multiple-feedback band-pass filter band-stop (notch)...

12
Multiple-Feedback Band-Pass Filter Band-Stop (Notch) Filter ". It, .. Gain.12 1 ... ".-2 I .•. ' 1.414 f t -~ - 447.2 Hz The notch filter is designed to block all frequencies that fall within its bandwidth. The circuit is made up of a high pass filter, a low-pass filter and a summing amplifier. The summing amplifier will have an output that is equal to the sum of the filter output voltages. LowJ'lC''' 6hu Soommilll! ••• pt;6cr f, C 2 R f ----"N'v +V ~ R) I c I o---w r I+~ VOu! v. 1 III 1 -v Hish po •••• filler L "in 1 f; Block diagram 17 ,,-,.•. , IDo-,.,.. );:)1""1 .3dB{ v , .. 1 [I t~ Frequency response 18 Notch filter Transfer function HUm) Vi I Transfer Function H(jw) H(j{J) = Vo(jro) V;(j{o) H = Re(H) + jlm(H) F_V 19 I. V., IHI = ~Re(H)2 + Im(H)2 LH = tan-I(IID(H)) Re(H)>-O Re(H) LH =180° +tan-I(Im<H)) Re(H)-<O Re(H) 20

Upload: dangxuyen

Post on 19-Mar-2019

278 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Multiple-Feedback Band-Pass Filter Band-Stop (Notch) Filteriesl.yolasite.com/resources/Electronics-1.pdf · Multiple-Feedback Band-Pass Filter Band-Stop (Notch) Filter ... The circuit

Multiple-Feedback Band-Pass Filter Band-Stop (Notch) Filter

". It,

..

Gain.12 1...".-2 I .•.'1.414

ft- ~ - 447.2 Hz

The notch filter is designed to block all frequencies that fall within its bandwidth.The circuit is made up of a high pass filter, a low-pass filter and a summingamplifier. The summing amplifier will have an output that is equal to the sum ofthe filter output voltages.

LowJ'lC'''6hu

Soommilll!••• pt;6crf,

C2 Rf----"N'v+V~

R) I cI

o---w

r I+~ VOu!

v.

1III

1-v

Hish po ••••

fillerL

"in

1 f;

Block diagram17

,,-,.•.,IDo-,.,.. );:)1""1

.3dB{

v,..1

[I t~

Frequency response18

Notch filter Transfer function HUm)

Vi • I

TransferFunction

H(jw)

H(j{J) = Vo(jro)V;(j{o)

H = Re(H) + jlm(H)

F_V

19

I. V.,

IHI = ~Re(H)2 + Im(H)2

LH = tan-I(IID(H)) Re(H)>-ORe(H)

LH =180° +tan-I(Im<H)) Re(H)-<ORe(H)

20

Page 2: Multiple-Feedback Band-Pass Filter Band-Stop (Notch) Filteriesl.yolasite.com/resources/Electronics-1.pdf · Multiple-Feedback Band-Pass Filter Band-Stop (Notch) Filter ... The circuit

Frequency transfer function of filter HUm) Passive single pole low pass filter

(I) Low - Pass Filter

IH(jIV)1 = 1 r < f.

IH(j(9)I=O I>f.

(II) High - Pass Filter

IH(jm)1 = 0 f <f.IH(j(9)1 = If> f.

(Ill) Band - Pass Filter

IH(jm)1 = 1 fl, < f <fH

IH(j(9)I=O f <I, and f » Iii

1H(jm) = 1+ j(£R

I V~ = 1+ jaCR .

1m=~RC

~ IV.I=??

V =_I_V• 1+ j .

IVI- 1 IVI--1 IVI• - .Jl' + 1: I - .J2 .

(IV) Band - Stop (Notch) Filter

IH(jm~=O fL<f<j~

IH(j(~)1 = 1 f < IL and I> IH

R

~:; CT---2'°

[V) All-Pass (or phase -shift) Filter

IH(j(~~=1 for alii

has a specific phase response

v = Xc V.(I X('+R'

;(0(' VV -' I•• - _1 +R

jo)(;

1H(jm)= --, (J)

1+}-(J)o

_I_v.l+j(1)CR '

where

21

(i) ~ 0 => IVol = IVil ~ max. value(i) ~ 00 => IVol = 0 ~ min. value

Decibel (dB)(1) Power Gain in dB :

Iv.1Iv,L t "-tL...J2

Pill r:

A/dB) = 1OIOg.{i.)

OdB = 1010g,o(;:)- [!p 1-3dB = IOlog" \, •

+ 3dB = lOlOg,.(~~)

, ___ -1, \,(I), • (J)

IH(jCiJ)1

I

IT2 "------------------

Ie, = (1)" = RC (cut-off frequency) I i 'ar, • (I)

23

1m,,= RC

or

(J)o

H(s) = s +((Jowhere

s= jto

¢«(J) = - tall-'(:')

22

By Definition: dB = LOIOg,{1.)(2) Voltage Gain in dB: (p=V2/R)

V.1/1 Vom

A,.(dB) = 2010g,.( ::.)

OdB = 20 IOg".( ::)

[1 1-I'? .,

- 6dB = 20log,v -1',.

(21' )+6dB = 201og", v;~·

24

Page 3: Multiple-Feedback Band-Pass Filter Band-Stop (Notch) Filteriesl.yolasite.com/resources/Electronics-1.pdf · Multiple-Feedback Band-Pass Filter Band-Stop (Notch) Filter ... The circuit

Cascaded System Bode Plot (single pole)H(j(9) = I =_1

1+J{£R 1+ J(;). 1

=> iH(Jm~= .L(:~}iH(j{"~. = 20Iog.IH(j"'i = 2010g.(11+(:)']

11()1l1

Ro Wv. ~o· C=L'0lOdE

A. = A" X Ar2 x A"J

A,. = 10xlOx 10= 103

A,(dB) = 20Iog,~(A,. x Ar, x A.,}

A,(dB) = 201og,JA,,)+ 20IoglO(AJ+ 20Iog",(A...)

A,(dB) = A"I(dB) + A.,(dB) + AjdB)

A. (dB) = 20dB + 20dB + 20dB

A,(dB) = 60dB

IH(j(9~ ",.-2010glO( ;)

For octave apart, {O = ~ IH(jm)1 ~ -6dB(J)) 1 (D-('=-(9] I IFor decade apart, () H (jOJ) ~ -2OdB

p:;"U

~

20dB lOdESinglepole low-pass filter

For (0)>(00

201og,~(lO)= 20dB201ogJI0')= 60dB

25

IH(j{u'll ~-20Ioo ({u)'IdB OH' (u.

26

Bode plot (Two-pole)

IH(j(i))L.

Rl n,

V.I

0)----

aJOI

;;j:; aJQ2

lO(!J ){O 2(9x x • (o(1og::: I

I " i •

![

27 28

slope-6dB/octave

-20dB/decade

Page 4: Multiple-Feedback Band-Pass Filter Band-Stop (Notch) Filteriesl.yolasite.com/resources/Electronics-1.pdf · Multiple-Feedback Band-Pass Filter Band-Stop (Notch) Filter ... The circuit

Active Filters (Part II)

Source: Analogue Electronic CircuitsDr.H.K.NgDepartment of Electrical EngineeringCity University of Hong Kong

Biquadratic function filtersOJ ?

S2 +~s+OJzS2 +cs +d _ K Qz

)- - OJ 2H(s - i +as+b i +~S+lOp

Qp

Realised by:

(I) Positive feedback

"I

(II) Negative feedback

Active Filters (Part II)

Contents

• Biquadratic function filters• Positive feedback active filter: VCVS• Negative feedback filter: IGMF• Butterworth Response• Chebyshev Response

(III) Band Pass

Biquadratic functions H(s)=K .s K

ss: +as+b s' + (I1F s+(O'

Qp r

(I) Low Pass (IV) Band Stop

H(s)=K 1 =K 1H(s) = K . s' + b = K s' + (11:

s' +l1s+b .v' +~s+l'J!s' + as + b . WI' ,s: +-S+W'

Q, rQp' r

(II) High Pass (V) All Pass

H(s)=K . s' =K s'• (iJ

H(s)=KS' =as+bs· --2.05+(0;

s' +as+b ,(up , K Q,S·+·-S+{U· s' +as+b s' +~-s+{O'Qr P o p-,

Page 5: Multiple-Feedback Band-Pass Filter Band-Stop (Notch) Filteriesl.yolasite.com/resources/Electronics-1.pdf · Multiple-Feedback Band-Pass Filter Band-Stop (Notch) Filter ... The circuit

Low-Pass FilterVoltage Gun,1.5

I K=l,m.=11

VoIt~Glin(dB),o.~ e·:.....:'

·10.

0..5,·20" '.

2F~IeIl:y

3 4 0.

H(s) = s +12+_s Qp

Band-Pass FilterVoltageGin,-

1.5

I K=LN.=ll

2 4Fre(p.1eIl:y

6 8

·15

2Fre<pell:y

3

•2011'" 'q,;';oT' .·25

2

H(s) = s2 S

S +-+1Qp

4FrapJetl:y

High-Pass FilterVoItageGlin

r-- I '0.=1.5 I _ I1.5~ I ',K=l.m,.-l

I 0.= 1 " , , •I •.•..................... _.....I , 1

-----------0.51- •.•.•.•

\ .'...Q::~~ .

Voltagellin (dB)5, ,0,= 1.5" ' <,

1Q.=1 - - __0. I •.• ·-··,..~.~-~~~~=-:.:r:......_-:

\ .> (}=0.5. /\ 1

h / q,=_A 1 J2( ,I

I

.s

-10.

·15

"-""1.)\ .•.•.~ .•. ,~'

_ ,."

0' 6··'0. 1

2 3 ,I I I_ • "',' ,K-I· ••-tI, I44 '1

S2

H(s)= 2 !.-+1,. +-., 0-p

V~G!in5, 'I ,

Band-Stop FilterVol~~(dB)

• 1\, ~

IQ.= 1.5I \

I \'0,=1 \

1 .". \

1 ~I" " \. \ »:»", .:-:: ....

\. ~Q~QI"""-""'"Q' .....~" ,\, !t?s" "\~ -30 I K=I.m·=1' -. '':--'''~;:';'''~-~''''''---:-:-fQ,;, 'c!i' '." _." .._ " .._ .

Go.

VoltageGin (<13)

5, 19-1.50.1 I g.~1 I I

0.=-

~~J2v=> ..•..

Q=05' ~.:~...

I I': ,Q.=1.5

I 100

f

· ,K=I,&=I.O~=l!1 \ ~.:.\o.=1.5

, \\~\0.' I'

......... ,. .

84

Frecp.m:y6

2Frequen;y

I K= 1,((\.=I, <a=1 !

•10~ '.,q :

'l> •

]0'......

8 0.

,~,.\ .,.'8

H(s)= s2+222 Ss +-+1

Qp

.'.,.

1Q.= J2

~~"

4Frec:p.tn:y

3

-" _ ....

6

Page 6: Multiple-Feedback Band-Pass Filter Band-Stop (Notch) Filteriesl.yolasite.com/resources/Electronics-1.pdf · Multiple-Feedback Band-Pass Filter Band-Stop (Notch) Filter ... The circuit

Voltage Controlled Votage Source (VCVS)Positive Feedback Active Filter (Sallen-Key)

~z,

But,Z.J -,

r - = KiJZ. = K Z. +z.. - (2)

Substitute (2) into (I) gives

V v ",(Z:+Z')lfl 1 1)~+....t.._ -+-+-- =0Z, ZJ KZ, Z, Z, Z2 + Z,

or

V.V K

H=~= ZZ 1v, Z, (l-K)+--L.l+l+-(Z, +Z,)Z, Z,2, Z,(3)

By KCLat Va: i; +ij =i, = 0

where, v-vi =-'--'. z,

v-vi =-'-', Z,

Therefore, we getv -v v -T,' v~+~-~=O

Z, z, Z, +Z,

In admittance form:

r:t. = Z,+'Z,

Re-arrange into voltage group gives:

v v rill)-+-'--v. -+-+-- =0 (I)z, Z, ..\ 2, Z, Z, + Z,

H - ( )t t Y )";1'l+Y -+- +.:2..(1_K)+-'-4

.• )~ }~ 1~ )~)~

K(4)

• This configuration is often used as a low-pass filter, so aspecific example will be considered.

VCVS Low Pass Filter H(s)=K-1 we continue from equation (5),

Z, =R, Z~= R2I I

Z, = .-, - sC. '/(o('3 .1

I JZ, ::: .i{o(~'~- sC'~

H(s) =, ~s R,RoC,C. + sc,(R, + RJ+ sR,CI (1- K)+ I

K_lH(s) = R,~C,C,

s' + s[c.(R, +RJ+R,C,(I-K)]+[. l __]R,R,C,C. R,R,C,C.

K

In order to obtain the above response, we let:

(6)

Equating the coefficient from equations (6) and (5), it gives:

1 1 I 1(i)= ---- 0= -

p ~R,R:C,C.. ~R,C; ~R:C. -P IR,C~ + R2C'I_+(I_K)~RIC)IsC\ R,C) R:C.

Then the transfer function (3) becomes:KH(s) = ---,--- ----;- --:----

1+ sC.(R, + R,)+ sR,c.(I - K)+ s'R,Rl',C.K'

,(Op •s: +-s+(O;o.(5)

Now, K=I, equation (5) will then become,

1H(.r) = 1+.lC.(R, + R,)+/R,R/-",C.

Page 7: Multiple-Feedback Band-Pass Filter Band-Stop (Notch) Filteriesl.yolasite.com/resources/Electronics-1.pdf · Multiple-Feedback Band-Pass Filter Band-Stop (Notch) Filter ... The circuit

Simplified Design (VCVS filter)I. =mR I: =R

I 1I,= =-

. j(u(nC) snC

H(s) = 11+sRC(m+l)+s2nmR2C2

Comparing with the low-pass response:I

H(s)=K----SZ +~!:.S+(()2o P

~p

It gives the following:

1(t)p = RC& Q=~

p -m+l

I Iz~=-=-

j(()C «:

Example (VCVS low pass filter)1

To design a low-pass filter with fo = 512Hz and Q = .,fiIIC

Let m = 1 ----i!f----Q,~Jmn~Jlxn~.r.:=J, -.:"iliTI,V' l

m+l 1+1 - .fi v _ -L . ,ill C_-.- 1 v

~ n=2 I' "o , 0

(cJ = 1 _ I 1I' RC-Jrnii - RC.Jl;2 = RC.fi = 27i(512H=)

200nF,---If----,

Choose C = lOOnF i2k1 : J'Tj'1 +'. i~~v, I <, ..•..~~

v.:~< [(IOnF =+- L~~~:~J1".

IThen R = 2,198n - 2.2kQ

What happen if n = I?

VCVS High Pass Filter VCVS Band Pass Filter

R3

Vo

I ~ II, 1+ Rj-f' R, "v.

In enj -, R4 - I v0

v.In R.

K'S' K_S_'

H(s) = R,C, = K'8., s ( 1 I 1 ( ) C I R, + R ,(0. 1

S +-- -:-+--+--..l-K +_~s~ I+··--~·-'- s: +~S+(J)C, R, R, R, R,c,/ R,R,R,C,c, Q, P

H(05) = KS's' +s(_l_+_l_+_l_(l_K))+ __ l_

R,C, R.C, R,C, R,R.C,e,

• (()r •S' +-05+(1);Qr

=-----

Page 8: Multiple-Feedback Band-Pass Filter Band-Stop (Notch) Filteriesl.yolasite.com/resources/Electronics-1.pdf · Multiple-Feedback Band-Pass Filter Band-Stop (Notch) Filter ... The circuit

Infinite-Gain Multiple-Feedback (IGMF)Negative Feedback Active Filter

rearranging equation (3), it gives,

H=V,_Vi -

1Z,Zj

1(1 1 1 1) 1- -+-+-+- +--Z; Z, Zl 2j 2. 232.

1fT.~----~I~----~I------~Or in admittance form:

v; =0 1'~ =02, Z,~ V =--v ~~T =-...2.v

e Z)·'( :( Z~ (.'

H= V._Vi -

l~Y;Y5(~ +1~+Yj +Y.)+ Y3Y.

(I)

By KCLat v:, v-v v V V-V_'_.T. = ---L +-L.+_"_0z, Z2 Z, Z.

(2)~e ZI z, Z3 Z4 Zs

LP RI C2 R3 R4 Cs

HP CI R2 C3 C4 Rs

BP RI R2 C3 C4 Rs

substitute (1) into (2) gives

Vi +~V =-~V _ V, _lv _V. (3)z, ZIZ;' 2;Z2' Z; Z.2; • 2.

IGMF Band-Pass Filter Simplified design (IGMF filter)Band-pass: Hes) = K / +as+b

s

H(s)=

sCRI

To obtain the band-pass response, we let I 2C 2(,.2--+s-+.v ,R1R, R,

1 121 = l~ 22 = l~ Z; = }aX.:\ = sC

3

Z. = _1 _ 1}aC - :-(-' 2, = TJ• "'4 • .,

H(.<) =

.Iel

R,

Comparing with the band-pass response

H(s)=K--S

s' + {j)p s+{(/Qp r

2 C; +C.. 1 ( 1 1 )J C;C. +S~+ R; ~+ Rl Its gives,

(IJ= ] Q if'E f)l' C~R.Rs r = '2rt. H\(r)1' = -2Q~*This filter prototype has a very low

sensitivity to component tolerance whencompared with other prototypes,

Page 9: Multiple-Feedback Band-Pass Filter Band-Stop (Notch) Filteriesl.yolasite.com/resources/Electronics-1.pdf · Multiple-Feedback Band-Pass Filter Band-Stop (Notch) Filter ... The circuit

Example (IGMF band pass filter) Butterworth Response (Maximally flat)To design a band-pass filter with fo = 512Hz and Q = 10

(0 =_I_=27r(512H:)r C~R,R.

C=lOO1F ~ ~Rs=9,66474[i

IfR;o =-_. =10-? 2 JR. Normalize to OJo = lrad/s

I A ~ 1Hi jto~I+(iJ2n

1

. iH(j"'l= N:.r Butterworth polynomials

B.(s) = s+l

B2 (s) = Sl +Ji8+1

B3(S)= s' +2s1 + 2s+ 1

= (8+ lXs2+8+ I)

B4(S) = S4 +2.61l +3.4ls2 +2.6Is+1

= (s~+ 0.77 s+ lXs1 + 1.85s +1)

E5(S)= S5 +3.24s~ +5,24s~ + 5.24s2 +3.24s + I

= (s+lXs2 +0.62s+ IXs2+ 1.62s+ I)

where n is the order

~ R. = 155.40 R, = 62,1700

--r-IOOIlF l ~62.170f!

~-- :j' - ,

ISH!! I_y.:--..,,"-.. i>----,"'" I! ~IIJOIIF !+/? I'

jl? 0I' •.•

In !.

Butterworth polynomials:

IH(j{!)~ = iB,,/iliJ)iWith similar analysis, we can choose the following values:

C=lOnF ~ =1,5541 and R, =621tOcn

'R, iutterwort 1-.1I D", P~""Iionsct ••••• ; ••••••••••••. I'! 'till "I .. "I"!,, .. ,,;. ,.... "..I",•.Second order Butterworth response

IHI_IStarted from the low-pass biquadratic function H(s)= K--=----

1 (V ~1 s +-2..s+liJ;For wp=1 K=l Q= .J2 Q, .

.101

(second order butterwoth polynomial)H(s),5' +..fis+1

IH(jw) = _w1 +..fij{!J+1

I

Vi(jw~= ~(I-(:J'r + (..fi(:J/1

IH(j{~~ = ,Jt-2aJ' +{,,' +2W2

IjH(jaJ~= ,jl+a'

I _. __ 1IH(ja~= ~ - ./t+ ((<JY'"1+ «J "

I I ~.~o I ••

rad/s

Page 10: Multiple-Feedback Band-Pass Filter Band-Stop (Notch) Filteriesl.yolasite.com/resources/Electronics-1.pdf · Multiple-Feedback Band-Pass Filter Band-Stop (Notch) Filter ... The circuit

-20

Second order Butterworth filterKH(s) - ----;----,---;-----:----

- 1+ sC.(R. + RJ+ .~R,C,(I - K)+ s'R,R,C,C, S' + (i), S + w'I () ,o = --.=~--.== "",

_F ~R.C, + R,C, +(I-K) i!S.c,R,C, R.c.. V R,C,

Setting R)= R2 and C) = C2

Q _ 1 __ I,- .Ji +.Ji+(I-K)J1- 2+(1-K) 3-K

Now K = I + RJ RA

o =_1_ I =_1_-, 3-K (R ) RA3- 1+-L 2--RA R"

For Butterworth response:I I Io =- => Q =-=---F.fi P .J2 '>_ R.

- R,

Bode plot (n-th order Butterworth)e.~ 10.-

I ' \1 IH(jw ~=-../=1 +=a=!)2=.

IndBfonn:

IH(j(tJ)1 = 20 log_l_.Jl + w2"

IHU(o)1 = -20 log(.JI + w2.)

~ -40c:&-00coa~~ -80

suppose (i) »1 -100

IH(jw)1 ",-20nlog(w)

For decade condition, w =10{o"

The Butterworth filter would bave(-20n)dB/decade

For 2nd order : -40 dB/decade

For 3rd order : -60 dB/decade·

For n - th order: - 20n dB/.decade

K'I ~ ~(i)

---------------------------1----------- ! 1 I '' .L ~, , i~J -~JTJ·c~t iu-----J','A • ./' R I

/'j".:C I .> ,'. I >~jl__: _

/J"tUrwoTtlt re$JHlMe

Therefore, we have 2 - R._ =.J2 = 1.414RA

We define Damping Factor (DF) as:

I 2 s, 4DF=-= --=1.41Qp R"

Values for the Butterworth responseB,(s)= .HI

B2(S)= S2 +-Jis+1

B3(S)= s' +2s2+2s+1= (s+IXs~+s+I]

Bl~)= S4 +2.6b3 +3.4ls= +2.61s +1 = (S2 +O.77s+1Xs= +1.85s +1)

B~(s)=s; +3.24s4 +5.24s3 +5.24s: +3.24s + 1= (s + lXs: +0.62s +IXs: + 1.62s + I)

Damping Factor (DF)

• The value of the damping factor required to produce desire responsecharacteristic depends on the order of the filter.

Roll-off 1st stage 2nd stage 3rd stage

Order dB/decade poles DF poles DF poles DF

I -20 I optional

2 -40 2 1.414

3 -60 2 1.000 1 1.000

4 -80 2 1.848 2 0.765

5 -100 2 1.000 2 1.618 I 0.618

6 -120 2 1.932 2 1.414 2 0518

• The DF is determined by the negative feedback network of the filtercircuit.

• Because of its maximally flat response, the Butterworth characteristicis the most widely used.

• We willlirnit our converge to the Butterworth response to illustratebasic filter concepts.

Page 11: Multiple-Feedback Band-Pass Filter Band-Stop (Notch) Filteriesl.yolasite.com/resources/Electronics-1.pdf · Multiple-Feedback Band-Pass Filter Band-Stop (Notch) Filter ... The circuit

Forth order Butterworth FilterRJ = R~,CJ = C4RJ = R2,CJ = C2

C,O.OII'f C,O.OII'f

R,I.2 illR, 1.2ill

v'"

R. I.Sill R. 27 kO

DF=2_RB =1.848R,

R.-2...=0.152R.R8 = (0. 152)R.• = (0. 152)tOknRB = 1.52kn

DF=2- Rs =0.7651(.

RB = 1.235RAR3 = (1.235)R. = (1.235)22kfl

Rs = 27.17kO

Chebyshev Cosine Polynomials

Co {co)= 1c,{w)= coC2 (co)= 2co2 -1C3(co) = 4co3

- 3coC4 (w ) = 8co4

- 8co2 + 1

C, (co) = 16co5- 20co3 + Sco

CII(w) = 2coC

II_1 (co)- Cn-2 (W)

Chebyshev Response (Equal-ripple)IH(j(o~= I ! J( ,

l+£-C~ W

Where e determines the ripple andC; is the Chebyshev cosine polynomial defined as

]"(1.1]

,I I --- , ••, 2

Second order Chebychev ResponseIH(;a>~=--1

~1+&2C.~(a»

Example: 0.969dB ripple gives E = 0.5, CJ(!J) = 2(tl~ -I

IH2(a»= 2C'2({(»)

2 1+&"

1

Roots: SZ -1 ±.Jl=5 12 -'2±j

IH,(,)H,(-sj- (h~+j)(,' +~- j1I+0.51(2a>-IY

Ia>4 - (tl2 +1.25

Hi«(tIL", =H2(s}H2(-S)I

s~+s2+1.25

Page 12: Multiple-Feedback Band-Pass Filter Band-Stop (Notch) Filteriesl.yolasite.com/resources/Electronics-1.pdf · Multiple-Feedback Band-Pass Filter Band-Stop (Notch) Filter ... The circuit

Roots of first bracketed term

O±m~-. - 2

rr':=±'r"2- }

=±[ HH+(-~)J-jHH-(-~)JJ= ±[0.566- jO.899]

RootsRoots of second bracketed term

O±~)s= '';-,\2- J )

2

=±J-~+ j

=±[ MH+(-~)J+j HI%-(-~))]= ±[0.566+ jO.899]

H:{s)H2{-S)= (5+0.556- j0899XS-0.556+/0.899) (5+0.566+ jO.899XS-O.556- '

I I Ior H 2 (s) = , .. ,. '" • . ... .._