a brief introduction to nuclear...

37
Fundamental Forces Force Relative Strength Range Carrier Observed? Gravity 10 -39 Infinite Graviton No Weak 10 -6 Nuclear W+ W- Z Yes (1983) Electromagnetic 10 -2 Infinite Photon Yes (1923) Strong 1 Nuclear Gluon Yes (1978) (Indirect)

Upload: others

Post on 10-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

Fundamental Forces

Force RelativeStrength

Range Carrier Observed?

Gravity 10-39 Infinite Graviton No

Weak 10-6 Nuclear W+ W- Z Yes (1983)

Electromagnetic 10-2 Infinite Photon Yes (1923)

Strong 1 Nuclear Gluon Yes (1978) (Indirect)

Page 2: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

Units and Dimensions

Enrico Fermi

Size: the order of magnitude is 1fm = 10-15m (a femtometer or fermi) Radius (assuming nucleus = sphere): R = R0.A1/3 with R0 = 1.2 fm Nuclear Density: 1017 kg/m3 100 million tons per cm3 !!! density found in the core of a neutron star Nuclear matter is uncompressible (properties of the strong force) Energy: units: 1eV = 1.602 x 10-19 J energy gained by a single unit of electronic charge when accelerated through a potential of one volt

Page 3: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

Units and Dimensions

Atom Nucleus

Force Coulomb Strong Binding Energy The hydrogen

atom: 13.6 eV 2H: 2.2 x 106 eV 2.2 MeV

Binding energy: mass of the constituents – mass of the product

Atoms and Nuclei emit photons. What does the binding energy imply about the photons?

Page 4: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

How might you distinguish Alpha, Beta and Gamma radiation experimentally?

Page 5: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions
Page 6: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions
Page 7: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

Example of a particle physics experiment (BNL E766)

27 GeV/c proton interactions in liquid hydrogen

proton 27 GeV/c

Page 8: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

Conservation laws

• Conservation of Energy

• Conservation of linear momentum

• Conservation of angular momentum

• Conservation of electric charge

•Conservation of baryon number (proton is a stable particle)

• Conservation of mass number A e.g. total number of nucleons is conserved, but Z and N can change

Page 9: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

Example of a particle physics experiment (BNL E766)

27 GeV/c proton interactions in liquid hydrogen

proton 27 GeV/c

Page 10: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

Radioactivity ? Emission of energy stored in the material by the mean of “mysterious” rays ~1900: The structure of the atom is not yet known... But Chemistry is ! (Mendeleiv 1834 – 1907) The radiation emitted by Radium is identified to be the element Helium 1911: Discovery of the atomic nucleus by Ernest Rutherford

The first experiment with a beam of particles: The α-particles are most of the time not deflected, but sometimes they are scattered, even in the backward hemisphere. the foil is almost “transparent” to the α’s But when interaction occurs, it is on a heavy partner in the foil (the nucleus) full analysis: size of the nucleus, mass, etc…

Page 11: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

Nuclear Physics Niels Bohr: The model of the atom (1913)

+

-

Positively charged nucleus

Electrons in discrete orbits

α-radiation is positively charged and too energetic to be emitted by the electron cloud α’s are emitted from the atomic nucleus. NUCLEAR PHYSICS

Rutherford (1919): transmutation of one element into another by α-radiation α + N O + p Helium Nitrogen Oxygen Hydrogen The nucleus has to have exchangeable constituents

Page 12: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

Elementary Constituents of the Nucleus

All the nuclei can be made with: p proton positively charge (+q) n neutron neutral (James Chadwick, 1932) Z number of protons in the nucleus N number of neutrons in the nucleus A atomic number = Z + N The atoms are neutral: Charge of the nucleus: + Z.q Electron cloud is made of Z electrons of charge (–q) The electrons determine the chemical behavior Z defines the Element Two nuclei with a same Z but different N (or A) are isotopes (of the same element)

Page 13: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

Notations

H 2 1 1

H 1 1 0

Ex: Hydrogen

Deuterium

Isotopes of the same element

Other examples: C 12 6 6

Carbon

U 235 92 143

Uranium

In practice, the Z number is redundant with the element symbol & the N number is obsolete

C 12

U 235 Simplified:

X A Z N

nucleons

protons neutrons

Page 14: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

Stable Isotopes ~300 Unstable >2000+

The chart of Nuclei

Page 15: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

Radioactive Decay Law The activity of a certain sample (e.g. source) depends on the number N of radioactive nuclei and on the probability λ for each nucleus to decay:

A = λ . N

[1/s] [1/s] Evolution with time: dN = -A.dt dN: number of nuclei that decayed during dt dN = -λ.N.dt, which gives: Solving the differential equation:

dN/dt = -λ.N

N(t) = N0.e-λ.t

N(t=0)

Page 16: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

Half-life Similarly, we find that the activity of a source change with time: From λ = decay constant, one can define τ = 1/λ, the mean lifetime It is usual to define t1/2, the half-life, the time after which half of the initial nuclei have decayed: t1/2 = ln 2 / λ = τ ln 2

A(t) = A0.e-λ.t

The half-life is characteristic to the decay of a given nucleus. This number (when known) is usually tabulated.

Page 17: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions
Page 18: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

Question • The atom and the nucleus are both composed of

many components. Their structures and states can be studied through spectroscopy.

• Which do you think is more complicated. – Nuclear spectroscopy or – Atomic Spectroscopy?

• Why?

Page 19: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions
Page 20: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

The Nuclear (Strong) Force Short Range, only a few fm

Nuclear Matter is uncompressible ; repulsive at very short range (< 1 fm) Attractive over a range of a few fm

a given nucleon only interacts with its next neighbors in the nucleus Negligible at long distances Same force for protons and neutrons

Page 21: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

A (simplified) model of the nucleus

α

Coulomb Barrier (for the charged particles)

protons neutrons

U

Square well potential (approx.)

Filled levels – Quantified energy, Pauli principle (Quantum Mechanics, Shell Model) If all nucleons are in U<0, no nucleon can tunnel to the outside Stable nucleus If unbound levels are filled (U>0), tunneling is possible through the Coulomb barrier Radioactive nucleus

Distance from the center of the nucleus

Tunnel effect (α-decay) Unbound levels (U>0)

Bound levels (U<0)

Page 22: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions
Page 23: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

This picture shows tracks made by alpha particles in a cloud chamber. What physics conclusions can you reach based on this picture?

Page 24: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

Two isotopes. Alpha particles from a particular decay are mono-energetic

Page 25: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

α-decay α-particle = 4He: cluster in the nucleus – α: very tightly bound system 2 U

r

X A Z N Y A-4

Z-2 N-2 He 4 2 2 + + Q

Page 26: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

Nuclei that emit higher energy alphas, have shorter half lives? True or False?

Page 27: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

Nuclei that emit higher energy alphas, have shorter half lives? True or False?

U

r

Page 28: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

U

r

Page 29: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

Nuclei that emit higher energy alphas, have shorter half lives? True or False (other way around)

U

r

Shorter half life (less tunneling)

Higher Kinetic Energy

Page 30: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

β-decay Weak interaction can transform a proton into a neutron or a neutron into a proton (It’s actually happening at the quark level) β- decay: n p + e- + anti neutrino e-: electron β+ decay: p n + e+ + neutrino e+: positron

Neutron

Proton

W-

e-

νe u d d

u d u

β- decay

Page 31: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

Electron energy spectrum of emitted electrons

Beta decay of 3He Sample

Page 32: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

Electron energy spectrum

3He+

ν e-

3He+

ν

e-

3He+

ν

e-

3He+

e-

Page 33: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

β- decay

β+ decay

n p + e- + ν

A Z N X e- ν Z+1 N-1 Y A + +

Elementary process:

Decay of the nucleus:

p n + e+ + ν

A Z N X e+ ν Z-1 N+1 Y A + +

Elementary process:

Decay of the nucleus:

(only happening inside the nucleus)

Alternative process: electron capture (from atomic orbit) p + e- n + ν

A Z N X e- ν Z-1 N+1 Y A

+ +

U

neutrons protons

Page 34: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

decay chain of 238U #

of n

eutro

ns +

pro

tons

# of protons

Page 35: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

Question:

For a given nuclear transition, which type(s) of emitted radiation are monoenergetic?

1: beta only 2: alpha,gamma 3: gamma,beta 4: alpha only

Page 36: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

Question:

For a given nuclear transition, which type(s) of emitted radiation are monoenergetic?

1: beta only 2: alpha,gamma 3: gamma,beta 4: alpha only

Beta shares energy with a neutrino that you can’t measure (in ph326)

Page 37: A brief introduction to Nuclear Physicsastroserve.mines.edu/ph326/2020/lectures/1_Nuclear_326_post.pdfExample of a particle physics experiment (BNL E766) 27 GeV/c proton interactions

END