10+battery+technology (1)

Upload: balaji-kannan

Post on 05-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 10+Battery+Technology (1)

    1/31

    Battery Technology

    MSE 6080 Spring 12

  • 8/2/2019 10+Battery+Technology (1)

    2/31

    Where our energy comes from

    MRS Bull 33 (2008) 264

  • 8/2/2019 10+Battery+Technology (1)

    3/31

    Renewable energy

  • 8/2/2019 10+Battery+Technology (1)

    4/31

    Power Generation Devices

    Chem Soc Rev38, 226

  • 8/2/2019 10+Battery+Technology (1)

    5/31

    Electrochemical Power Sources Chemical energy transformed directly into

    electrical currents Portable sources of electrical power (watches,

    portable electronics, start-up of cars)

    Store electrical energy supplied by an external source

    (electric vehicles, supplementary power supply duringpeak requests)

    First battery Volta, 1800

    Today 8 15 batteries for every human onEarth

    World market in excess of $ 200 billion

  • 8/2/2019 10+Battery+Technology (1)

    6/31

    Mobile Power Portable electronic

    devices

    increasing powerrequirements

    Microsized,autonomous

    systems (MEMS)may requirebatteries withperformancesunavailable today

    Electric car:capacity, weight,

    cost

  • 8/2/2019 10+Battery+Technology (1)

    7/31

    Nomenclature Primary battery life has ended once the

    reactants have been consumed

    Secondary battery can be recharged

    when the reactants have been used up

  • 8/2/2019 10+Battery+Technology (1)

    8/31

    Survey Battery energies: 10-6 Wh

    to 3 MWh Miniature batteries

    watches and otherminiature apps 0.5 2

    uA, 15-60 mWh/yr

    Dry batteries toysradios 10 mAh 15 Ah

    SLI batteries Pb acid 12 V, 40-60 Ah, 45 Wh/kg

  • 8/2/2019 10+Battery+Technology (1)

    9/31

    Future/current uses A Pb acid battery capable to

    drive a vehicle is 50x heavier,

    25x the room of the equivalent ICengine Longer time to recharge

    Currently NiMH

    Na or Li based batteries up to100 Wh/kg

    Stationary batteries standbypower emergency (250 Wh 5MWh)

    Load leveling public powersupply. increase base loadcapacity to stockpile energy andmeet peak energy needs

  • 8/2/2019 10+Battery+Technology (1)

    10/31

    Theoretical An electrochemical reaction

    provides current throughchemical transformations at theelectrodes and in the electrolyte

    Max energy obtainable:G = -zFE

    Amount of transformation

    proportional to the chargepassed through the cell

    Cathode: e flow from theexternal circuit (red)

    Anode: e flow to the externalcircuit (ox)

    Discharge Charge

  • 8/2/2019 10+Battery+Technology (1)

    11/31

    Theoretical 2 The EMF of a battery

    tends to decrease with

    operation

    Design to provide for

    small changes in OCP Pt/Fe3+,Fe2+Ce4+, Ce3+/PtFe2+ + Ce4+ Fe3+ + Ce3+

    Zn/ZnO/KOH/HgO/HgZn + HgO ZnO + Hg

  • 8/2/2019 10+Battery+Technology (1)

    12/31

    Losses Due to the passage of current

    Ohmic drop in the electrolyte bulk Electrode losses due to CT step

    Processes of formation of a solid phase

    (crystallization overvoltage) Porous electrodes interface increase,

    resistivity decrease

    Impregnation to immobilize liquidelectrolyte

  • 8/2/2019 10+Battery+Technology (1)

    13/31

    Characteristics Capacity, Energy, Power Polarization curve cell voltage

    vs. current Electrode polarization Cell resistance

    Diffusion overvoltage (reactantdepletion)

    Discharge curve OCP vs. fraction discharge

    Cell voltage during deep discharge

  • 8/2/2019 10+Battery+Technology (1)

    14/31

    Theoretical Energy p.u. weight

    EMF in 30% KOH is 1.29 V

    zFE = 2.5105 Ws ~ 6 Wh MNi = 58.7, MCd = 112.4, Mtot = 331.8

    Energy density = 208 Wh/kg

    Practical values ~ 40 Wh/kg ~ 20%

    2NiO(OH) + Cd + 2H2O = 2Ni(OH)2 + Cd(OH)2

    Discharge

    Charge

  • 8/2/2019 10+Battery+Technology (1)

    15/31

    Primary Batteries Leclanch (1866)

    Zn chloride Alkaline manganese

    oxide

    Al- and Mg-basedLeclanch

    Schematics of a Leclanche batteryhttp://www.wisedude.com/science_engineering/batteries.htm

  • 8/2/2019 10+Battery+Technology (1)

    16/31

    Leclanch Cell Zn anode, MnO2 cathode,electrolyte ZnCl2 + NH4Cl

    Cathode: carbon rod in amixture C/MnO2

    Anode: Zn rod in satNH4Cl

    Electrolyte immobilizedwith a paste

    Zn/ZnCl2, NH4Cl/MnO2,C

    E ~ 1.5 V

    Zn + 2H2O Zn(OH)2 + 2H+ + 2e

    2MnO2 + 2H+ + 2e 2MnO(OH)

    Zn + 2MnO2 + 2H2O Zn(OH)2 + 2MnO(OH)

  • 8/2/2019 10+Battery+Technology (1)

    17/31

    Leclanch Cell, cont

    Self-discharge and gas build-up Slow down by amalgamating Zn with Hg

    (recently eliminated)

    Other drawbacks Short shelf life (needs refrigeration)

    Small energy density (75 Wh/kg)

    Voltage decreases over time

    Alternative: alk battery (KOH)

    Zn + 2H2O Zn(OH)2 + H2

  • 8/2/2019 10+Battery+Technology (1)

    18/31

  • 8/2/2019 10+Battery+Technology (1)

    19/31

    Rechargeable batteries Charge factor: charge used during charge

    vs. charge passed during discharge

    CF > 1 if side rxns occur during charging

    Cycle life: # of charge/discharge cycles

    before battery performance degrades ~ 103

    Full charging can often be achieved onlyby overcharging. Careful not to evolve

    gases! Self-discharge less important

  • 8/2/2019 10+Battery+Technology (1)

    20/31

    Pb acid

    Why water does not dissociate?

    Theor 171 Wh/kg, actual 40

    Wh/kg ~ 23% Cyclability depends strongly onmicrostructure

    Heavy, low cost

    Pb + SO42- PbSO4 + 2e

    PbO2 + 2H2SO4 + 2e PbSO4 + SO42- + 2H2O

    PbO2 + Pb + 2H2SO4 2PbSO4 + 2H2Odischarge

    25% H2SO4

    EMF = 2.1 V

    Pb

    PbSO4

    PbO2

    PbSO4

  • 8/2/2019 10+Battery+Technology (1)

    21/31

    Microstructural evolution of Pb

    electrode

  • 8/2/2019 10+Battery+Technology (1)

    22/31

    Ni-Cd

    EMF 1.29 V

    En density 208 Wh/kg

    Rate of discharge, T affectcapacity

    Longer cycle life than Pb

    (up to 3500, 5-10 yrs) High cost, but decreasing

    NiO(OH) + H2O + e Ni(OH)2 + OH-

    Cd + 2OH- Cd(OH)2 + 2e

    2NiO(OH) + Cd + 2H2O = 2Ni(OH)2 + Cd(OH)2

    Discharge

    Charge

    J Power Sources 100, 125

  • 8/2/2019 10+Battery+Technology (1)

    23/31

    Ni-Metal hydride Anode LaNi5 based

    (high H2 storage) Electrolyte 30%

    KOH

    En density 40-110Wh/kg

    109 sales/yr

  • 8/2/2019 10+Battery+Technology (1)

    24/31

    Li-ion battery Li ve

    electrode TM oxide +ve

    electrode (Liintercalation)

    EMF up to 4.5 V

    LIanode

    Cathode

  • 8/2/2019 10+Battery+Technology (1)

    25/31

    Electrodes Anode graphite

    Cathode

    Technological trends

    Better graphite

    Enhance +ve electrode

    Improve solvent stability

    LiC6 Li+ + 6C + e

    Li+ + Mn2O4 + e LiMn2O4

    Li+ + Mn2IVO4 + e LiMn

    IIIMnIVO4

    Li+ + FeIIIPO4 + e LiFeIIPO4

  • 8/2/2019 10+Battery+Technology (1)

    26/31

    Trends in R&D

    100 200 400 800 1,400

    Spec. Power Density (W/kg)

    Sp

    ec.

    EnergyDensity(Wh/kg)

    50

    100

    150

    200

    LeadAcidNi/Cd

    Ni/MH

    Lithium-Ion Battery

    High PowerLIB

    High EnergyLIB

    MobileIT

    HEV

    NextGenerationBattery ?

    Courtesy Hyun-Soo Kim

  • 8/2/2019 10+Battery+Technology (1)

    27/31

    Some designs

    Hardpreparation,

    Mndissolution

    Low electricconductivity

    Low electricconductivity

    Low tapdensity

    Mndissolution

    (@E.T.)

    Hardpreparation,Low thermal

    stability

    High cost,toxicity

    Demerits

    Low cost,

    nontoxic

    Low cost,

    thermal

    stability

    High

    capacity

    High

    capacity &

    thermal

    stability, low

    cost

    Low cost,

    nontoxic

    High

    capacity

    High electric

    conductivity,

    easypreparation

    Merits

    3.4V3.45V3.6V3.6V3.8V3.5V3.6VOperationVoltage

    180mAh/g4.4-3V:90

    3-2.0V:90

    150mAh/g170mAh/g170mAh/g120mAh/g180mAh/g140mAh/gPracticalCapacity

    344mAh/g170mAh/g285mAh/g285mAh/g148mAh/g275mAh/g274mAh/gTheoretical Capacity

    LayeredOlivineLayeredLayeredSpinelLayeredLayeredStructure

    LiMnO2LiFePO4LiNiMnO2

    Li[CoNiMn]O2

    LiMn2O4LiNiO2LiCoO2

  • 8/2/2019 10+Battery+Technology (1)

    28/31

    Thermal management Above T2, corrosion and degradation

    processes become very fast Below T1 the electrolyte has too high a

    resistance and charge transfer is too slow

    Heat must be dissipated during highcharge/discharge rates

    High T batteries: need to heat, avoid heatloss, use a cooling system to avoidoverheating

  • 8/2/2019 10+Battery+Technology (1)

    29/31

    Summary Seek high energy density, high power, low

    cost EMF is approaching its limits

    Room to improve on rates, lifetime 3D geometries for high rates

    Low cost

  • 8/2/2019 10+Battery+Technology (1)

    30/31

  • 8/2/2019 10+Battery+Technology (1)

    31/31

    Energy Density E = 0.5CV2 = 0.5QV

    Increase in V advantageous but limited 0.8-1.2 V in aq electrolytes

    3-4 V in non aq (lower Cdl)

    Increase in spec area energy/weight

    7-10% capacity of a battery

    Better cycle life

    Fast charge/discharge