2006 nano nanotechnology

Upload: albert

Post on 30-May-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 2006 Nano Nanotechnology

    1/60

    Introduction to nanotechnology:

    Chapter 4 : Properties ofNanoparticles

    Yang-Yuan ChenLow temperature and nanomaterial labatory

    Institute of Physics, Academia Sinica

    E-mail : [email protected]

    http://www.phys.sinica.edu.tw/%7Elowtemp/

  • 8/14/2019 2006 Nano Nanotechnology

    2/60

    Introduction:

    1. Metal Nanoclusters

    2. Semiconducting Nanoclusters

    3. Rare Gas and Molecular

    Clusters

    4. Methods of Synthesis

  • 8/14/2019 2006 Nano Nanotechnology

    3/60

    Nanoparticles

    size? ~ 1-1000 nm

    Criterion: Critical length or characteristic length 1. Thermal diffusion length

    2. Scattering length ( mean free path)

    3. Coherence length

    4. Energy level spacing >> thermal energy KT

    5. Surface effect

    6. other

  • 8/14/2019 2006 Nano Nanotechnology

    4/60

  • 8/14/2019 2006 Nano Nanotechnology

    5/60

    Virus ~10 nm~100 nm

    blood cell 200~300 nm

    bacteria 200~600 nm

  • 8/14/2019 2006 Nano Nanotechnology

    6/60

    Energy

  • 8/14/2019 2006 Nano Nanotechnology

    7/60

  • 8/14/2019 2006 Nano Nanotechnology

    8/60

    With FCC structure

    Surface effect

  • 8/14/2019 2006 Nano Nanotechnology

    9/60

    4.2.1 Magic numbers and structure

    No. of electrons for an atom:electronic magic numbers example

    He2: 1S2

    Ne10: 1S2,2S2, 2P6

    Ar 18: 1S2,2S2, 2P6 ,3S2, 3P6,Kr 36: 1S2,2S2, 2P6 ,3S2, 3P6,

    2. No. of atoms for a nanoparticlesStructural magic number

    The jellium model P75

    3d10

  • 8/14/2019 2006 Nano Nanotechnology

    10/60

  • 8/14/2019 2006 Nano Nanotechnology

    11/60

    (Excimer Laser Ablation ELA )(2003/3)(1993/1)

  • 8/14/2019 2006 Nano Nanotechnology

    12/60

  • 8/14/2019 2006 Nano Nanotechnology

    13/60

    Electronic magic numbers: the total mumber of electrons on the superatom whenthe top level is filled

    Structural magic number:Cluster has a size in which all the energy levels are filled

    4.2.2 Theoretical Modeling of Nanoparticles

    The jellium model P75

  • 8/14/2019 2006 Nano Nanotechnology

    14/60

    Theoretical calculation:Cluster as molecular

    Molecular orbital theory P78 Density functional theory P78

    Find the structure and geometry with the lowest energy

    4 2 3 G t i St t

  • 8/14/2019 2006 Nano Nanotechnology

    15/60

    4.2.3 Geometric Structure

  • 8/14/2019 2006 Nano Nanotechnology

    16/60

    Size dependent structure of Indiumnanoparticles

    Face-centered tetragonal

    Face-centered cubic

  • 8/14/2019 2006 Nano Nanotechnology

    17/60

    Magic numberC20, C24, C28, C32, C36, C50, C60, C70

  • 8/14/2019 2006 Nano Nanotechnology

    18/60

    3 0 4 0 5 0 6 0 7 0 8 0

    (

    720)*

    (631)*

    1 4 n m

    1 6 n m

    1 9 n m

    (8

    20)*

    (413)*

    (331)*(

    411)*

    (410)*

    (

    002)*

    2 1 n m

    b u l k

    T a

    c

    oun

    t(arb.

    un

    it)

    (220)

    (211)

    (200)

    (110)

    2 ( d e g r e e )X ray spectra of Ta

    000ulk33.36.7152.27.8955.34.7657.62.44

    - Ta (%)Tetragonal-Ta (%)CubicSize(nm)

    Size dependence of phase compositions

    Tetragonal

    Cubic

    lattice constant of Ta

  • 8/14/2019 2006 Nano Nanotechnology

    19/60

    10 15 20 25 30 35 403.300

    3.305

    3.310

    3.315

    bulk

    cubic-Ta

    0

    Latticeconstant(A)

    Size(nm)

    lattice constant of Ta

    10 15 20 25 30 35 40

    0.5204

    0.5208

    0.5212

    0.5216

    bulk

    Ta

    c/a

    Size(nm)

    10 15 20 25

    10.220

    10.225

    10.230

    10.235

    La

    tticecons

    tan

    t(A)

    c

    a

    Ta - Tetragonal

    La

    tticecons

    tan

    t(A

    )

    Size(nm)

    o

    5.320

    5.325

    5.330

    5.335

    o

    4 2 4 Electronic Structure

  • 8/14/2019 2006 Nano Nanotechnology

    20/60

    4.2.4 Electronic Structure

    Quantum Size Effect :Energy level spacing >> KBT

    Light-induced transitions between

    these levels determines the color

    Bulk 100 atoms 3 atoms

  • 8/14/2019 2006 Nano Nanotechnology

    21/60

    Light-induced transition between these levels determines the color of the materials

  • 8/14/2019 2006 Nano Nanotechnology

    22/60

    UV photo-electron spectroscopy

    4 2 5 Reactivity

  • 8/14/2019 2006 Nano Nanotechnology

    23/60

    4.2.5 Reactivity

  • 8/14/2019 2006 Nano Nanotechnology

    24/60

    4.2.6 Fluctuations ?

  • 8/14/2019 2006 Nano Nanotechnology

    25/60

    4.2.7 Magnetic cluster

    Magnetized cluster

    Nonmagnetic- magnetic transition

    1. Orbital magnetic moment

    2. Electron spin3. Levels filled with an even number of electrons net magnetic

    moment=04. Transition ion atoms: Fe, Mn, Co with partially filled inner d-orbital levels-

    net magnetic momentParrel align Ferromagnetic

    5 Ferromagnetic cluster with DC field superparamagnetism

    Superparamagnetism:

  • 8/14/2019 2006 Nano Nanotechnology

    26/60

    Superparamagnetism

  • 8/14/2019 2006 Nano Nanotechnology

    27/60

    Single domain

  • 8/14/2019 2006 Nano Nanotechnology

    28/60

    FeSi2DC

  • 8/14/2019 2006 Nano Nanotechnology

    29/60

    FC

    ZFC

    1. The temperature of peak value of in ZFC is defined as theBlocking temperature TB

    2. of ZFC and of FC deviate at TB 3. Above TB, of ZFC and of FC are overlap.

    1

    2

    Blocking Temperature

  • 8/14/2019 2006 Nano Nanotechnology

    30/60

    Blocking Temperature

    kB is the Boltzmann constant

    K is the anisotropic constant

    V is the volume of nanoparticle

    -

  • 8/14/2019 2006 Nano Nanotechnology

    31/60

    -500 0 500-5

    0

    5

    50K

    5K

    M

    (emu/g)

    H/T (G/K)

    FeSi2 40nm particles TB=20 K

    1. T< TBHysteresis appearsin M-H. Due to thermal energy

    is less than the interactionsamong particles

    2. T> TBNo hysteresisappears in M-H. Since thermalenergy is larger than theinteractions among particles

    N i i i i

  • 8/14/2019 2006 Nano Nanotechnology

    32/60

    Nonmagnetic- magnetic transition

    Rh

    4 2 8 Bulk to Nanotransition

  • 8/14/2019 2006 Nano Nanotechnology

    33/60

    4.2.8 Bulk to NanotransitionGold melting point

    4 3 S i d ti N ti l

  • 8/14/2019 2006 Nano Nanotechnology

    34/60

    4.3 Semiconducting Nanoparticles

    4.3.1 Optical Properties

    blue shift as size is reduced Due to band gap

    Exciton: bound electron-holepair,produced by a photon having hv> gap

    Hydrogen-like: energy level spacing Light-induced transition

    Hydrogen-like: energy level spacing

  • 8/14/2019 2006 Nano Nanotechnology

    35/60

    Hydrogen like: energy level spacing

    Light-induced transition

    Wh t h h th i f ti l

  • 8/14/2019 2006 Nano Nanotechnology

    36/60

    What happens when the size of nanoparticles

    becomes smaller than to the radius of the orbit ofexciton?

    Weak-confinement size d> radius of electron-hole pair:

    blue shift Strong-confinement

    size d< radius of electron-hole pair:

    Motion of the electron and the hole becomeindependent, the exciton does not exist

  • 8/14/2019 2006 Nano Nanotechnology

    37/60

    Absorption edge, band gap

    exciton

    5. Size dependence properties of quantum dots CdSe surface

    h d i

  • 8/14/2019 2006 Nano Nanotechnology

    38/60

    charge density

    300 350 400 450 500 550 600 650 700

    ~ 3 nm~ 4 nm

    ~ 5 nmA.U

    Wavelength (nm)

    20 25 30 35 40 45 50 55 60

    Bulk

    112

    103110

    102

    101002

    100

    5 nm

    4 nm

    3 nm

    Intensi

    ty(arbun

    its)

    2 (degree)

    absor

    bance

    4 3 2 Photofragmentation

  • 8/14/2019 2006 Nano Nanotechnology

    39/60

    4.3.2 Photofragmentation Si or Ge can undergo fragmentation under laser light

    Dissociate!

    4 3 3 Coulombic Explosion

  • 8/14/2019 2006 Nano Nanotechnology

    40/60

    4.3.3 Coulombic Explosion

    F=e2/r2

  • 8/14/2019 2006 Nano Nanotechnology

    41/60

    4 4 Rare Gas and Molecular Clusters

  • 8/14/2019 2006 Nano Nanotechnology

    42/60

    4.4 Rare Gas and Molecular Clusters

    4.4.1

    Xenon clusters are formed by adiabaticexpansion of a supersonic jet of the gasthrough a small capillary into a vacuum.

    Xenon

    Repulsion of coulombic electronic coreDipole attractive potential

    Lennard-Jones potential for

    calculation structure

  • 8/14/2019 2006 Nano Nanotechnology

    43/60

  • 8/14/2019 2006 Nano Nanotechnology

    44/60

    superfluid

  • 8/14/2019 2006 Nano Nanotechnology

    45/60

    superfluid

    When T= 2.2 K lambda point

    He4 becomes a superfluid, its viscositdrops to zero

  • 8/14/2019 2006 Nano Nanotechnology

    46/60

    P. Sindzingre PRL

    63,1061(1989)

  • 8/14/2019 2006 Nano Nanotechnology

    47/60

  • 8/14/2019 2006 Nano Nanotechnology

    48/60

    At ambient condition

    80% of water molecularsAre bounded into clusters

  • 8/14/2019 2006 Nano Nanotechnology

    49/60

    4 5 1 RF Plasma

  • 8/14/2019 2006 Nano Nanotechnology

    50/60

    4.5.1 RF Plasma

    4 5 2 Chemical Method

  • 8/14/2019 2006 Nano Nanotechnology

    51/60

    4.5.2 Chemical Method

    Reducing agents

    Molybdenum

    4.5.3. Thermolysis(Thermald iti )

  • 8/14/2019 2006 Nano Nanotechnology

    52/60

    decomposition)LiN3

    -> Li

    Electron paramagnetic resorance(EPR)

  • 8/14/2019 2006 Nano Nanotechnology

    53/60

    (EPR)

    EPR measures the energy absorbed whenelectromagnetic radiation such as microwave

    induces a transition between the spin states mssplit by a DC magnetic field.

    ms

  • 8/14/2019 2006 Nano Nanotechnology

    54/60

    4.5.4 Pulsed Laser Method

  • 8/14/2019 2006 Nano Nanotechnology

    55/60

    5 u sed ase et od

    Silver nitrate+ reducing agent -----> Silver nanoparticle

    heating

    Laser Ablation

  • 8/14/2019 2006 Nano Nanotechnology

    56/60

    Laser Ablation

  • 8/14/2019 2006 Nano Nanotechnology

    57/60

    1. Quantum size effects on the competition betweenKondo interaction and magnetic order in 0-D.

  • 8/14/2019 2006 Nano Nanotechnology

    58/60

    0.1 1 100

    2

    4

    6

    8

    TN

    80 A

    Bulk

    80A & Bulk CeAl2

    C/T

    J/mol

    -1

    K-2)

    T KConclusion:In 80A -CeAl2, magnetic ordering completely disappears and the reaches 9500mJ/mol Ce K2.

    Unsolved problems:

    In nanoparticle, only 0.7 Mole Ce 3+ left, Is the 0.3 mol non-magnetic Ce really on thesurface ? or it is just a coincidence.

    5nm

    (2 2 0) 4CePt

    2 C (0 56 m l C T 4 6 K)

    Size dependence of Kondo effects in CePt2 nanoparticles

  • 8/14/2019 2006 Nano Nanotechnology

    59/60

    20 30 40 50 60 70 80 900

    4000

    8000

    12000

    16000

    CePt2

    3.8nm

    22nm

    33nm

    bulk

    5nm

    (2,2,2)

    (2,2,0)

    (6

    20)

    (4

    44)

    (6

    22)

    (5

    33)

    (5

    31)

    (4

    40)

    (511)

    (4

    22)

    (3

    31)

    (4

    00)

    (222)

    (311)

    (

    220)

    2(degree)

    (2,2,2)

    (2,2,0)

    0

    2

    4

    bulk

    2 CKondo

    (0.56 mol Ce, TK=4.6 K)

    C(J/m

    olK)

    0

    2

    4

    CKondo

    (0.58 mol Ce, TK=4.4 K)

    33nm

    T K

    0

    2

    4

    CKondo(0.65 mol Ce, TK=3.4 K)22nm

    0 5 10 150

    2

    4

    3.8nm

    CKondo

    (0.71 mol Ce, TK=100 K)

    X-ray spectra

    TEM of nanoparticles

    Specific heat of CePt2

  • 8/14/2019 2006 Nano Nanotechnology

    60/60