - -

I - - - - . .

I ' ~ I

I I - I I

I I I I

I , ___________ _

PURDUE ~ RAY W. HERRICK1111 pi~

UNIVERSITY . LABORATORIES

Designing filter when sub-band technique is used

๐’Œ๐’Œ๐’Œ๐’Œ desired

added delay signal d(n)

x(n) ฮฃ

๐‘พ๐‘พ1

sub-band filter 1

๐‘พ๐‘พ๐‘๐‘

sub-band filter N

+... y(n)

+ e(n) -r(n) ๐‘ฏ๐‘ฏ

output error filtered original signal system signal signal

signal response

๐‘พ๐‘พ๐’™๐’™

Example: Cost function: Constraints: Use loudspeaker to produce Minimizing the power of Filter response ๐‘พ๐‘พ๐‘–๐‘– (f) desired sound at certain locations error signal ๐’†๐’†

( ) ( )~ ( ) [ -]

[

PURDUE ~ RAY W. HERRICK1111 pi~

UNIVERSITY . LABORATORIES

Expressing sub-band filters as one equivalent filter

Conventional method (one single filter)

frequency response of designed filter at frequency ๐‘“๐‘“๐‘˜๐‘˜ :

๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘—๐‘“๐‘“๐‘˜๐‘˜

๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘—๐‘“๐‘“๐‘˜๐‘˜(๐‘๐‘๐‘ก๐‘กโˆ’1)= ๐น๐น ๐‘“๐‘“๐‘˜๐‘˜ , ๐‘“๐‘“๐‘ ๐‘ , ๐‘๐‘๐‘ก๐‘ก ๐‘ค๐‘ค๐‘ฅ๐‘ฅ , ๐น๐น ๐‘“๐‘“๐‘˜๐‘˜ , ๐‘“๐‘“๐‘ ๐‘ , ๐‘๐‘๐‘ก๐‘ก =๐‘Š๐‘Š๐‘ฅ๐‘ฅ ๐‘“๐‘“๐‘˜๐‘˜ 1 ๐‘“๐‘“๐‘ ๐‘  โ‹ฏ ๐‘“๐‘“๐‘ ๐‘ 

๐‘“๐‘“๐‘ ๐‘  is the sampling frequency, ๐‘๐‘๐‘ก๐‘ก is the number of filter coefficients, ๐‘ค๐‘ค๐‘ฅ๐‘ฅ is the filter coefficients

Sub-band structure

frequency response of designed filter at frequency ๐‘“๐‘“๐‘˜๐‘˜:

๐‘๐‘ ๐‘๐‘

โˆ’๐‘—๐‘—๐‘—๐‘—๐‘—๐‘“๐‘“๐‘˜๐‘˜ โˆ’๐‘—๐‘—๐‘—๐‘—๐‘—๐‘“๐‘“๐‘˜๐‘˜(๐‘๐‘๐‘ก๐‘กโˆ’1) ๐‘Š๐‘Š๐‘–๐‘– (๐‘“๐‘“๐‘˜๐‘˜) = ๐‘“๐‘“๐‘ ๐‘ ๐‘–๐‘– ๐‘“๐‘“๐‘ ๐‘ ๐‘–๐‘– ๐‘ค๐‘ค๐‘–๐‘–1 ๐‘’๐‘’ โ‹ฏ ๐‘’๐‘’

๐‘–๐‘–=1 ๐‘–๐‘–=1

( )

( ) [ ( ) --+

( ) [ ( ) ( )]

PURDUE ~ RAY W. HERRICK1111 pi~

UNIVERSITY . LABORATORIES

Expressing sub-band filters as one equivalent filter

So designing sub-band filters can be treated as: designing one filter ๐‘ค๐‘ค๐‘ฅ๐‘ฅ with modified Fourier matrix ๐น๐น ๐‘“๐‘“๐‘˜๐‘˜

๐‘๐‘ ๐‘๐‘

๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘—๐‘“๐‘“๐‘˜๐‘˜

๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘—๐‘“๐‘“๐‘˜๐‘˜(๐‘๐‘๐‘ก๐‘กโˆ’1)

๐‘Š๐‘Š๐‘ฅ๐‘ฅ ๐‘“๐‘“๐‘˜๐‘˜ = ๐‘Š๐‘Š๐‘–๐‘– (๐‘“๐‘“๐‘˜๐‘˜) = ๐‘“๐‘“๐‘ ๐‘ ๐‘–๐‘– ๐‘“๐‘“๐‘ ๐‘ ๐‘–๐‘– ๐‘ค๐‘ค๐‘–๐‘– = ๐น๐น ๐‘“๐‘“๐‘˜๐‘˜ ๐‘ค๐‘ค๐‘ฅ๐‘ฅ ,1 โ‹ฏ๐‘–๐‘–=1 ๐‘–๐‘–=1

๐น๐น ๐‘“๐‘“๐‘˜๐‘˜ = ๐น๐น ๐‘“๐‘“๐‘˜๐‘˜ , ๐‘“๐‘“๐‘ ๐‘ 1 , ๐‘๐‘๐‘ก๐‘ก1

โ‹ฏ ๐น๐น ๐‘“๐‘“๐‘˜๐‘˜ , ๐‘“๐‘“๐‘ ๐‘ ๐‘๐‘ , ๐‘๐‘๐‘ก๐‘ก๐‘๐‘

,

๐‘ค๐‘ค1๐‘ค๐‘ค๐‘ฅ๐‘ฅ = โ‹ฎ

๐‘ค๐‘ค๐‘๐‘

So all the sub-band filters can be designed in one optimization problem if designed in the frequency domain. The transition region can be designed more conveniently.

....

...

..... ..... .... ... ... ....

... ยทยทยท ยทยท ... .. . . . ยทยทยทยทยทยทยทยท .. ... . . . . ยท .ยทยทยท .. ... ยทยท .. ยทยท ...

(\~~ :~)') ยทยทยทยทยทโ€ขโ€ขยท ..

ยทยทยท ....

ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท ยทยทยท ...

PURDUE ~ RAY W. HERRICK1111 pi~

UNIVERSITY . LABORATORIES

Overview of proposed design process

Conventional method General Nonlinear algorithm

(e.g., sequential quadratic programming)

Design Problem

Convex Optimization

Proposed method Primal-dual Cone

Programming Interior-point Global minimum Possible to apply โ€ข Efficient Cost function: usually guaranteed efficient algorithms โ€ข Upper-bound for

iteration times Power of ๐’†๐’†

Constraints: Filter response

I C )I .... - ( ( ( )

' ( )

I C )I ( ) ---+ .. PURDUE ~

RAY W. HERRICK1111 pi~ UNIVERSITY . LABORATORIES

Problem formulation

Design Problem Expressed in Convex Problem Cost function: Total power of e:

๐‘˜๐‘˜2 ๐‘˜๐‘˜2 ๐‘˜๐‘˜2 ๐‘˜๐‘˜2๐‘— ๐‘ค๐‘ค๐‘ฅ๐‘ฅ

T ๐ด๐ด๐ฝ๐ฝ ๐‘“๐‘“๐‘˜๐‘˜ ๐‘ค๐‘ค๐‘ฅ๐‘ฅ + 2Re ๐‘๐‘๐ฝ๐ฝT ๐‘“๐‘“๐‘˜๐‘˜ ๐‘ค๐‘ค๐‘ฅ๐‘ฅ + ๐‘๐‘๐ฝ๐ฝ ๐‘“๐‘“๐‘˜๐‘˜,๐ธ๐ธ ๐‘“๐‘“๐‘˜๐‘˜ ๐‘˜๐‘˜=๐‘˜๐‘˜1 ๐‘˜๐‘˜=๐‘˜๐‘˜1 ๐‘˜๐‘˜=๐‘˜๐‘˜1

๐‘˜๐‘˜=๐‘˜๐‘˜1 Convex โ€ข Quadratic

Constraints: โ€ข ๐ด๐ด๐ฝ๐ฝ ๐‘“๐‘“๐‘˜๐‘˜ p.s.d

Filter response: The magnitude of frequency response:

Vector norm Convex โ€–๐น๐น ๐‘“๐‘“๐‘˜๐‘˜ , ๐‘“๐‘“๐‘ ๐‘ 1 , ๐‘๐‘๐‘ก๐‘ก1

๐‘ค๐‘ค๐‘–๐‘–โ€–๐‘— โˆ’ ๐ถ๐ถ๐‘–๐‘– (๐‘“๐‘“๐‘˜๐‘˜) โ‰ค 0โ‰ค ๐ถ๐ถ๐‘–๐‘–(๐‘“๐‘“๐‘˜๐‘˜)๐‘Š๐‘Š๐‘–๐‘– ๐‘“๐‘“๐‘˜๐‘˜

( ( )

? โ€ข ( ) -+ ....

PURDUE ~ RAY W. HERRICK1111 pi~

UNIVERSITY . LABORATORIES

Cone Programming Reformulation

Convex Problem Standard Cone Programming Cost function:

Cost function: ๐‘๐‘T๐‘ฅ๐‘ฅ ๐‘˜๐‘˜2 ๐‘˜๐‘˜2

๐‘ค๐‘ค๐‘ฅ๐‘ฅT

๐ด๐ด๐ฝ๐ฝ ๐‘“๐‘“๐‘˜๐‘˜ ๐‘ค๐‘ค๐‘ฅ๐‘ฅ + 2Re ๐‘๐‘๐ฝ๐ฝT ๐‘“๐‘“๐‘˜๐‘˜ ๐‘ค๐‘ค๐‘ฅ๐‘ฅ + ๐‘๐‘๐ฝ๐ฝ ๐‘“๐‘“๐‘˜๐‘˜

๐‘˜๐‘˜2

๐‘˜๐‘˜=๐‘˜๐‘˜1 ๐‘˜๐‘˜=๐‘˜๐‘˜1 ๐‘˜๐‘˜=๐‘˜๐‘˜1 Constraints: ๐‘ฅ๐‘ฅ โˆˆ ๐พ๐พ๐‘–๐‘– , ๐‘–๐‘– = 1, 2, 3 โ€ฆ

Constraints: ๐ด๐ด๐‘ฅ๐‘ฅ = ๐‘๐‘

๐‘๐‘ to be a constant vector โ€–๐น๐น ๐‘“๐‘“๐‘˜๐‘˜ , ๐‘“๐‘“๐‘ ๐‘ 1 , ๐‘๐‘๐‘ก๐‘ก1

๐‘ค๐‘ค๐‘–๐‘–โ€–๐‘— โˆ’ ๐ถ๐ถ๐‘–๐‘–(๐‘“๐‘“๐‘˜๐‘˜) โ‰ค 0 ๐พ๐พ๐‘–๐‘– to be a convex cone

๐ด๐ด, ๐‘๐‘ to be a constant matrix and vector

..

PURDUE UNIVERSITY .

.. .. ..

..

.. ~ RAY W. HERRICK1111 pi~ LABORATORIES

Cone Programming Reformulation

Convex Problem Cone Programming โ€ข Reformulate quadratic cost function

Cost function: ๐‘ฅ๐‘ฅT ๐ด๐ด ๐‘ฅ๐‘ฅ + ๐‘๐‘T๐‘ฅ๐‘ฅ + ๐‘๐‘

Cost function:

Constraints: ๏ฟฝฬƒ๏ฟฝ๐‘ก0 = 1

Linear cost function

Rotated second-order cone

Linear constraint

โ€ข The vector norm constraint

Constraints: โ€–๐‘ฅ๐‘ฅโ€–๐‘— โˆ’ ๐‘๐‘ โ‰ค 0

โ€– ๐ด๐ด ๐‘ฅ๐‘ฅโ€–๐‘— โ‰ค ๐‘ก๐‘ก0 ๏ฟฝฬƒ๏ฟฝ๐‘ก0

๐‘ก๐‘ก0 + ๐‘๐‘T๐‘ฅ๐‘ฅ

Constraints: โ€–๐‘ฅ๐‘ฅโ€–๐‘— โ‰ค ๐‘ก๐‘ก Second-order cone

๐‘ก๐‘ก = ๐‘๐‘ Linear constraint

( ( ) ( ) --+

( ) -+ (

PURDUE ~ RAY W. HERRICK1111 pi~

UNIVERSITY . LABORATORIES

Cone Programming Reformulation

Convex Problem Cone Programming

Cost function: Cost function: ๐‘˜๐‘˜2๐‘˜๐‘˜2 ๐‘˜๐‘˜2 ๐‘˜๐‘˜2T

๐‘ค๐‘ค๐‘ฅ๐‘ฅ ๐ด๐ด๐ฝ๐ฝ ๐‘“๐‘“๐‘˜๐‘˜ ๐‘ค๐‘ค๐‘ฅ๐‘ฅ + 2Re ๐‘๐‘๐ฝ๐ฝT ๐‘“๐‘“๐‘˜๐‘˜ ๐‘ค๐‘ค๐‘ฅ๐‘ฅ + ๐‘๐‘๐ฝ๐ฝ ๐‘“๐‘“๐‘˜๐‘˜ ๐‘ก๐‘ก0 + 2Re ๐‘๐‘๐ฝ๐ฝT ๐‘“๐‘“๐‘˜๐‘˜ ๐‘ค๐‘ค๐‘ฅ๐‘ฅ๐‘˜๐‘˜=๐‘˜๐‘˜1 ๐‘˜๐‘˜=๐‘˜๐‘˜1 ๐‘˜๐‘˜=๐‘˜๐‘˜1 ๐‘˜๐‘˜=๐‘˜๐‘˜1

Constraints: Constraints:

โ€–๐น๐น ๐‘“๐‘“๐‘˜๐‘˜ , ๐‘“๐‘“๐‘ ๐‘ 1 , ๐‘๐‘๐‘ก๐‘ก1

๐‘ค๐‘ค๐‘–๐‘–โ€–๐‘— โˆ’ ๐ถ๐ถ๐‘–๐‘–(๐‘“๐‘“๐‘˜๐‘˜) โ‰ค 0 โ€–๐น๐น ๐‘“๐‘“๐‘˜๐‘˜ , ๐‘“๐‘“๐‘ ๐‘ 1 , ๐‘๐‘๐‘ก๐‘ก1 ๐‘ค๐‘ค๐‘–๐‘–โ€–๐‘— โ‰ค ๐‘ก๐‘ก3,๐‘˜๐‘˜ ,

๐‘ก๐‘ก3,๐‘˜๐‘˜ = ๐ถ๐ถ(๐‘“๐‘“๐‘˜๐‘˜)

( )

( )

/ 1 ' ()

l

( ) [ -] PURDUE ~

RAY W. HERRICK1111 pi~ UNIVERSITY . LABORATORIES

A reduced order technique

Sometimes, the designed filter has high frequency response concentrated in small time span: ๐’˜๐’˜๐Ÿ๐Ÿ ๐’๐’ Number of

coefficients: ๐’˜๐’˜๐’™๐’™ ๐’๐’

๐‘›๐‘› ๐‘‡๐‘‡ ร— 0.1๐‘“๐‘“๐‘ ๐‘ 

๐‘›๐‘› 0.2๐‘‡๐‘‡ ร— ๐‘“๐‘“๐‘ ๐‘ ๐’˜๐’˜๐Ÿ๐Ÿ ๐’๐’

๐‘›๐‘› 0.1๐‘‡๐‘‡ ร— ๐‘“๐‘“๐‘ ๐‘ Number of coefficients: ๐‘‡๐‘‡ ร— ๐‘“๐‘“๐‘ ๐‘  ๐‘€๐‘€

In this case, ๐‘ค๐‘ค๐‘–๐‘– (with higher sampling frequency) can be chosen to start with ๐‘ก๐‘ก = ๐‘€๐‘€ฮ” , where ๐‘€๐‘€ > 0 , then we have:

๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘—๐‘“๐‘“๐‘˜๐‘˜๐‘€๐‘€

๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘—๐‘“๐‘“๐‘˜๐‘˜(๐‘€๐‘€+1)

๐‘’๐‘’โˆ’๐‘—๐‘—๐‘—๐‘—๐‘—๐‘“๐‘“๐‘˜๐‘˜(๐‘๐‘๐‘ก๐‘กโˆ’1)๐น๐น๐‘Ÿ๐‘Ÿ ๐‘“๐‘“๐‘˜๐‘˜ , ๐‘“๐‘“๐‘ ๐‘ , ๐‘๐‘๐‘ก๐‘ก = ๐‘“๐‘“๐‘ ๐‘  ๐‘“๐‘“๐‘ ๐‘  โ‹ฏ ๐‘“๐‘“๐‘ ๐‘ 

PURDUE ~ RAY W. HERRICK1111 pi~

UNIVERSITY . LABORATORIES

Content โ€ข Introduction

โ€ข Methodology

โ€ข Results

โ€ข Conclusions

/

[)J:

PURDUE ~ tv\.'I'. VY. TTCKJV\......1'.. ... ~

UNIVERSITY . LABORATORIES

Experimental setup โ€ข An experimental setup for psychoacoustic listening test โ€ข Speaker should produce desired sound at listening location

Listening location Speaker

PURDUE ~ RAY W. HERRICK1111 pi~

UNIVERSITY . LABORATORIES

Experimental setup Required sampling frequency: 48 kHz (๐šซ๐šซ =20.83 us)

Desired delay: 19200 ๐šซ๐šซ

Two sub-band filters:

Sampling frequency Filter coefficients Starting time

Filter 1 2.4 kHz 1920 0 Filter 2 48 kHz 3000 17700 ๐šซ๐šซ

SeDuMi is used to solve the reformulated cone programming problem

PURDUE ~ RAY W. HERRICK1111 pi~

UNIVERSITY . LABORATORIES

Result

-40

-20

0

20

ampl

itude

(dB)

w1 w2

The frequency response of both filter around 1200 Hz

0 500 1000 1500 2000

frequency (HZ)

( ) ( ) I I I I I

I I I I

I I I I I

X

X

X

PURDUE ~ RAY W. HERRICK1111 pi~

UNIVERSITY . LABORATORIES

0

Result

The frequency response of H(f)๐‘Š๐‘Š๐‘ฅ๐‘ฅ ๐‘“๐‘“ H(f) ๐‘Š๐‘Š๐‘ฅ๐‘ฅ ๐‘“๐‘“ around 1200 Hz 5

ampl

itude

(dB) 0

ampl

itude

(dB)

-20

-5-40

0 0.5 1 1.5 2 -10 600 800 1000 1200 1400 1600 1800

10 4frequency (HZ) frequency (HZ)

10 4

0 -2000

-2

phas

e (ra

d)

phas

e (ra

d)

-4

-6

-3000

-40000 0.5 1 1.5 2

frequency (HZ) 10 4 600 800 1000 1200 1400 1600 1800

frequency (HZ)

PURDUE ~ RAY W. HERRICK1111 pi~

UNIVERSITY . LABORATORIES

Result Combining two sub-band filters together in time domain

1500 The combination is done by:

1000

โ€ข Upsampling the sub-band filter 1 500

0 0.2 0.4 0.6

time (s)

with lower sampling frequency

โ€ข Adds the upsampled filter 1 with ampl

itude

0

filter 2 -500

-1000

-1500

The designed filter coefficients are 1920+3000 = 4920, which is much smaller than 48000 ร— 19๐‘—0

๐‘—400 = 38400

PURDUE ~ RAY W. HERRICK1111 pi~

UNIVERSITY . LABORATORIES

Content โ€ข Introduction

โ€ข Methodology

โ€ข Results

โ€ข Conclusions

PURDUE ~ RAY W. HERRICK1111 pi~

UNIVERSITY . LABORATORIES

Conclusions

The proposed method can design sub-band filters for sound field reconstruction in one optimization problem, so designing transition region is more convenient.

The optimization problem can be reformulated to a convex problem, then further reformulated to a cone programming problem. These guarantees the global optimal solution can be found in an efficient way.

A reduced-order technique can be used to reduce the variables in filter design problem if different frequency bands of required filter have impulse response concentrated in different time intervals.

PURDUE UN IVERS IT Y @

Q&A