a primer to designing organic synthesis

42
A PRIMER TO Prepared by: Mr: Mohammed H. Raidah 2008-2009 [email protected] 00972599497541

Upload: mohammed

Post on 12-Nov-2014

1.880 views

Category:

Documents


2 download

DESCRIPTION

Teaches students to use the language of sythesis directly (utilizing the grammar of synthon and disconnection) rather than translating it into that of organic chemistry Synthesis is the process of making a desired compound using chemical reaction. more often than not, more than one step is involved. The importance of synthesis : 1. Total synthesis of interesting and/or useful natural products 2. Industrially important compounds 3. Compounds of theoretical interest 4. Structure proof 5. Development of new synthetic methodology 6. Importance to other areas of science and technology .

TRANSCRIPT

Page 1: a primer to Designing Organic Synthesis

��� �� ������� ��

A PRIMER TO

Prepared by:

Mr: Mohammed H. Raidah

2008-2009

[email protected] 00972599497541

Page 2: a primer to Designing Organic Synthesis

-2-

*Contents:

Introduction to Organic synthesis …………………………………………………3 One group disconnection disconnection of simple alcohol ………………………………………………….12 disconnection of simple olefins……………………………………………………17 disconnection of aryl ketones…………..………………………………………….18 Two group disconnection ……………………………………………………….21 β-Hydroxy carbonyl compounds …………………………………………………21 α-β unsaturated carbonyl compounds……………………………………………..23 1,3-dicarbonyl compounds ……………….............................................................24 1,5-dicaronyl compounds…………………………………………………………26 Mannich reaction………………………………………………………………….28 α-Hydroxy carbonyl compounds………………………………………………….29 1,2-diol…………………………………………………………………………….33 The Pinacol-Pinacolone rearrangement……………………………………………34 Allan-Robinson reaction…………………………………………………………...36 Bischler-Napieralski reaction………………………………………………………37 Bartoli Indol synthesis…………………………………………………………… .38 Benzilic acid rearrangement……………………………………………………….39 Benzoin condensation……………………………………………………………..39 Birch reduction……………..………………………………………………………40

Page 3: a primer to Designing Organic Synthesis

-3-

Introduction to Organic synthesis

Synthesis is the process of making a desired compound using chemical reaction. more often than not, more than one step is involved.

:The importance of synthesis

1. Total synthesis of interesting and/or useful natural products 2. Industrially important compounds 3. Compounds of theoretical interest 4. Structure proof 5. Development of new synthetic methodology 6. Importance to other areas of science and technology

:Basic steps of solving synthetic problems

a. Choice of TARGET MOLECULE (T.M) b. Consideration of applicable synthetic methodology c. Design of synthetic pathway d. Execution of synthesis -- these steps are highly interactive

Approaching the design of a synthesis (part one)

For simple molecules it can be obvious just by looking at the target structure ,for example:

Bromoalkanes are available from alkenes or from alcohols

Esters are available from carboxylic acids by reaction with alcohols ;benzoic acid is available from toluene

Br

bromocyclohexane

HBrBr

OHPBr3

Br

CO2Me

methyl benzoate

Page 4: a primer to Designing Organic Synthesis

-4-

Approaching the designing of a synthesis (part two)

For more complex molecules , it help to have a formalized , logic-centred approach; RETROSYNTHETIC ANALYSIS

Retrosynthetic analysis is the process of working backwards from the target molecule to progressively simpler molecules by means of DISCONNECTIONS and /or FUNCTIONAL GROUP INTERCONVERSIONS that correspond to know reactions . When you`ve got to a simple enough starting material (like something you can buy and usually is cheap) then the synthetic plan is simply to reverse of the analysis . The design of a synthesis needs to take into account some important factors

1. it hase to actually work 2. In general , it should be as short as possible 3. Each step should be efficient 4. Side products (if formed) and impurities (there always are ) should be easily

separable from the desired product 5. Environmental issues may be relevant 6. There's more than one way to skin a cat

Example retrosynthetic analysis Target molecule :

OH

Disconnect

A B

OHSYNTHONS

REAGENTS ? ?

OH

PhMgBr

O

H

SYNTHONS

REAGENTS

CO2H CO2MeKMnO4 MeOH

H2SO4

Page 5: a primer to Designing Organic Synthesis

-5-

Therefore the target molecule could be synthesized as follows :

What is a synthon? When we disconnect a bond in target molecule , we are imagining a pair of charged fragments that we could stick together , like Lego bricks , to make the molecule we want . these imaginary charged species are called SYNTHONS . When you can think of a chemical with polarity that matches the synthon , you can consider that a Synthetic equivalent of the synthon. Thus,

An aldehyde is a synthetic equivalent for the above synthon. There can be more than one synthetic equivalent for a given synthone, but if you can't think of one …try a different disconnection.

Always consider alternative strategies.

Bri) Mg/Et2O

ii) CHO

OH

R H

O

R H

OH

≡ δ+δ-

OH

A B

SYNTHONS

Syntheticequivalents

OH

PhCHO BrMg

OH

Br?

SYNTHONS

Syntheticequivalents

Page 6: a primer to Designing Organic Synthesis

-6-

Besides disconnections , we can also consider functional group interconversion . Our target molecule is a secondary alcohol ,which could be prepare by reduction of a ketone . this is represented as follows:

Ph

OHFGI

Ph

O

DISCONNECT

Ph

O

Ph

O

Br

Synthesis number four

Ph

O i)base

ii) BrPh

OLiAlH4

Ph

OH

T.MTarget Molecule

A second possible synthesis :Br i)Mg/Et2O

ii)PhCHOPh

OH

similary

Ph

OH

Ph

OH

≡ ≡

Ph

OBrMg

thus a third possible synthesis is

Ph

O BrMg

Ph

OH

Page 7: a primer to Designing Organic Synthesis

-7-

There are other possibilities , but let's not bother with any more.

How do you choose which method?

Personal choice .If you have a favourite reagent, or if you are familiar with a particular reaction (or if you have a strong aversion to a reaction/reagent) then this will affect your choice .Also you need to bear in mind the efficiency of the reaction involved, and any potential side reactions (for example ,self- condensation of PhCOMe in method 4 ).

Analysis number five :

Ph

OPh

O

Ph

O

LiCu 2

Synthesis number five :

Ph

Ot-Bu2CuLi Ph

ONaBH4 Ph

OH

T.M

Ph

OH

Disconnecting heteroatoms can also be a good idea:

Ph

OH H2O

Ph

6th approach :

Phi) Hg(OAc)2

ii) NaBH4Ph

OH

Page 8: a primer to Designing Organic Synthesis

-8-

DEFINITIONS What you need to makeTARGET MOLECULE (T.M)The process of deconstructing the T.M by breaking it into simpler molecules until you get to a recognizable SM

RETROSYNTHETIC ANALYSIS

An available chemical that you can arrive at by retrosynthetic analysis and thus probably convert into the target molecule

STARTING MATERIAL (SM)

Taking apart a bond in the T.M to see if it gives a pair of reagents

DISCONNECTION

Changing a group in the T.M into a different one to see if it gives accessible intermediate

FUNCTIONAL GROUP INTERCONVERSION (FGI)

Add a functional group to facilitate bond formation ,FGA especially applies in the case of molecule containing no reactive functional group

FUNCTIONAL GROUP ADDITION (FGA)

Conceptual fragment that arise from disconnection

SYNTHON

Chemical that reacts as if it was a synthon

SYNTHETIC EQUIVALENT

Page 9: a primer to Designing Organic Synthesis

-9-

Some synthons and synthetic equivalents:

synthon equivalent(s)

R

R R

OH

R R

O

R

OH OH

R

O

RCl ,RBr , RI , ROMs , ROTsonly when R= alkyl

Br

R

O

R

O

R

O

R OEt

O

R Cl

O

R O

O

R

O

R(alkyl ; NOT"RH+base")

RMgBr , RLi , R2CuLi , other organometallic reagents

R

O

R

O

R

OCO2Et

make sure you don't lose CH2 group if you represent eg. RCH2 as R

( viz. make sure the product hase the right number of carbon atoms)

Page 10: a primer to Designing Organic Synthesis

-10-

Latent Polarity

Think about some of the reaction we've looked at for carbonyl compounds:

AO OH O

O O

O

O

Nu

Nuδ+

δ−

H baseB

E

E

O

δ+

δ−

δ−

C NuNu

O

E

Nu

O

E

O

δ+

δ−

δ−δ+

ie O

δ+ δ+δ+δ+δ− δ−δ−

δ−

these polarities apply quite generally:

OH

δ+δ+δ+δ− δ−δ−

δ−

δ−

Br

δ+δ+δ+δ− δ−δ−

δ−

δ−

NR

δ+δ+δ+δ− δ−δ−

δ−

δ−

NHR

δ+δ+δ+δ− δ−δ−

δ−

δ−

Page 11: a primer to Designing Organic Synthesis

-11-

The partial positive and negative charges indicate the latent polarity of the bonds in a molecule. They help us choose the synthons for key disconnections in a retrosynthetic analysis . viz.

OH

δ+

δ−

δ−

OH

Equivalents for synthons with reversed polarity

synthon equivalent(s)

R R

OH

R

O

Me

O

O

R RBr

OH,or

RBr

O

,orOO

R Br

OEt+ sec-BuLi

OEt

(VERY strong base)

OEt

Li

E OEt

E

H3O+

E

O

ethoxy vinillithiumEVL

similary from acetylene:

i) base

ii) E

EH3O+

HgO E

OHtautom.

s-BuLi

Page 12: a primer to Designing Organic Synthesis

-12-

1.One group disconnection :nnection of simple alcohol disco**

A + B Cconnection disconnectionA + B

Me OH

Me CN OH + CNdisconnection

Synthesis

O + +H NaCNMe OH

Me CN

mechanism O + H OH

CN

T.M

Example.1.1

Example.1.2

Me COHPh

CH

Ph

MeOH + C CH

SynthesisPh

MeO + H + HC CH base

Me COHPh

CH

mechanismHC CH base CHC

Ph

MeOH T.M

Page 13: a primer to Designing Organic Synthesis

-13-

Example.1.3

Me EtOHPh

OH + H3C CH2

Synthesis

EtBr Mg/Et2O EtMgBr

Ph

MeO + EtMgBr

Me EtOHPh

mechanism

O + H

H +

Ph

MeOH

Et MgBr

T.M

Me Me

OHC

OOEt

+ 2MeMgBr

CO

OEt+ 2MeMgBr

Me Me

OH

CO

OEt CO

Me

Me MgBr Me MgBr

+CO

OEt+

T.M

Example.1.4

Synthesis

mechanism

Page 14: a primer to Designing Organic Synthesis

-14-

Compounds derived from alcohols

alcohol

Esters

OlefinsAldehydes

KetonesAlkylhalids

Example.1.5

Ph Ph

OAc FGIPh Ph

OH

Synthesis:

mechanism:

+ HC OEt

Ph Ph

OHPh2 + HC OEt

O

PhMgBr2

OPh Ph

OH

PhMgBr

HC OEtO

PhMgBr

Ph H

O

Ph Ph

OH

Ph Ph

OH

+ CH3COOH Ph Ph

OAc

T.M

R CO

OH SOCl2 R CO

ClR`OH

R CO

OR`

Reminder:

Page 15: a primer to Designing Organic Synthesis

-15-

Example.1.6

Ph

OH O

H +BrMg

Ph

O

H

FGI OH

H

(aldehyde) (alcohol)

Br+ H C

OH

cyclopentanecarbaldehydeformaldehyde

Br Mg/Et2O MgBr

Synthesis

MgBrH C

OH

oxidation

O

H

O

H +BrMg

Ph Ph

OH

H

cyclopentylmethanol

OH

H

H

Page 16: a primer to Designing Organic Synthesis

-16-

OO

Me

Me

Example.1.7

OO

Me

Me

OH2H HO

OMe

Me

OH

H

HOHO

+ Me Me

O

HOHO

2 H H

O

+ C C HH

Synthesis:

2 H H

O

+ C C HHHOHO

Me Me

OOO

Me

Me

mechanism:

C CH H H

O

C C

HOH H

O

HOHO

BaSO4

reduction

HOHO

HOHOMe

MeOO

HOMe

Me

OH OO

Me

Me

Page 17: a primer to Designing Organic Synthesis

-17-

**disconnection of simple olefins:

Ph FGI OHPh

O

cyclohexanone

+ PhMgBr

Example.1.8

FGI

Ph

OHno helpful disconnection

a

b

Example.1.9

Ph FGI

a

Ph

OH

O+ BrMg

Ph

FGI

Ph

OH

H

O+ BrMg

Ph

b

another analysis for synthesis:in example 1.9 the pathway (a) use Wittig reaction instead of Grinard.

Ph

BrPh3P

Ph

Ph3P H

base Ph

Ph3P

Ph

PPh3O

Ph

PPh3O Ph + PPh3O

R e m in d e r

O H H Ha c id

Page 18: a primer to Designing Organic Synthesis

-18-

**disconnection of aryl ketones:

Example.1.10

PhFGI Ph

OHPh

O

H +Ph3Pa

bFGI

Ph

OH

PhPPh3 +

O

H

Example.1.11

O

MeOMeO

+Cl

O

Synthesis:

MeO

+Cl

OAlCl3

O

MeO

mechanism:

MeOCl

O

MeO

O

H

O

MeO

Page 19: a primer to Designing Organic Synthesis

-19-

Example.1.12

O

O

O

O

O+

O

Cl

O

O

H

H

OH2HO

HO+ H C

OH

Synthesis

HO

HO+ H C

OH + H

O

O

O

O+

O

Cl

AlCl3

O

O

O

Example.1.13

O

Me

MeO

NO2

a ba

Me

MeO

+

O

NO2

Cl

Pathway (b) not occur because NO2 group is electrons withdraw

Example.1.14

O FGI OCH

O+ Me I

O

Br+ HC CH

O

COOEt

+ CHBrMg

a b

a b

Page 20: a primer to Designing Organic Synthesis

-20-

Example.1.15

N

O

NH+

O

HO CO2 +BrMg

Example.1.16

R1R2 R1

R2 R1R2

OH

R1 H

OR2BrMg

+

Example.1.17

OH

MgBr O

Synthesis

+

Br

Mg/Et2Oi)

ii) OOH H3PO4i)

ii) H2/Pd

T.M

Reminder:

C CH OH

C CH H

O

acidheat

heat

LiAlH4 C OHH

+

+

H2O

H2

Page 21: a primer to Designing Organic Synthesis

-21-

2.Two group disconnection

**β-Hydroxy carbonyl compounds

One group disconnections summary

1. alcohols

2. Olefins

3. acids

R1

R3

OHR2 R1 MgBr +R2

R3

O

PPh3 + O

R CO

OH RMgBr + CO2

4. carbonyl compounds

Ar C ORO

ArH + Cl R

O

CH2 CO

RR RBr +

OOEt

OR

OH O

H

Example.2.1

αβ H

O+

O

H

Synthesis:

O

HH Base

O

H

O

HHO H

O

OH O

H

Page 22: a primer to Designing Organic Synthesis

-22-

Example.2.2

Ph

OO

Ph OHα β

OH

+ PhPh

O

O

Synthesis:

OH

PhPh

O

O

Ph

OO

Ph OH

Reminder:

the group is attached to a carbon atom that has at least one H substituent (e.g.-CHCHO,-CHCOR, -CHCO2Et ),then electron-withdrawal by the group results in such H atom being acidic:

CO

CO

C C OH

HHO OH

H2OC C O

H

C C OHα

Page 23: a primer to Designing Organic Synthesis

-23-

** α-β unsaturated carbonyl compounds

H

β

Example.2.3

H

OOHH

O

H3C H

O+

H3C H

OBase

H2C H

Oα H

O

H2C H

O H

OOH

H

OOHacidheat

H

β

T.M

Synthesis:

Example.2.4

Ph CO2H

α Ph CO2H

OH O

Ph H

O+ H3C CO2H

O

Synthesis:

H3C CO2H

Obase

H2C CO2H

OPh H

O

Ph CO2H

OH Oacidheat Ph CO2H

O

T.M

Example.2.5

R

Oβ αR

OHO

O+

R

O

Synthesis:

R

Obase

R

OO

R

OOH

acidheat R

O

Example.2.6

α

β

O O

OH

O

O

Page 24: a primer to Designing Organic Synthesis

-24-

** 1,3-dicarbonyl compounds

O O

δ+ δ−δ−

δ−δ−

δ− δ+

Ph Ph

O O

Example.2.7

Ph

O

Ph

O

Ph

O

Ph

O

OEt+

Synthesis:

O

Ph

OPh

Base

NaOEtPh

OOEt

Ph Ph

O O

T.M

PhO O

OEtPha b

PhO

PhO

OEt

+O

OEtPh

O

OEtPh

a

b

O

OEt+ Ph

O

Ph

O

OEtPh

O

Ph

Example.2.8

EtO

Example.2.9

Ph

O

O

OEt

OEt

Ph

OOEt + OEt

O

Ph

OOEt

OEt

O

EtO

Page 25: a primer to Designing Organic Synthesis

-25-

Example.2.10

Ph

CPhO

OEt

Ph

Br+ CPh

OOEt

Synthesis:Ph

Br+ CPh

OOEt

Base T.M

mechanism:

CPhO

OEt

Ph

Br T.M

Example.2.11

H

OO

δ+

δ−

Me

OMe

+ H

O

OMe

EtO H

O

Synthesis:

OMe

EtO H

O

+ baseNaOEt T.M

Page 26: a primer to Designing Organic Synthesis

-26-

** 1,5-dicaronyl compounds:O O

δ+ δ−δ+ δ+

δ− δ−

δ− δ− δ−

Michael addition

PhPh

O

H

αPh 1 2

O

34

5H

Ph

O

Ph

O

HPh

OH

+EtO

R R`

OO

Example.2.12

β

α

a b bR`

O

R

O

H

+ R

O

R`

O

+

a

R

O

R`

O

+

Example.2.13

OCO2Et

O

1

23

45

O

CO2Et

+

O

H

O

CO2Et

+

O

Example.2.14

EtO

OO

CN

Ph

a b EtO

O

CN

Ph O+

EtO

O

CN

Ph O+H

b

a

EtO

O

CN

OPh+EtO

O

CN

OPh+

Page 27: a primer to Designing Organic Synthesis

-27-

Example.2.15

Ph Ph

CO2EtO

β

α

Ph Ph

CO2EtO

HO1

2

3

45

Ph

CO2Et

O

O CO2EtO

+ Ph

O

Example.2.16

O

Oαβ

1 2

3 4

5

O

OO

O

O

+O

12

3

45

OO

OMe

O

OMe

+

O

Example.2.17

Example.2.18

O O

O

H

O

O

H

+

Page 28: a primer to Designing Organic Synthesis

-28-

Mannich reaction:

R CH3

O+ C

OH H

formaldehyde+ R'2NH

HR N

OR'

R'

mechanism:

R'2NHH

H OH

R'N

R'CH2 OH2

HR'

NR'

CH2

R CH2

O

CO

RCH2CH2NR'

R'

I Me

C

O

RCHCH2NR'

R'

Me HR

O

was attacked by N thus N bearing +ve charge make easy removeI Me NR'

R'

Me

Application for mannich reaction

O

+ R'2NH+ CH2O H

O

N R'

R'

O

mechanism:

R'2NHH

H OH

R'N

R'CH2 OH2

HR'

NR'

CH2

O

CH2NR'

R'

I Me

CH2NR'

R'

Me

O

OH O

Page 29: a primer to Designing Organic Synthesis

-29-

** α-Hydroxy carbonyl compounds

Example.2.19

O

Ph 1O

2

345

O

PhO

Ph +

O

O O

+ CH2O

remember Mannich reaction

O

NR3

Example.2.20O

NR2

O

+ NR2CH2

O

+ CH2

OH

CH2 NR2HO

H

CH2 NHR2HO

O

+

O

+

O

+ CH2O + R2NH

NR2

Ph

PhCO

OH

OHα

Ph

PhO + COOH

or CN

Synthesis:

Ph Me

OCN

H

Ph

Ph

OH

CN

NaOHH2O

Ph

PhCO

OH

OH

T.M

Page 30: a primer to Designing Organic Synthesis

-30-

CEtO2C

OHO

OH 12

C3

O

H + COOH

or CNOEtO

O

HCOEtO

COEtO

+

+ EtO H

O

COEtO

Br + CH2COOEt

Example.2.21

Synthesis:

OEtCH2C

C

O

O

OEt

OEt

CH2C

C

O

O

OEt

OEtOEt

EtO OEt

O+ C

H2C

OOEt

CH2C

OOEt Br

CO2Et

H

CO2Et CO2Et

HH CO

OEt

O

CN

HO/H2OCEtO2C

OHO

OH

OEt

Page 31: a primer to Designing Organic Synthesis

-31-

Example.2.22

PhOH

OH

Ph OHOH

OH

O

EtO + 2PhMgBr

OH

O

H + CN

Synthesis:

CHO

CH2 O

CO

H

OHK2CO3

CNC

CN OH HO/H2O

HO

OH

OH

O

HO

EtOH/HOH

OH

O

EtO2PhMgBr

PhOH

OH

Ph OH

T.M

H

RCHO R CH

NH2CN R C

H

NH2COOH

mechanism:

R C HNH3

NH3

R C

OH

H

NH2

R C H

NH

CN RHC CN

NH2

HO/H2O RHC COOH

NH2

O

NH3

CN

Reminder:

HOOC NH

H

NHH+ CN

Example.2.23

OH+ NH3

Page 32: a primer to Designing Organic Synthesis

-32-

Reminder:

O

COH

HLiAlH4

Example.2.24

Ph

Ph

Ph

Ph

Ph

Ph

Ph

Ph

HO

HO

OPh

Ph O+

Ph

Ph

O O

FGI

Ph

Ph

OHEtO H

O

+2PhCH2MgBr

Synthesis:

Ph C HO

CN Ph HOHC

OHOHO/H2O

Ph MgBrOHPh

Ph O

CrO3 OPh

Ph O

H CO

OEt + 2PhCH2MgBr

Ph

Ph

OHCrO3

Ph

Ph

O

OPh

Ph O

Ph

Ph

O

Ph

Ph

Ph

Ph

HO

HO

Hacid

heat

Ph

Ph

Ph

PhO

T.M

+

Page 33: a primer to Designing Organic Synthesis

-33-

** 1,2-diol

KMnO4

or OsO4

OHHO

hydrationOHOH

OHOH Al2O3

Reminder:

One useful radical reaction is the pinacol reduction:

OMg - Hg

benzene

OHHO

OHHO FGI O+

PPh3

remember Witting reaction

Example.2.25

Ph

OHOH

Ph O +Ph3P

Ph

Example.2.26

O

O

H

H

CO2Me O HO

HO

H

H

CO2Me+

CO2Me CO2Meα

β

α−β unsaturated carbonyl

+

Page 34: a primer to Designing Organic Synthesis

-34-

rearrangementPinacolone -The Pinacol**

R1

R2

R4

R3

OHHOH

R1

R4

R3

O

R2

mechanism:

R1

R2

R4

R3

OHHO HR1

R2

R4

R3

OH2HO R1

R2

R4

R3

HO

R1

R4

R3

O

R2

Example.2.28

OOH OH

OH

reverse -pinacol

rearrangement

pinacol

reduction2

O

O Mg - Hg

benzene

OH OHH+

OH2 OH

Synthesis:

T.M

Example.2.27

CO2HCO

H + Ph3P CH2 CO2H

+ CO

β

OHOH

FGI

Page 35: a primer to Designing Organic Synthesis

-35-

(CH2)n

CO2Et

CO2Et

Na

Xylene(CH2)n

C O

CHOH

A closely allied reductive linking of carbonyl groups is an intramolecular version with esters, called the acyloin reaction, which again gives a 1,2-dioxygenated skeleton:

Example.2.29

O

OH

CO2Et

CO2Et

2 +

CO2Et

CO2Etacyloin Diels–Alder

Page 36: a primer to Designing Organic Synthesis

-36-

Example.2.30

OMe

CO2Et

CO2Et

OMe

CO2Et

CO2Et

OMe

+C

C

CO2Et

CO2Et

Synthesis:

CH3

OH

Br2/light

CH2Br

OH

Me2SO4

CH2Br

OMe

i) Ph3Pii) Baseiii) Ph CHO

HC

OMe

Ph3P

Ph

CO

H

OMe

OMe

C

C

CO2Et

CO2Et

OMe

CO2Et

CO2Et

T.M

OMe OMe

HO

CH2Br

OH

+

Ph

CO H

Page 37: a primer to Designing Organic Synthesis

-37-

:Robinson reaction-Allan**

Synthesis of flavones

Example.2.31

CO2Et

CO2EtO

CO2Et

CO2EtO O +

C

C

CO2Et

CO2EtSynthesis:

OC

C

CO2Et

CO2Et

CO2Et

CO2EtO

T.M

O

OH

R

R' O R

O O

R'CO2Na

O R'

RO

mechanism:

O

OH

R

H R'CO2Na

O

OH

R

R' O R

O O

O

OH

R

R'

O

O

O

HOR'H

R

O

O

R'

R

Page 38: a primer to Designing Organic Synthesis

-38-

Napieralski reaction-Bischler**

Synthesis of dihydro isoquinoline from β-phenylethylamide using phosphorus oxychloride.

HN

R O

POCl3N

R

mechanism:

HN

RO

Cl2PO

Cl HN

R OPOCl2

N

R OPOCl2

H NH

R OPOCl2

H

N

RExample.2.32

H2CFGI

H3COH O

+ Ph3P CH2

Synthesis:

Br CH3i) Ph3Pii)base Ph3P CH2

O PPh3

CH2

O PPh3CH2

Page 39: a primer to Designing Organic Synthesis

-39-

Bartoli Indol synthesis **

Synthesis of 7-substituted indol from Ortho-substituted nitro benzene and vinyl Grignard reagent.

Example.2.33

N N

HOH

NO H

+

Synthesis:

NO H

+

N

HOH acid

heat

N

mechanism:

NO

O

MgBr

N

O

O

MgBr

N

O

MgBrN

O

MgBr

NO

H

MgBr

NO

H H

H

MgBrH HO

NH

NO2R

NH

MgBri)

ii) H3O

Page 40: a primer to Designing Organic Synthesis

-40-

** Benzilic acid rearrangement

Rearrangment of Benzil to Benzilic acid via aryl migration.

Benzoin condensation **It's a cyanide-catalyzed condensation of aryl aldehyde to Benzoin.

ArC Ar

O

OKOH Ar

C OH

OH

O

Ar

mechanism:

ArC Ar

O

O

OH

Ar C O

O

ArOH Ar

C OH

O

O

ArAr

C O

OH

O

Aracidicworkup

ArC OH

OH

O

Ar

a proton transfer leads to formation of carboxylate anion

Benzil Benzilic

HAr

O

CN ArAr

O

OH

Benzoinaryl aldehyde

mechanism:

HAr

O CNAr

CNH

OAr

CNH

OHAr

CN

OH Ar H

O ArAr

O

OH

CN-H+H

Protontransfer

ArAr

OH

O

CNAr

ArO

OH

Reminder:

Ar

CN

HOH

such H bond to Carbon connect with two electron withdrawal groups thus this H is Acidic.

Page 41: a primer to Designing Organic Synthesis

-41-

Birch reduction **

The reduction of aromatic substrates with alkali metal, alcohol in liquid ammonia , known as “Birch reduction”

.Benzene ring with an electron donating substituent )1

:Benzene ring with an electron withdrawing substituent)2

W

W=CO2H,CO2R,COR,CONR2,CN,Ar

Na,liq,NH3

+e-

W W W

H H NH2

W

H H

+e-

W

H H

H NH2

WRadical anion

W

X

Na,liq,NH3

ROH

X

X=OR,R,NH2

Single Electron Transfere

SET

X X

H

H

Radical anion

H ORH

H

H

X

+e-

X

HH

H

X

H OR

X

Page 42: a primer to Designing Organic Synthesis

-42-

:References

1) Stuart G. Warren; designing organic synthesis , John Wiley,1978

2) CM3001 Dr.Alan Ford (lab 415) ,text :Willis&Wills organic Synthesis (OUP)