8 capacity-analysis ( transportation and traffic engineering dr. sheriff el-badawy )

25
1 لتكنولوجيالهندسة والعالي ل معهد مصر ا الهندسة المدنية قسم- المنصورة1 Capacity Analysis لتكنولوجيالهندسة والعالي ل معهد مصر ا الهندسة المدنية قسم- المنصورة2 Objectives Review LOS definition and determinants Define capacity and relate to idealcapacities Review calculating capacity using HCM procedures for basic freeway section Focus on relations between capacity, level-of- service, and design

Upload: hossam-ronaldo-civil-engineering

Post on 16-Jul-2015

106 views

Category:

Engineering


13 download

TRANSCRIPT

Page 1: 8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-Badawy )

1

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

1

Capacity Analysis

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

2

Objectives

Review LOS definition and determinants

Define capacity and relate to “ideal”

capacities

Review calculating capacity using HCM

procedures for basic freeway section

Focus on relations between capacity, level-of-

service, and design

Page 2: 8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-Badawy )

2

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

3

Level of Service (LOS)

• Concept – a qualitative measure describing

operational conditions within a traffic stream

and their perception by drivers and/or

passengers. (speed, travel time, free to maneuver, comfort)

• 6 LOS (A to F)

• Levels represent range of operating conditions

defined by measures of effectiveness (MOE)

such as (Density, Speed, V/C) .

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

4

LOS A (Freeway)

• Free flow conditions.

• Vehicles are unimpeded

in their ability to

maneuver within the

traffic stream.

• Incidents and

breakdowns are easily

absorbed.

Page 3: 8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-Badawy )

3

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

5

LOS B (Stable Flow)

• Flow reasonably free

• Ability to maneuver is slightly

restricted

• General level of physical and

psychological comfort provided

to drivers is high

• Effects of incidents and

breakdowns are easily

absorbed

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

6

LOS C (Stable Flow)

• Flow at or near Free Flow

Speed

• Freedom to maneuver is

noticeably restricted

• Lane changes more difficult

• Minor incidents will be

absorbed, but will cause

deterioration in service

• Queues may form behind

significant blockage

Page 4: 8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-Badawy )

4

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

7

LOS D (Unstable Flow)

• Speeds begin to decline with

increasing flow

• Freedom to maneuver is

noticeably limited

• Drivers experience physical

and psychological

discomfort

• Even minor incidents cause

queuing, traffic stream

cannot absorb disruptions

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

8

LOS E = Capacity

• Capacity

• Operations are volatile, virtually no usable gaps

• Vehicles are closely spaced

• Disruptions such as lane changes can cause a disruption wave that propagates throughout the upstream traffic flow

• Cannot dissipate even minor disruptions, incidents will cause breakdown

Page 5: 8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-Badawy )

5

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

9

LOS F (Forced Flow)

• Breakdown or forced flow occurs when:• Traffic incidents cause a

temporary reduction in capacity

• At points of recurring congestion, such as merge or weaving segments

• In forecast situations, projected flow (demand) exceeds estimated capacity

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

Different levels of Service

10

Page 6: 8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-Badawy )

6

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

11

Design Level of Service

This is the desired quality of traffic conditions from a driver’s perspective (used to determine number of lanes)

• Design LOS is higher for higher functional classes

• Design LOS is higher for rural areas

• LOS is higher for level/rolling than mountainous terrain

• Other factors include: adjacent land use type and development intensity, environmental factors, and aesthetic and historic values

• Design all elements to same LOS (use HCM to analyze)

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

12

Design Level of Service (LOS)

Page 7: 8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-Badawy )

7

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

13

Capacity – Defined

• Capacity: Maximum hourly rate of vehicles or

persons that can reasonably be expected to

pass a point, or traverse a uniform section of

lane or roadway, during a specified time period

under prevailing conditions (traffic and roadway)

• Different for different facilities (freeway, multilane,

2-lane rural, signals)

• Why would it be different?

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

14

Ideal Capacity

• Freeways: Capacity

(Free-Flow Speed)

2,400 pcphpl (70 mph)

2,350 pcphpl (65 mph)

2,300 pcphpl (60 mph)

2,250 pcphpl (55 mph)

• Multilane Suburban/Rural

2,200 pcphpl (60 mph)

2,100 pcphpl (55 mph)

2,000 pcphpl (50 mph)

1,900 pcphpl (45 mph)

• 2-lane rural – 2,800 pcph

• Signal – 1,900 pcphgpl

Page 8: 8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-Badawy )

8

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

Multilane Highways

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

17

Multilane Highways

• Assumptions (Ideal Conditions, all other

conditions reduce capacity):

• Only passenger cars

• No direct access points

• A divided highway

• FFS > 60 mph

• Represents highest level of multilane rural and

suburban highways

Page 9: 8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-Badawy )

9

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

Base Conditions

• 12-ft lane widths

• A minimum of 12 ft of total lateral clearance in the direction of travel. Clearances are measured from the edge of the traveled lanes (shoulders included) and of 6 ft or greater are considered to be equal to 6 ft

• No direct access points along the highway

• A divided highway

• Only passenger cars in the traffic stream

• A free-flow speed of 60 mph or more

• 7. Driver population consisting primarily of commuters

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

19

Multilane Highways

• Intended for analysis of uninterrupted-flow

highway segments

• Signal spacing > 2.0 miles

• No on-street parking

• No significant bus stops

• No significant pedestrian activities

Page 10: 8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-Badawy )

10

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

20Source: HCM, 2000

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

21

Source: HCM, 2000

Step 1: Gather data

Step 2: Calculate capacity (Supply)

Page 11: 8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-Badawy )

11

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

22

Source: HCM, 2000

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

23

Source: HCM, 2000

Page 12: 8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-Badawy )

12

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

24 Source: HCM, 2000

Lane Width

• Base Conditions: 12 foot lanes

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

25Source: HCM, 2000

Lane Width (Example)

How much does use of 10-foot lanes decrease free flow speed?

Flw = 6.6 mph

Page 13: 8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-Badawy )

13

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

26

Lateral Clearance

• Distance to fixed objects

• Assumes

• >= 6 feet from right edge of travel lanes to

obstruction

• >= 6 feet from left edge of travel lane to object

in median

Source: HCM, 2000

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

27

Lateral Clearance

TLC = LCR + LCL

TLC = total lateral clearance in feet

LCR = lateral clearance from right edge of travel

lane

LCL= lateral clearance from left edge of travel lane

Source: HCM, 2000

Page 14: 8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-Badawy )

14

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

28

Source: HCM, 2000

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

29

Example: Calculate lateral clearance adjustment for a 4-lane divided highway with milepost

markers located 4 feet to the right of the travel lane.

Source: HCM, 2000

TLC = LCR + LCL = 6 + 4 = 10

Flc = 0.4 mph

Page 15: 8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-Badawy )

15

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

30

Accounts for friction between opposing directions of

traffic in adjacent lanes for undivided

No adjustment for divided, fm = 0

Source: HCM, 2000

TWLTLs: two way left turn lanes

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

31

Fa accounts for interruption due to access points along the facility

Example: if there are 20 access points per mile, what is the

reduction in free flow speed?

Fa = 5.0 mph

Page 16: 8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-Badawy )

16

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

32

Estimate Free flow Speed

BFFS = free flow under ideal conditions

FFS = free flow adjusted for actual conditions

From previous examples:

FFS = 60 mph – 6.6 mph - 0.4 mph – 0 – 5.0 mph = 48 mph

( reduction of 12 mph)

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

33 Source: HCM, 2000

Step 3: Estimate demand

Page 17: 8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-Badawy )

17

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

34

Calculate Flow Rate

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

35

f(hv) General Grade Definitions:

Level: combination of alignment (horizontal and vertical) that

allows heavy vehicles to maintain same speed as passenger

cars (includes short grades 2% or less)

Rolling: combination that causes heavy vehicles to reduce

speed substantially below P.C. (but not crawl speed for any

length)

Mountainous: Heavy vehicles at crawl speed for significant

length or frequent intervals

Use specific grade approach if grade less than 3% is more

than ½ mile or grade more than 3% is more than ¼ mile)

Page 18: 8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-Badawy )

18

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

36

Passenger Car Equivalent (Unit):

PCE or PCU

• Passenger Car Equivalent (PCE), is a metric used to assess traffic-flow rate on a highway.

• A PCE is essentially the impact that a mode of transport has on traffic variables (such as headway, speed, density) compared to a single car.

• Typical values of PCE (or PCU) are:

• private car (including taxis or pick-up) 1

• motorcycle 0.5

• bicycle 0.2

• horse-drawn vehicle 4

• bus, tractor, truck 3.5

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

37

f(hv) General Grade Definitions:

Level: combination of alignment (horizontal and vertical) that

allows heavy vehicles to maintain same speed as passenger

cars (includes short grades 2% or less)

Rolling: combination that causes heavy vehicles to reduce

speed substantially below P.C. (but not crawl speed for any

length)

Mountainous: Heavy vehicles at crawl speed for significant

length or frequent intervals

Use specific grade approach if grade less than 3% is more

than ½ mile or grade more than 3% is more than ¼ mile)

Page 19: 8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-Badawy )

19

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

38

Example: for 10% heavy trucks on rolling terrain,

what is FHV?

For rolling terrain, ET = 2.5

FHV = _________1_______ = 0.87

1 + 0.1 (2.5 – 1)

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

39

f(hv) General Grade Definitions:

Level: combination of alignment (horizontal and vertical) that

allows heavy vehicles to maintain same speed as passenger

cars (includes short grades 2% or less)

Rolling: combination that causes heavy vehicles to reduce

speed substantially below P.C. (but not crawl speed for any

length)

Mountainous: Heavy vehicles at crawl speed for significant

length or frequent intervals

Use specific grade approach if grade less than 3% is more

than ½ mile or grade more than 3% is more than ¼ mile)

Page 20: 8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-Badawy )

20

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

40

Peak Hour Factor (PHF)

• 𝑃𝐻𝐹 =𝐻𝑜𝑢𝑟𝑙𝑦 𝑉𝑜𝑙𝑢𝑚𝑒

𝑃𝑒𝑎𝑘 𝑅𝑎𝑡𝑒 𝑜𝑓 𝐹𝑙𝑜𝑤 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 ℎ𝑜𝑢𝑟

If 15-minute periods are used, the PHF is computed as:

• 𝑃𝐻𝐹 =𝑉

4𝑥𝑉15

V = peak-hour volume (vph)

V15 = volume during the peak 15 minutes of

flow (veh/15 minutes)

Typical peak-hour factors for freeways range between 0.80 and 0.95.

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

41Source: HCM, 2000

Step 4: Determine LOS

Demand Vs. Supply

Page 21: 8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-Badawy )

21

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

42

• Calculate vp

• Example: base volume is 2,500 veh/hour

• PHF = 0.9, N = 2

• fhv from previous, fhv = 0.87

• Non-familiar users, fp = 0.85

vp = _____2,500 vph _____ = 1878 pcphpl

0.9 x 2 x 0.87 x 0.85

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

43

Calculate Density

Example: from previous

D = _____1878 vph____ = 39.1 pc/mi/lane

48 mph

Page 22: 8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-Badawy )

22

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

44

LOS = E

Also, D = 39.1 pc/mi/ln, LOS E

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

45

Design Decision

• What can we change in a design to provide an

acceptable LOS?

• Lateral clearance (only 0.4 mph)

• Lane width

• Number of lanes

Page 23: 8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-Badawy )

23

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

46 Source: HCM, 2000

Lane Width (Example)

How much does use of 10 foot lanes decrease free flow speed?

Flw = 6.6 mph

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

47

Recalculate Density

Example: for previous (but with wider lanes)

D = _____1878 vph____ = 34.1 pc/mi/lane

55 mph

Page 24: 8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-Badawy )

24

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

48

LOS = E

Now D = 34.1 pc/mi/ln, on border of LOS E

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

49

• Recalculate vp, while adding a lane

• Example: base volume is 2,500 veh/hour

• PHF = 0.9, N = 3

• fhv from previous, fhv = 0.87

• Non-familiar users, fp = 0.85

vp = _____2,500 vph _____ = 1252 pc/ph/pl

0.9 x 3 x 0.87 x 0.85

Page 25: 8 capacity-analysis ( Transportation and Traffic Engineering Dr. Sheriff El-Badawy )

25

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا

50

Calculate Density

Example: from previous

D = _____1252 vph____ = 26.1 pc/mi/lane

48 mph

المنصورة-قسم الهندسة المدنية –معهد مصر العالي للهندسة والتكنولوجيا 51

LOS = D

Now D = 26.1 pc/mi/ln, LOS D (almost C)