3.1 3 process and device physics 1. quantum-theoretical definition of semiconductor 2. pn diode 3....

60
3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semicondu ctor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Th eory 4. Ideal MOSFET : I-V Relations 5. Actual MOSFET(Secondary Effects) 6. CMOS Process 7. CMOS Layout Design Rules 8. SPICE Model for MOSFET Contents

Upload: cleopatra-nichols

Post on 25-Dec-2015

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.1

3 Process and Device Physics

1. Quantum-Theoretical Definition of Semiconductor

2. PN Diode

3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory

4. Ideal MOSFET : I-V Relations

5. Actual MOSFET(Secondary Effects)

6. CMOS Process

7. CMOS Layout Design Rules

8. SPICE Model for MOSFET

Contents

Page 2: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.2

1. Quantum Theoretical Definition of Semiconductor

Semiconductor No.1 Property;

Two charge carriers(electron & hole) existing in energy bands separated by Eg

Two important facts about semiconductor(or Semiconducting Crystal) ; Band Gap & Fermi Level

Band Gap(between Conduction & Valence band) Discrete energy levels in Isolated Quantum Well

E=0

Energy level

Page 3: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.3

Perturbation of discrete energy levels in multiple QW’s in interacting distance(plus the effect of finiteness of energy wall)

Energy level becomes Energy band

Eg

(Energy Gap)

“nucleus”

EF(Fermi Level)

If the structure is non-periodic, the allowed energy levels constitute continuum.

Page 4: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.4

Fermi Level(P(EF)=0.5 always)

According to Fermi-Dirac Statistics, P(E) = Probability of energy level, E being occupied by a particle, is

~1+exp[(E-EF)/kT]

1

T=0

E

P(E)

EF

E=0

Ec

Ev

full

empty

EgEF

T0

freeelectron

hole

nucleus

0.5P(E)

Page 5: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.5

Fermi Level(cont’)

Impurity-doped Semiconductor ; electron & hole populations are unbalanced by doping n-type & p-type atoms, respectively.

(n-type Semiconductor)

Ec

Ev

EF

(p-type Semiconductor)

EF

Excesselectron

Phosphorus

Silicon

(n-type Semiconductor)

Deficit of electron=hole

BoronSilicon

(p-type Semiconductor)

Page 6: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.6

2. P-N Diode

Page 7: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.7

Page 8: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.8

In Equilibrium, particle movement, in macroscopic sense, has stopped(i.e., no current flow in case of charged particle) ; therefore Fermi level is constant throughout all locations in equilibrium, i.e., connected and unbiased

(n-type Semiconductor)(p-type Semiconductor)

Ec

EF

EV

EFP

EFN

Page 9: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.9

Forward bias :

P N

I

VF

Reverse bias :

VF

I

VB

V

VR

Page 10: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.10

3. MOS Capacitor Theory

MOS Capacitor : combination of Metal, (Perfect Conductor), Oxide(Perfect Insulator in DC Sense, and good Dielectric in AC sense), and Semiconductor substrate.

(Oxide)

EFM

(metal)

(p-type silicon)

Ec

EFS,P

EV

M

S,P

(M) (O) (S)

: Minimal energy an electron needs to escape from inside metal(silicon) to air

Deple-tionRegion

P-Si

V

[V=0]

[separation]

M( S)

M S,P

Page 11: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.11

flat-band conditionflat-band condition

V=VFB

VFB = MS - VFB = MS - Qfc

Cox

MS = M - S(Work Function Difference)

Qfc : Fixed charge per area

Cox : Oxide capacitance per unit area

Flat-band voltage(VFB)

Page 12: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.12

Inversion conditionInversion condition

Xd

s

(M) (O) (P-Si)

Ec

Ei

EF

X=0

F

VT = VFB + 2F +QB

Cox

F = Ei - EF

q

QB = charge per unit surface area

= qNAXD

Threshold voltage (VT)

Page 13: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.13

From Gauss’ Theorem, D = E= - (x)

xxxx AqN1

d)(1

)(E

)(V)(E xx

A

F

A

2A

qN

)(2ε2

qN

)(ε2

qN)0(V)s(

sxxx dd

2AA

ε2

qNN

ε

q )E(- )V( xxdxdxxx As ,

Fsdx 2qNε2qNQ AAB

Fsox

FFBTC

VV 2qNε21

2 A

Page 14: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.14

)2qNε21

2 (A BSFsox

FFBT VC

VV

)0(

qNε2

)22(

0

0

As

BSTT

ox

FBSFTT

VVVC

VVV

: body effect constant

VBS = Bulk(Substrate) to Source (reverse) bias voltage

Page 15: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.15

Surface Conditions : Accumulation - Flat-Band - InversionV<VFB V=VFB V>VT

1) V=VFB

2) V=0

3) V=VT

4) V>VT

1)

2)

3)

4)

xdXd,max

1, 2 : immobile charge(ionized impurity)3, 4 : mobile charge(electron)

Page 16: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.16

Capacitance-Voltage Plot (C/V Plot)

+_

vi

V

C

R

vo

vo -jRCvi

voC

Low frequency, or MOSFET structure

VT V

C

High frequencypulsed V(deep depletion)

( <<generation rate)

n+

p

Thermal generation of e,h-pair n+ diffusion: prompt supplier of electron

Page 17: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.17

4. Ideal MOSFET I/V Relations

n+

p-sub

n-ch MOSFET

n+

p+

n-sub

p-ch MOSFET

p+

Page 18: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.18

Enhancement-type MOSFET vs. Depletion-type

VDD > 0 VDD < 0

VGS > 0 VGS < 0

ID < 0ID > 0

VGS

ID

(NMOS)

(NMOS)

(PMOS)

(PMOS)

ID

ID

ID

VGS

VGS

VGS

VT > 0

VT < 0

VT < 0

VT > 0

Enhancement

NMOSDepletion

PMOS

Page 19: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.19

MOSFET I/V Relation

LW

N+ N+

i) cutoff region ; VGS <VT

ID=0

ii) nonsaturation(or triode) region ; VGSVT, O<VDSVGS-VT

DrainSource

Gate

Qn=Cox(VGS-VT) Qn=Cox(VGS -VT-VDS)

Qn(X)=qCOX(VGS-VT-V(X))

IDS=WnQn(x)

dV(x)

dx

Qn(x) : #of electrons per unitsurface area

n : electron mobilityV(x) : surface potential at x

Page 20: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.20

Integrating both sides ofIDS=WnQn(x)

dV(x)

dx

I dx qW C V V V x dV xDSo

L

n ox

V

GS TDS

0[ ( )] ( )

22

2

2

)(2

)]([2

],2

)[(

]2

)[(

TGSTGSDS

DSDSTGS

DSDSTGSoxn

VVVVV

VVVV

VVVV

L

WCq

IDS

where ( ) ( ) ( )q CW

Ln ox

Material process

Layout geometry

Pinch-offpoint

Short

Long-channel

(VGS-VT) (VDS)

IDS

2

2( )V VGS T

Page 21: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.21

ii) Linear Region, VDS (0.1V)

IDS=(VGS-VT)VDS : analog multiplier

iii) Saturation Region

- MOSEF is called Square-Law Device

- Remember =qnCoxW/L, where n

VGS

VDS

IDS

I V V VV

V V VDS GS T DSDS

DS GS T [( ) ]

2

2

I V VDS GS T 2

2( ) , For VDSVGS-VT : indep. of VDS

n

GS TV V0

1 ( ) (surface scattering)

Actually less than square

Page 22: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.22

i) Pinch-off in long-channel device

ii) Velocity saturation in short-channel device

Two causes for current saturation

Source Drain

pinch-off point depletion region

vsatv v=

Ecrit

E

v=critv=vsatcrit

Page 23: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.23

5. Actual MOSFET(Secondary Effect)

Threshold voltage variations

i) Body effect(Substrate bias) :

ex.1 Series-connected MOSFET’s

- NMOSFET in 2-input NAND-gate

- PMOSFET in 2-input NOR-gate

VT of A-NMOS & VT of A-PMOS depend on VY

A

B

VDDX

YA B

XY

VDD

V V VT T F BS F 0 2 2 ( )

Page 24: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.24

ii) -VT due to Short-Channel effect

iii) +VT due to Narrow-Channel effect(?)

1

QB : (effective) charge per unit surface area

L(channel length)

VT

1

V VQ

CT FB FB

OX

2 V VQ

CT FB FB

OX

2

Page 25: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.25

iv) Drain-Induced Barrier Lowering(DIBL) ; for small L

can lead to Punch-through

ex. DRAM cell leakagecurrent depends on the voltageon the data line

pn+ n+ n+ n+p

S

VT

VDS

Page 26: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.26

Channel Length ModulationLMASK

L

LXj

Xj

: )1(

11

11

11

2

2

0,

111

DSDSDS

DSDS

TGSDSA

s

eff

jMASK

VII

VLL

V

LL

LL

LLI

VVVqN

L

LLL

XLL

LAMBDA(SPICE Level1 modelparameter)

=

VDS

Page 27: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.27

Subthreshold Current

Actually MOSFET is conducting also below VGS < VT ;

Subthreshold or weak inversion condition

ID ~ exp , Vth = , 0 < < 1

Reducing VT according to VDD down - scaling yields high subthreshold current.

VV

GS

th

kTq

I V VGS T~ ( ) 2

ln ID

VGS

I ExpV

VGS

th

~ ( )

Page 28: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.28

Effect of Source, Drain Resistance

RS = · R + RC

LS

W

RC : contact resistance

R : sheet resistance

RSRD

ID

VDS

Silicidation reduces polysilicon gate resistanceas well as RS, RD

+ -RS

VGS

RD

Page 29: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.29

Hot Electron Effect ;

For submicron MOSFET, electron becomes “hot” due to strong E(electric field) 104 V/cm = 1V/m

E is very high near the drain junction

LDD(Lightly-Doped Drain) MOSFET is effective for reducing the E-field near drain junction.

Hot electron captured in the gate oxide through tunneling causes VT instability(threshold drift).

n+ n+ n+ n+

n-

LDD-MOSFET

Page 30: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.30

CMOS Latchup

i) When Rnwell = Rpsubs = 0

latchup is impossible

ii) When Rnwell = Rpsubs =

n p 1 causes latchup

iii) When 0 < Rnwell, Rpsubs <

n p ( >1) causes trouble

Page 31: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.31

6. CMOS Process

Snapshot of IC fabrication process

Page 32: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.32

Step1 : Crystal growing(Czochralski’s method)

2 : sawing

3 : CMP(Chemical-Mechanical Polish)

4 : SiO2-layer growth/Deposit(CVD) or Sputtering of poly, SiO2, Si3N4, Al

5 : Resist Spin Coat

6 : mask exposure

7 : Resist develop

8 : Oxide etch(using plasma/ion/wet)

9 : Ion Implant for Impurity doping

10

11 : Strip Resist

12 : Strip Oxide

Repeated12-20 timesfor a CMOS

process

Page 33: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.33

Cross-section of MOSFET showing each layerLOCOS(or Isoplanar) Process for PMOSFET

Page 34: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.34

1. Field Implant

2. Grow Field Oxide

& Remove Nitride

3. Form Poly Gate : deposit, dope, mask & etch

4. Form Source/Drain for

n-channel MOSFET &

n-type substrate contact

5. Form Source/Drain for P-channel MOSFET & P-type substrate contact

MOSFET Formation Process

+ + + + + +p-SiSiO2

Si3N4

+ + + + ++ Channel Stop

Page 35: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.35

Basic N-well CMOS Process

Page 36: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.36

Cross-section of CMOS Inverter in N-well CMOS Process

Page 37: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.37

Substrate & Well Contacts

Page 38: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.38

Twin-well CMOS

Page 39: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.39

CMOS Process Layers

Via 1

Page 40: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.40

Mask layer drawn

N-well = not(P-well) n-diffusion(silicon)={CAA(mask)

Active = Pdiff + ndiff CSN(mask)}

n-diffusion implant = grow(ndiff) ( CPG(mask)

P-diffusion implant = grow(Pdiff)

Page 41: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.41

Page 42: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.42

Sheet Resistance

W L

t

RL

W tLW t

LW R

layout geometry process

Page 43: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.43

Reducing R with Silicide

Silicide : a metallic compound of silicon

i) polycide : reduces Rg

ii) salicide : reduces Rg, Rs and Rd

poly-Si Metal(Ti,W,Ta,Co)

deposit,sinter &

etch silicide

Page 44: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.44

Multi-Level Metalization issues

Planarization of surface using CMP(Chemical-Mechanical Polishing)

insulating glass

rough surfaceflat surfaceafter grinding

with slurry

Page 45: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.45

Inter-Level Interconnect I) diffusion contact/polysilicon contact using barrier metal(platinum)

ii) contact plug or via plug : Tungsten

iii) sandwiched metal layer : TiW/AlCu/TiW

Page 46: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.46

7. CMOS Layout Design Rules

-based design rule : all dimensions rep. as integer times , scalable.

ex. Mead-Conway rule, MOSIS rev. 4-6

m-based design rule : some dimensions are not scalable.

ex. Most company(foundry), MOSIS rev.7

mixed(+) design rule :

3 types of design rules FEOL(Front End of the Line) ;

BEOL(Back End of the Line) ; metal interconnect

Glass layer

Page 47: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.47

Page 48: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.48

Page 49: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.49

Page 50: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.50

Page 51: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.51

8. SPICE Model for MOSFET

SPICE originally developed at Univ. Berkeley

now many versions are available, e.g.,HSPICE, PSPICE, SmartSPICE, AIMSPICE, …

Models for R,L,C, V&I source, diode, BJT, JFET, MOSFET, Transmission lines, MOSFETs, and Macros(Behavioral models), etc.

Levels Level1(Schichman-Hodges Model): Simple, fast, good timing

Level2(Grove-Frohman Model): Short, narrow channel effect, slow, convergence poor

Level3(Empirical Model): Faster than Level2 while as accurate, convergence OK

Level13(BSIM Model): Now most widely used

Level27:SOS Model

Page 52: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.52

MOSFET is defined by MOSFET model + element parameters,

CAPOP model parameters; gate capacitance

ACM(Area Calculation Method) model parameters: diode model

Model selection: each MOSFET is described by element & .MODEL statement

ex) M3 3 2 1 0 PCH .MODEL PCH PMOS LEVEL=13 <parameters>

Analysis: DC, transient, AC, and noise DC, transient analysis: same except the inclusion of capacitances

AC & noise analysis: replace Ids by gm, gds & gmbs

where gm= , gds=Ids

Vgs

Ids

Vds

Page 53: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.53

Equivalent Circuit MOSFET Transient Analysis

Page 54: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.54

Equivalent Circuit, MOSFET AC Analysis

Page 55: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.55

MOSFET AC Noise Analysis

Page 56: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.56

LEVEL 13 BSIM Model

Berkeley Short Channel IGFET Model(BSIM)

VT = VFB + B + K1 B+VSB - K2(B+VSB) + VDS

Sub-threshold current: calculated when NO(ZNO) < 200

Ilim*Iexp

Ilim + Iexp

IDS = : (weak-inversion current)

IDS = IDS,S + IDS,w : (continuous 1st derivative bet. strong & weak inversion region)

Page 57: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.57

Geometry-sensitivity Factors for Parameter Processing

A = A+ LA0( - ) + WA0( - )

ex) VFB = - 0.35(volt), LVFB0 = - 0.1(volt*micron),

WVFB0 = 0.08(volt*micron)

LREFeff = 2 micron, WREFeff = 10 micron

zvfb = VFB + LVFB0 + WVFB0

– Model parameters processed according to the device size start with ‘z’ follo

wed by the parameter name

Bias-Sensitivity Factors( start with ‘’ )

xu0= zu0 - zx2u0 vsb

xu1 = zu1 - zx2u1 vsb + zx3u1 (vds - VDDM)

1Leff

1LREFeff

1 1weff WREFeff

Page 58: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.58

Page 59: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.59

이 시대는 정보화시대라고 한다 . 이 시대에는 모든 사업의 성패가 적절한 정보의소유정도에 달려 있다 . 많은 사람들은 자기에게필요한 정보가 매우 얻기 힘들고 , 그것만 얻으면모든것이 다 해결된다고 생각한다 .이들은 자기가 이미 갖고 있는 정보를 다듬고생각하여 활용하는 것 보다는 ,오로지 쓸데도 없는 새로운 정보를 찾아숱한 시간을 날린다 .

이 시대는 정보화시대라고 한다 . 이 시대에는 모든 사업의 성패가 적절한 정보의소유정도에 달려 있다 . 많은 사람들은 자기에게필요한 정보가 매우 얻기 힘들고 , 그것만 얻으면모든것이 다 해결된다고 생각한다 .이들은 자기가 이미 갖고 있는 정보를 다듬고생각하여 활용하는 것 보다는 ,오로지 쓸데도 없는 새로운 정보를 찾아숱한 시간을 날린다 .

정보의 허상을좇는 것

정보의 허상을좇는 것

Page 60: 3.1 3 Process and Device Physics 1. Quantum-Theoretical Definition of Semiconductor 2. PN Diode 3. MOS(Metal-Oxide-Semiconductor) Capacitor Theory 4. Ideal

3.60

자기가 도저히 얻을 수 없는 정보나사람 , 혹은 매우 구하기 어려운정보나 사람이 없어서사업이 안 된다고 생각하는 사람을운명적 비관론자라고 부른다 .

자기가 도저히 얻을 수 없는 정보나사람 , 혹은 매우 구하기 어려운정보나 사람이 없어서사업이 안 된다고 생각하는 사람을운명적 비관론자라고 부른다 .

비관의 자유 (?)비관의 자유 (?)