365 signal conditioning

Upload: sunilkumar-reddy

Post on 03-Jun-2018

236 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 365 Signal Conditioning

    1/29

    Slide 1

    Signal Conditioning I) Filters

    Passive Filters (L, R, C circuits)

    Active Filters (Op Amp circuits) Loading Effect

    Energy Flow Between Two Subsystems

    Operational Amplifiers Golden Rules

    Op Amp Circuits

  • 8/12/2019 365 Signal Conditioning

    2/29

    Anti-Aliasing Filteran analog filter that removes signal frequenciesabovefs /2, wherefs is the sample frequency

    Amplifier Low-pass

    Filter ADC

    Input

    Signal

    Computer

    Slide 2

  • 8/12/2019 365 Signal Conditioning

    3/29

    Slide 3

    Filters

    Characterized in thefrequency domain through frequencyresponse function.

    Can be implemented usingpassive elements (R,L,C), activeelements (Op Amps, transistors) or digital components.

    Filter G(jw)Input Output

    x(t) y(t)Electrical Quantities:

    Voltage, Current,Impedance ...

    Electrical Quantities:Voltage, Current,

    Impedance ...

    Adjust Gain (Scaling);

    Clean up Noise;

    Isolate Interested Signal;

    Change frequency range;

    Integrate; Differentiate;

    ...

  • 8/12/2019 365 Signal Conditioning

    4/29

  • 8/12/2019 365 Signal Conditioning

    5/29

    Slide 4

    Low Pass Filters (LP)Frequency Response

    K : Static Sensitivity (Gain)t : Time Constant

    Cut-off Frequency (wC )

    At wC,

    Passive Filters

    G j K

    j

    w

    t w

    1

    wt

    C rad/sec1

    G K

    KwC of 2

    70%10

    -110

    010

    1

    -30

    -60

    -90

    0

    Frequency (rad/sec)

    Phasedeg

    10-1

    100

    101

    -30

    -20

    -10

    0

    Gain

    dB

    Bode Plot for a 1st Order Low Pass Filter

    PASS BAND

    -45o

    wC

  • 8/12/2019 365 Signal Conditioning

    6/29

  • 8/12/2019 365 Signal Conditioning

    7/29

    Slide 6

    High Pass Filters (HP)Frequency Response

    K : Sensitivity (Gain)t : Time Constant

    Cut-off Frequency (wC )

    At wC,

    Passive Filters

    G j K j

    j

    wt

    t w

    1

    wt

    C rad/sec1

    G K

    KwC of 2

    70%

    10-1

    100

    101

    -30

    -20

    -10

    0

    GaindB

    Bode Plot for 1st Order High Pass Filter

    10-1

    100

    101

    0

    30

    60

    90

    Frequency (rad/sec)

    Phasede

    g

    PASS BAND

    -45o

    wC

  • 8/12/2019 365 Signal Conditioning

    8/29

    Slide 7

    High Pass Filters (LP)Passive Implementation (RC Network)

    Impedance (Z) Analysis:

    Resistance ( ZR ):

    Capacitance ( ZC):

    Passive Filters

    G j Vo

    Vin

    R j

    R jHP w

    w

    w

    C

    C 1

    HP RC

    RC

    K

    Time Constant

    Cut - off Frequency

    Gain as

    C

    1

    1

    VoR

    C

    Vin

    Z V

    I RR R

    R

    Z V

    I C jC

    C

    C

    1

    w

  • 8/12/2019 365 Signal Conditioning

    9/29

    Slide 8

    Band Pass FiltersFrequency Response

    Passive Implementation

    Passive Filters

    G j K

    j

    LP

    j

    j

    HP

    BPLP

    HP

    HP

    HP LP

    HP LP

    w

    t w

    t w

    t w

    t t

    w w

    1

    1 1

    10-2

    10-1

    100

    101

    102

    103

    -90

    0

    90

    Frequency (rad/sec)

    Phasedeg

    10-2

    10-1

    100

    101

    102

    103

    -30

    -20

    -10

    0

    Gain

    dB

    Bode Plot for a Band Pass Filter

    PASS BAND

    wLPwHP

    Vin Vo

    RLP

    CLP RHP

    CHP

    Low Pass High Pass

    Notice theLOADING EFFECT

  • 8/12/2019 365 Signal Conditioning

    10/29

    Vin Vout

    R1

    C1 R2

    C2

    Low Pass High Pass

  • 8/12/2019 365 Signal Conditioning

    11/29

    Slide 9

    Notch (Band Stop) FiltersFrequency Response

    Implementation

    Passive Filters

    G j

    j

    LP

    j

    j

    HP

    BPLP

    HP

    HP

    HP LP

    HP LP

    w

    t w

    t w

    t w

    t t

    w w

    1

    1 1

    10-2

    10-1

    100

    101

    -15

    -10

    -5

    0

    Gain

    dB

    Bode Plot for a Notch (Band Stop) Filter

    10-2

    10-1

    100

    101

    -30

    0

    30

    Frequency (rad/sec)

    Phasede

    g

    wLP wHP

    STOP BAND

    Low Pass

    Filter

    High PassFilter

    +

    +

    VoVin

  • 8/12/2019 365 Signal Conditioning

    12/29

    Slide 10

    Loading Effect Electrical System

    Ex: Band Pass Filter

    Mechanical SystemsEx: Two DOF Oscillator

    Vin Vo

    RLP

    CLP

    RHP

    CHP

    Low Pass High Pass

    V1

    G jV

    V R CLP

    in LP LP

    1 1

    1j

    G jV

    V

    R C

    R CHP

    o HP HP

    HP HP

    1 1

    j

    j

    G jV

    V

    R C

    R

    RR C

    G j G j

    BP o

    in

    HP HP

    LP HPLP

    HPHP HP

    Load ing

    HP LP

    j

    j j j1 1

    M2

    K2

    D2

    M1

    K1

    D1

    F

    X1

    X2

    Interactions between the two mass-spring-damper subsystems (loading)were considered while balancing theinternal forces.

  • 8/12/2019 365 Signal Conditioning

    13/29

    Loading Effect Thevenin equivalent circuit:

    Eth is the voltage Vout when Zin is infinite (no loading):

    Zout is the impedance seen at the output when voltagesource is short-circuited

    Zout

    Zin

    Eth

    Vout

    Slide 11

  • 8/12/2019 365 Signal Conditioning

    14/29

    Loading Effect

    Slide 12

    Vout=

  • 8/12/2019 365 Signal Conditioning

    15/29

  • 8/12/2019 365 Signal Conditioning

    16/29

    Slide 14

    EX:

    (A) Derive the frequency response function (from Vin to Vout) for the passive filter shown

    below:

    (B) You are asked to design a band pass filter using the above circuit with a pass band from

    10 Hz to 250 Hz. Present your design by choosing an appropriate set of R1, C1, R2, and

    C2 as well as the Bode plots of the filter's ideal and actual frequency responses.

    Loading EffectC

    2

    R2

    R1

    C1V

    in

    Vout

    V1

  • 8/12/2019 365 Signal Conditioning

    17/29

    Slide 15

    EX:

    (C) One of your purchasing people wants you to use the same value of capacitance for both

    C1 and C2. Will this still work? Why or why not?

    Loading Effect

  • 8/12/2019 365 Signal Conditioning

    18/29

    Slide 16

    EX:

    Shown above is a block diagram of a measurement system, please find:

    (A) The individual frequency response functions: G1(jw), G2(jw), G3(jw).

    (B) The frequency response function of the entire system: Vout/ A

    Loading EffectAccelerometer

    G1(j)

    K1 = 100 V/(m/s 2)

    z = 0.01

    n = 5000 rad/s

    High Pass FilterG2(j)

    K2 = 1

    = 0.2 s

    AmplifierG3 = K3K3 = 10

    Acceleration

    AVoltage

    Vout

    G1 G2 G3

    Input Impedance ------- 1000 1000 Output Im pedance 40 10 ---------

  • 8/12/2019 365 Signal Conditioning

    19/29

  • 8/12/2019 365 Signal Conditioning

    20/29

    Slide 18

    Op Amps Op Amp Characteristics

    Ideal Reality

    Infinite High Open Loop Gain 104 to 106

    Infinite High Input Impedance 300 K to 1000 G0 Low Output Impedance 10 to 5 K

    (150 - 200 typical)

    Implications:

    Used seldom in open-loop mode:

    Almost exclusively used in feedback mode.

  • 8/12/2019 365 Signal Conditioning

    21/29

    Slide 19

    Op Amps Feedback Operation

    Assumption I

    High Input Impedance

    - Assumption II

    High Gain (GO >> 1), forw< 105 Hz

    E E

    ZI I

    E E

    Zi d

    II F

    d o

    F

    I II F

    EoE +

    E -

    ZF

    ZI Ed

    Ei

    E G EO O d

    E E

    ZI I

    E E

    Z

    E

    E

    i d

    II F

    d o

    F

    O

    iZZ G G

    I

    F O O

    1

    1 1 1

    1

    0

    1

    1 1 1

    G

    E

    E

    Z

    Z

    O

    O

    iZ

    Z G G

    F

    IIF O O

  • 8/12/2019 365 Signal Conditioning

    22/29

    Slide 20

    Op AmpsGolden Rules of Op Amps: Voltages at the input terminals (inverting and non-inverting)

    are the same.

    The output of the Op Amp will do whatever is necessary to makethe voltage difference between the inputs zero:

    It looks at the input terminals and changes its output voltagesuch that the external feedback network will bring the inputdifference to zero.

    No current flows into the Op Amp.

    Op Amp draws very little input current (0.5 mA for a 741C); we canround it to zero for practical calculation.

  • 8/12/2019 365 Signal Conditioning

    23/29

    Slide 21

    Op Amps Examples) Inverting Amplifier Non-inverting Amplifier

    Q: What if RF= 0 and Ri ?

    Eo

    E

    E

    Z

    Z

    R

    R

    E RR

    E

    O

    i

    F

    i

    F

    i

    OF

    ii

    E R

    R RE E

    R R

    RE

    E RR

    E

    ii

    i FO O

    i F

    ii

    OF

    ii

    1

    E +

    E -

    Ed

    IF

    EiRi Ii

    RFEo

    E -

    E +Ei

    RFRi

  • 8/12/2019 365 Signal Conditioning

    24/29

    Slide 22

    Differential AmplifierOp Amps Examples) Voltage Follower (Buffer)

    E EO i

    E R

    R RE

    E E

    R

    E E

    R

    E E

    E R RR

    RR R

    E RR R

    E

    R R R R

    E R

    RE E

    O

    O

    O

    4

    2 42

    1

    1 3

    1 3

    1

    4

    2 42

    3

    1 31

    1 2 3 4

    3

    12 1

    ,

    If and

    Eo

    E-

    E +Ei Eo

    E

    +

    E -E1R1

    R3

    E2 R2 R4

  • 8/12/2019 365 Signal Conditioning

    25/29

    Slide 23

    Op Amps Examples) Multi-Stage Filters

    +

    --

    m F

    mF

  • 8/12/2019 365 Signal Conditioning

    26/29

    Slide 24

    Op Amps Examples) Summing Junction

    I E

    RI

    E

    R

    I I I ER

    FO

    F

    11

    12

    2

    2

    1 2

    ,

    If ,

    E R

    R E R

    R E

    R R R

    E R

    RE E

    O F F

    OF

    11

    22

    1 2

    1 2

    E R

    RE

    R

    RE

    R

    REO

    F F F

    NN

    11

    22

    EoE +

    E -

    Ed

    E1

    RF

    R2

    R1

    E2

    IF

    I1

    I2

    RNEN

  • 8/12/2019 365 Signal Conditioning

    27/29

    Slide 25

    Op Amps Examples) Integrator Differentiator

    Eo

    E +

    E -

    Ed

    CF IF

    EiRi Ii

    E

    E

    Z

    Z

    R C R j

    O

    i

    F

    i

    C j

    i F i

    F

    11w

    w

    IF

    Eo

    E +

    E -

    Ed

    CiEi

    RF

    Ii

    E

    E

    Z

    Z

    RC R j

    O

    i

    F

    i

    F

    C j

    i F

    i

    1

    w

    w

  • 8/12/2019 365 Signal Conditioning

    28/29

    Slide 26

    Op Amps Examples) Low Pass Filter

    Eo

    E +

    E-Ed

    CF

    EiRi Ii

    RF

    ZF

    E

    E

    R

    R R C

    O

    i

    F

    i F F

    LP

    1

    1

    t

    w

    j

    High Pass Filter

    Eo

    E +

    E-Ed

    Ei

    Ri IiCi

    RFZi

    E

    E

    R

    R

    j

    j

    O

    i

    F

    i

    HP

    HP

    R C

    R C

    i i

    i i

    t

    w

    t

    w

    1

  • 8/12/2019 365 Signal Conditioning

    29/29