2006 int ansys conf 345

Upload: fads1254

Post on 03-Jun-2018

235 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 2006 Int Ansys Conf 345

    1/40

    ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    Usage of CFX for Aeronautical SimulationsUsage of CFX for Aeronautical Simulations

    Florian MenterDevelopment Manager Scientific Coordination

    ANSYS Germany GmbH

  • 8/12/2019 2006 Int Ansys Conf 345

    2/40

    ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    Overview

    Elements of CFD Technology foraeronautical simulations:

    Grid generation

    Solver technology

    Physical modeling (turbulence and transition)

    Validation simulations

  • 8/12/2019 2006 Int Ansys Conf 345

    3/40

    ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    Automated Hexahedra Generation

    New ICEM

    MeshingTechnology

    Generates

    hexahedralelements near

    surface

    Fills the rest withtetrahedral

    elements

    Limited user

    interaction

  • 8/12/2019 2006 Int Ansys Conf 345

    4/40

    ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    Unstructured Mesh

  • 8/12/2019 2006 Int Ansys Conf 345

    5/40

    ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    Mid Span

  • 8/12/2019 2006 Int Ansys Conf 345

    6/40ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    Mid Span

    Pressure Wall Shear

  • 8/12/2019 2006 Int Ansys Conf 345

    7/40ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    Solver Technology

    Requirements for CFD Solver:

    Operate at all Mach numbers

    Robust formulation to handle regions of poor

    grids Ability to handle low-Re grids (y+~1) for high

    Reynolds number flows

    Multigrid scalability

    Scalable parallelization

    Large problem sizes

  • 8/12/2019 2006 Int Ansys Conf 345

    8/40ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    CFX Solver: Elements and Volumes

    Flexibility Unstructured meshes with most common

    elements

    Volumes are mesh-dual of elements

    Robustness Pressure based formulation (Rhie and Chow)

    Coupled solution for mass and momentum Algebraic multigrid

    Accuracy Second order and high Resolution schemes

    Second order in time

    ElementVertices

    X

    XX

    X

    X

    X

    X

    X

    Integration points (IP)

    Control

    volume

  • 8/12/2019 2006 Int Ansys Conf 345

    9/40ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    Solver: Advection Accuracy

    Bounded 2nd order

    Adaptive Minimal diffusion

    Robust Bounded

    Default

    ( ) ipipPip xr

    += .

    Geometry Shock wave

    Convergence

  • 8/12/2019 2006 Int Ansys Conf 345

    10/40ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    ISL Space Vehicle Configuration

    Configuration

    Space vehicle re-entry

    Courtesy ISL/AFRL AF71F/G 7311 (Institute SaintLouis)

    Boundary conditions Mach 0.9 to 2.6

    Re 7.5E6

    =0 to +8.0

    Objective Bow shock, separated

    subsonic flow

  • 8/12/2019 2006 Int Ansys Conf 345

    11/40ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    ISL Space Vehicle Configuration

    Nominal case:

    Mach 2.6

    3 deg. angle of attack

    Forces steady in 130iterations

    230 iterations RMS

    residuals to s.p.round-off

  • 8/12/2019 2006 Int Ansys Conf 345

    12/40ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    ISL Space Vehicle Configuration

    NormalForce

    Moment

  • 8/12/2019 2006 Int Ansys Conf 345

    13/40ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    Forward Swept Wing

    Configuration

    Forward swept wing

    TUM (Breitsamter)

    Re = 0.46 * 106

    Boundary conditions

    Mach=0.118 = 0,,45 deg.

    Grids

    0.15m, 1.2m, 10.0mhex nodes

    Objective Low speed external

    Mesh dependence

    Part of this work was supported by research grants from the

    European Union under the FLOMANIA project G4RD-CT2001-00613.

  • 8/12/2019 2006 Int Ansys Conf 345

    14/40ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    FSW: Convergence

    10 million node case

    8 hours on 26 CPUs (K7 Athlon, 1600 MHz)

    Convergence in ~100 iterationsResidual Forces

  • 8/12/2019 2006 Int Ansys Conf 345

    15/40ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    Turbulence Models

    One equation models: Spalart-Allmaras (SA) model

    KE1E model

    Two-equation models: k- model (different variants

    and extensions)

    k-, BSL, SST model model

    Explicit algebraic ReynoldsStress model (EARSM)

    Second Moment Closure Launder-Reece Rodi

    Speziale-Sarkar-Gatski

    SMC- model

    k k L

    Unsteady models Scale adaptive simulation model

    (SAS)

    Detached Eddy SimulationModel (DES)

    LES

    Smagorinsky Dynamic (prototype)

    Innovative wall treatment: Scaleable wall functions

    All -equation based models

    Automatic wall treatment

    All -equation based models

  • 8/12/2019 2006 Int Ansys Conf 345

    16/40ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    k- Automatic Wall Treatment

    Automatic wall treatment for

    all -equation basedturbulence models: k- (Wilcox), BSL, SST, SMC-.

    Switches gradually between

    low-Re model and wallfunction based of normal tothe wall grid resolution

    Virtually no dependency ofresults to y+ resolution Green: low-Re mode

    Red: mixed mode

    Blue: wall function mode

  • 8/12/2019 2006 Int Ansys Conf 345

    17/40ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    Comparison of standard and

    Automatic Wall Treatment

    Standard low-Re

    Automatic near wall

    Flat plate simulation on threedifferent grids with y+~2, 10,

    80 Simulations run with SST

    model with:

    Standard low-Re wall treatment CFX automatic wall treatment

    Heat transfer (shown) andwall shear stress (not shown)virtually independent ofmesh resolution forautomatic wall treatment

    No y+ restriction for the user.

  • 8/12/2019 2006 Int Ansys Conf 345

    18/40ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    Separation Prediction: CS0

    Diffuser

    SST model gives improved separation behavior.

    CS0 NASA diffuser testcase (one of the most consistentcases for model validation)

  • 8/12/2019 2006 Int Ansys Conf 345

    19/40ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    Separation Prediction: NACA 4412

    Airfoil

    SST model is designed for aerodynamic flows

    SST Model was developed at NASA Ames

    SST Model was optimized for robustness and generality inCFX (the model developer works for CFX)

  • 8/12/2019 2006 Int Ansys Conf 345

    20/40ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    CFX Transition Model

    Blue = Laminar

    Red = Turbulent

    Laminar Flow

    Turbulent Wake

    Wake Induced

    Transition The transition from laminar toturbulent boundary layers is animportant physical effect inaeronautics.

    CFX has developed a uniquetransition model, which can be runinside the code using 2 additional

    transport equations. The model can be applied to

    complex geometries.

    Helicopter geometry shows

    transition location at the cabin andthe rearward wing system

    On the cabin, transition is caused bynatural transition on the wings due to

    Bypass transition

  • 8/12/2019 2006 Int Ansys Conf 345

    21/40ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    Airfoil with Transition

    Trans

    ition

    Trans

    ition

    Tu

    Contou

    r

    Trans

    ition

    Due to change in angle of attack(AOA), the transition location on theupper and lower side takes differentpositions

    Transition location on

    upper and lower

    surface as function of

    AOA

    Drag coefficient Cd asfunction of AOA

    Comparison with experimental data and

    XFOIL code (en-method)

    M D ll D l 30P 30N 3

  • 8/12/2019 2006 Int Ansys Conf 345

    22/40ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    McDonnell Douglas 30P-30N 3-

    Element Flap

    Re = 9 million, Mach = 0.2, AoA = 8

    Exp. hot film transition location measured as f(x/c)

    Slat

    transition:

    CFX = -0.056

    Exp.= -0.057

    Error: 0.1 %

    Tu

    Contour

    Main upper

    transition:

    CFX = 0.068

    Exp. = 0.057

    Error: 1.1 %

    Main lower

    transition:

    CFX = 0.587

    Exp. = 0.526

    Error: 6.1 % Flaptransition:

    CFX = 0.909

    Exp. = 0.931

    Error: 2.2 %

    Numerous transition

    locations measured in

    experiment

    Simulations compare wellagainst data

    Inlet turbulence intensity

    specified to match

    transition location on slat

  • 8/12/2019 2006 Int Ansys Conf 345

    23/40

    ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    AIAA Drag Prediction Workshop 2003

    Workshop for comparison of CFD codesfor simulation of lift and drag of airplaneconfigurations

    Simulation of installation drag of enginenacelle

    Comparison of 18 different contributionsmainly from aeronautical research centersand companies.

    Comparison with experimental data forDLR-F6 wing-body and wing-body-pylon-nacelle configuration

    http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop2/workshop2.html

  • 8/12/2019 2006 Int Ansys Conf 345

    24/40

    ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    Engine installation

    drag

    Results from all Contributions

    WB WBPN

    Wide range of results

    Mainly specialized aeronautics codes participation

    Drag prediction is difficult

    Cd - Drag

    Cl

    Lift

    Cd - Drag Cd - Drag

  • 8/12/2019 2006 Int Ansys Conf 345

    25/40

    ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    Engine installationdrag

    CFX Results Drag Polar

    WB

    WBPN

    Grid refinement

    Accurate prediction of lift and drag

    Improved results under grid refinement

    Cd - DragCd - Drag

    Cl

    Lift

  • 8/12/2019 2006 Int Ansys Conf 345

    26/40

    ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    Lift Curve Slope WB Case

    Lift vs. angle of attack

    Workshop Results CFX Results

  • 8/12/2019 2006 Int Ansys Conf 345

    27/40

    ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    Comparison of Lift Curve Slope

    3 different codes

    Influence of

    turbulence model numerics

    SST model proved successful in the workshop

    also in other codes

  • 8/12/2019 2006 Int Ansys Conf 345

    28/40

    ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    Upper Surface Flow Vis.

    Experimental Oil Flow CFX 5

    Separated Flow Separated Flow

    Overvprediction of corner separation zone

    observed with all turbulence models

  • 8/12/2019 2006 Int Ansys Conf 345

    29/40

    ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    Convergence History

    No code converged in the residuals due to oscillation of corner

    separation bubble

    CFX had lowest iteration count for force convergence of all codes

    Residuals Forces

  • 8/12/2019 2006 Int Ansys Conf 345

    30/40

    ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    Forward Swept Wing Airplane

    Complex aeronautical

    geometry for forward-swept wing.

    Testcase for turbulence

    model validation

    Experiments TU

    Mnchen (Breitsamter)

    Part of this work was supported by research grants

    from the European Union under the FLOMANIA project

    NASA X-29

    Generic Model

  • 8/12/2019 2006 Int Ansys Conf 345

    31/40

    ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    Forward Swept Wing Airplane

    Configuration Re = 0.46 * 106

    Ma=0.118,

    = 0,,45 deg. Experiments TU Mnchen

    (Breitsamter)

    Grids ICEM-CFD HEXA

    Fine: 10 million nodes

    Medium: 1.2 million node

    Coarse: 0.15 million nodes

  • 8/12/2019 2006 Int Ansys Conf 345

    32/40

    ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    Forward Swept Wing : Drag Polar

    Drag Polar

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    0 0.2 0.4 0.6 0.8 1 1.2 1.4Drag coefficient

    Liftc

    oefficient

    Experiments, Breitsamter

    CFX-5, fine grid, SST model

    CFX-5, medium grid, SST model

    CFX-5, coarse grid, SST model

    Drag Polar

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    0 0.2 0.4 0.6 0.8 1 1.2 1.4

    Drag coefficient

    Liftcoefficient

    Experiments, BreitsamterCFX-5, SST modelCFX-5, k-epsilon modelCFX-5, k-omega model

    Turbulence Model Grid Resolution

  • 8/12/2019 2006 Int Ansys Conf 345

    33/40

    ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    Forward Swept Wing : Moment

    CurveMoment Curve

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 10 20 30 40 50

    Alpha [degree]

    Momen

    tcoefficient

    Experiments, Breitsamter

    CFX-5, SST model

    CFX-5, k-epsilon model

    CFX-5, k-omega model

    Moment Curve

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 10 20 30 40 50

    Alpha [degree]

    Mome

    ntcoefficient

    Experiments, Breitsamter

    CFX-5, fine grid, SST model

    CFX-5, medium grid, SST model

    CFX-5, coarse grid ,SST model

    Turbulence Model

    Grid Resolution

  • 8/12/2019 2006 Int Ansys Conf 345

    34/40

    ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    Forward Swept Wing : Convergence

    10 million nodes

    5h, 26 CPUS, Fujitsu-Siemens/hpcLine, K7 Athlon1900+, 1600 MHz

    Convergence of residuals and force

    Forward Swept Wing : Force

  • 8/12/2019 2006 Int Ansys Conf 345

    35/40

    ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    Forward Swept Wing : Force

    Convergence

    Lift forces

  • 8/12/2019 2006 Int Ansys Conf 345

    36/40

    ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    FSI Flutter Testcase

    AGARD 445.6 testcase

    Mahogany wood Ma = 0.50 1.14

    Zero angle of attack0.37 m

    0.76 m

    0.56 m

    45

  • 8/12/2019 2006 Int Ansys Conf 345

    37/40

    ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    FSI Flutter Testcase

    Grids generated with

    ICEM-CFD HEXA

    3.81314.033Medium

    0.672.419.384Fine

    8.9075.286Coarsey+Size

    InletOutlet

    Wing

  • 8/12/2019 2006 Int Ansys Conf 345

    38/40

    ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    FSI Flutter Testcase

    Eigen-modes from

    modal analysis Bending mode

    Torsional mode

    9.37 Hz9.59 Hz1

    39.07 Hz38.16 Hz2

    SimulationExperimentMod

    e

  • 8/12/2019 2006 Int Ansys Conf 345

    39/40

    ANSYS, Inc. Proprietary 2006 ANSYS, Inc.

    FSI Flutter Testcase

    Comparison for flutter frequency for Machnumber range 0.50 to 1.14

    Qualitative agreement with constant offset toexperimental data

    5

    10

    15

    20

    25

    30

    0.4 0.6 0.8 1 1.2Mach number [ ]

    Flutterfrequency

    [Hz]

    Experiment

    Fine gridMedium gridCoarse grid

  • 8/12/2019 2006 Int Ansys Conf 345

    40/40

    Summary

    Modern pressure-based CFD methods can handle

    large and complex aeronautical CFD problems.

    Key technologies:

    Grid generation

    Solver (robustness, accuracy, scalability) Turbulence (transition) modeling

    Future

    More unsteady flows (Scale-Adaptive Simulation)

    More physical coupling (FSI, acoustics, magneto-

    hydro, )

    Optimization