08_chapter 3.pdf

42
Chapter 3 Synthesis of Pyrimidinones and Thiopyrimidinones 3.1. Introduction Pyrimidine is one of the most important classes of biologically active molecules. 1 It is a basic part of DNA and RNA and so widely distributed in living beings. 2 In the last few years pyrimidinone derivatives substituted either at the C-5 or C-6 position have emerged as potent drugs in the field of chemotherapy. 3 They possess a long range of biological properties such as antimicrobial, 4 antibacterial, 5 antitumour, 6,7 antiviral, 8 antitubercular, 9 and antifungal 10,11 activities. Many marine natural products having pyrimidine as its core nucleus are used as thyroid drugs. 12 The pyrimidine-2-thiol moiety is present in several compounds of biological and medicinal interest. 13 Pyrimidine-5-carboxamides possess anticarcinogenic activity. 14 Antiinflammatory, 15 analgesic, and blood platelet aggregation inhibitory activity 16 was found in a number of pyrimidine derivatives. For example, AZD6140 ticagrelor showed an oral antiplatelet activity, 17 6-substituted uracil derivatives, HEPT, 18 emivirine 19 (EMV) have been chosen as candidates for clinical trials and DABOs, 20 potent and selective activity against HIV-1 synthesis and have subjected to biological evaluation as antitumor and antiviral agents. The dihydropyrimidinones (DHPMs), which

Upload: thangagiri-baskaran

Post on 16-Nov-2015

17 views

Category:

Documents


0 download

TRANSCRIPT

  • Chapter 3

    Synthesis of Pyrimidinones and Thiopyrimidinones

    3.1. Introduction

    Pyrimidine is one of the most important classes of biologically active

    molecules.1 It is a basic part of DNA and RNA and so widely distributed in

    living beings.2 In the last few years pyrimidinone derivatives substituted

    either at the C-5 or C-6 position have emerged as potent drugs in the field of

    chemotherapy.3 They possess a long range of biological properties such as

    antimicrobial,4 antibacterial, 5 antitumour,6,7 antiviral,8 antitubercular,9 and

    antifungal10,11 activities. Many marine natural products having pyrimidine

    as its core nucleus are used as thyroid drugs.12 The pyrimidine-2-thiol

    moiety is present in several compounds of biological and medicinal

    interest.13 Pyrimidine-5-carboxamides possess anticarcinogenic activity.14

    Antiinflammatory,15 analgesic, and blood platelet aggregation inhibitory

    activity16 was found in a number of pyrimidine derivatives. For example,

    AZD6140 ticagrelor showed an oral antiplatelet activity,17 6-substituted

    uracil derivatives, HEPT,18 emivirine19 (EMV) have been chosen as

    candidates for clinical trials and DABOs,20 potent and selective activity

    against HIV-1 synthesis and have subjected to biological evaluation as

    antitumor and antiviral agents. The dihydropyrimidinones (DHPMs), which

  • 56

    constitute a very important class of organic compounds due to their

    attractive pharmacological properties, are also found in many natural

    products.21

    HN

    NO

    O

    OH

    O

    S

    HN

    NO

    O

    O

    HEPT Emivirine (EMV)

    N

    NNN

    N

    O OH

    OH

    SC3H7

    NH

    F

    F

    HO

    HN

    N

    O

    R

    SR2

    R1

    AZD6140 TicagrelorDABOs

    Figure 1

    As a part of ongoing research work in our laboratory, 2-aroyl-3,3-bis(alkylsulfanyl)acrylaldehydes were treated with urea and thiourea

    resulting the formation of pyrimidinones and thiopyrimidinones respectively

    and it is the subject matter of present chapter.

    3.2. Pyrimidinones: General methods of synthesis

    Pyrimidines are important biological molecule. Biginelli reaction is one

    of the most important reactions for the synthesis of pyrimidines. This involves

    acid-catalyzed three-component reaction between an aldehyde, a -ketoester

    and urea constituting a rapid and facile synthesis of dihydropyrimidines.

    For example an efficient synthesis of 3,4-dihydropyrimidinones 4 was

    resulted from the reaction of a -ketoester 1, aldehyde 2 and urea 3 in

    ethanol, using ferric chloride hexahydrate or nickel chloride hexahydrate as

    the catalyst (Scheme 3.1).22

  • 57

    O

    OR

    O

    H2N NH2

    O

    NH

    NH

    R1

    O

    RO

    O 0.25 eq. FeCl3.6H2O or NiCl2.6H2o

    R1

    O

    Conc. HCl (cat)EtOH, reflux, 4-5 h

    1 2 3 4

    H

    Scheme 3.1

    Uracil and its derivatives can be synthesized by in situ oxidative

    decarboxylation of the product obtained from the reaction of malic acid and

    urea in modest yields. Another method for the preparation of uracil 6 is the

    reaction of -ketoester 5 with urea and subsequent ring closure of the

    intermediate on treatment with sodium ethoxide (Scheme 3.2).23

    R

    O

    OR2

    O

    R1

    +H2N NH2

    O

    NH

    NHR1

    O

    OR

    NaOEt

    35 6

    Scheme 3.2

    Substituted uracil derivative 6 can also be prepared by one-pot

    condensation reaction of methyl or ethyl -ketoesters 5 and urea in solvent

    free condition under microwave irradiation (Scheme 3.3).24

    R

    O

    OR2

    O

    R1

    +H2N NH2

    OSolvent-free

    MW, 2-6 min NH

    NHR1

    O

    OR

    35 6

    Scheme 3.3

    The reaction of aldehyde 7, -ketoester 8 and urea in the presence of

    CAN in methanol under sonication resulted in the formation of 3,4-

    dihydropyrimidin-2(1H)-ones 9 in 92% yield (Scheme 3.4) .25

  • 58

    R H

    O+ R1

    O

    OR2

    OCAN, urea

    MeOH NH

    NH

    O

    R2O

    O

    R1

    R

    7 8 9

    Scheme 3.4

    Substituted 1H-pyrimidin-2-ones 11 have been prepared from

    corresponding -ketoacetals 10 on reaction with urea (Scheme 3.5).26

    R

    O

    OMe

    OMe

    2 h, reflux

    Urea, HCl, EtOH N NH

    R

    O

    10 11

    Scheme 3.5

    In 1996, Hu et al. reported the synthesis of 2-substituted

    6-fluoroalkyl-4-(3H)-pyrimidinones, in excellent yields from -fluoroalkyl

    acetates or ethyl 3-fluoroalkyl-2-iodoacrylates on treatment with

    benzamidine and acetamidine.27 Similarly H.G. Bonacorso et al. have

    synthesized 4-phenyl-6-(trifluromethyl)-2(3H)-pyrimidinone 13 from

    4-methoxy-1,1,1-trifluro-4-phenyl-3-butene-2-one 12 (Scheme 3.6).28

    CF3

    O

    NH

    N

    O

    CF3

    urea, MeOH, Conc. HCl

    24-72 h, reflux

    H3CO

    12 13

    Scheme 3.6

    4-Trifluoromethyl-5,6,7,8-tetrahydro-2(1H)-quinazolinones 15 can be

    obtained by the reaction of -methoxyvinyl trifluoromethyl ketones 14 with

    urea in the presence of catalytic amount of BF3-Et2O (Scheme 3.7).29

  • 59

    H2N NH2

    O

    ROMe

    CF3

    O

    i-PrOH, BF3.OEt2

    reflux, 20 h

    NH

    NR1

    CF3

    OR1 R

    14 15

    Scheme 3.7

    Similarly the condensation of 3-(4-methoxyphenyl)-1-(3-pyridyl)-

    2-propene-1-one 16 with urea in refluxing ethanolic KOH afforded

    4-(4-methoxyphenyl)-6-(3-pyridyl)-3,4-dihydro-2(1H)-pyrimidinone 17

    (Scheme 3.8).30

    N

    O

    OMe N

    HN

    OMe

    NH

    O

    H2N

    O

    NH2

    EtOH/KOH

    16 17

    Scheme 3.8

    El-Gazzar et al. have synthesized thieno[2,3-d]pyrimidin-2-ones 19

    from 2-aminothiophene-3-nitriles 18 on reaction with urea (Scheme 3.9).31

    SNH2

    CNH2N

    O

    NH2

    SNH

    NO

    H2N

    1800 C

    18 19

    Scheme 3.9

    Pyrazolopyrimidinones 21 were synthesized from 5-amino-1-aryl-3-

    (methylsulfanyl)-1H-pyrazole-4-carbonitrile 20 by treating with urea

    (Scheme 3.10).32

    NN

    MeS CN

    NH2

    Ar

    H2N NH2

    O

    NN

    MeS

    Ar

    NH

    NH2N

    O

    1800 C

    20 21

    Scheme 3.10

  • 60

    The [4+2] cycloaddition reactions of 1,3-diazabuta-1,3-dienes 22

    with butadienylketene 23 resulted in the formation of 5-(buta-1,3,-

    dienyl)pyrimidinones 25 in excellent yields (Scheme 3.11).33

    N

    NR1

    R3+

    H

    CO

    N

    NR1

    R2R3

    OH

    PhPh

    N

    NR1 OPh

    R2R2

    22 23 24 25

    Scheme 3.11

    From the literature survey, it is clear that the reaction of

    1,3-bielectrophiles with binucleophile like urea is an effective method for

    the synthesis of pyrimidine derivatives.

    3.3. Thiopyrimidinones: General methods of synthesis

    Biginelli reaction is one of the important reactions for the synthesis of

    thio-derivatives of dihydropyrimidinones. This involves acid-catalyzed,

    three-component reaction between an aldehyde, a -ketoester and thiourea

    constituting a rapid and facile synthesis of thio-derivatives of

    dihydropyrimidinones. For example ethyl 6-methyl-4-(4-methylphenyl)-2-

    thioxo-1,2,3,4-tetrahydro-5-pyrimidinecarboxylate 29 can be synthesized by

    the reaction of ethyl acetoacetate 26, 4-methylbenzaldehyde 27 and thiourea

    28 using NBS as catalyst (Scheme 3.12).34

    O

    OEt

    O

    O

    H2N NH2

    S

    NH

    NH

    S

    EtO

    O

    0.2 eq. NBS

    DMAC, MW (600 W)open vessal, 3-6 min

    26 27 28 29

    Scheme 3.12

  • 61

    Substituted malonic ester derivatives and Meldrums acid react with

    thiourea to yield thiouracil derivatives.35 Substituted thiouracil derivatives

    31 can also be prepared by one-pot condensation reaction of -ketoesters 30

    and thiourea 28 in solvent free condition under microwave irradiation in

    short time (Scheme 3.13).36

    R

    O

    OR2

    O

    R1

    +H2N NH2

    SSolvent-free

    MW, 2-6 min NH

    NHR1

    O

    SR

    30 3128

    Scheme 3.13

    5,6-Dialkyl-2-thioxo-2,3-dihydro-4(1H)-pyrimidinones 34 can be

    synthesized by using solid phase approach. In the key step, a polymer-bound

    thiouronium salt 32 is condensed with different -ketoesters in presence of

    excess Ca(OH)2 in water-ethanol solution (Scheme 3.14).37

    SNH.HBr

    NH2P

    O

    EtOR

    O R1

    Ca(OH)2, H2O/EtOH

    HN

    N

    OR

    R1S

    5% TFA

    CH2Cl2

    HN

    NH

    S

    OR

    R1

    =

    O

    32 33 34

    P

    P

    Scheme 3.14

    Bio et al. synthesized pyrimidinethiol 36 by the condensation of

    2-(2,2-diethoxyethyl)malononitrile 35 with thiourea in the presence of

    t-BuOK (Scheme 3.15).38

  • 62

    H2N NH2

    S

    N N

    NH2H2N

    SH

    NC CN

    OEt

    OEt

    OEt

    OEt

    35 36

    t-BuOK

    Scheme 3.15

    Thiouracil derivative, 6-(1-arylethyl)-5-alkyl-2-thioxo-3,4-dihydro-

    4(1H)-pyrimidinone 38 was obtained by the condensation of thiourea in

    alkaline medium with ethyl 4-aryl-3-oxopentanoates 37 and ethyl 4-aryl-3-

    oxohexanoates (Scheme 3.16).39

    Ar

    Me

    O

    OEt

    O

    NH2CSNH2

    EtONa/EtOH

    HN

    NH

    O

    SMe

    Ar

    RR

    37 38

    Scheme 3.16

    Ethyl 2-alkyl-3-oxo-4-(1-naphthyl)butyrates 39 were converted into

    5-alkyl-6-(1-naphthylmethyl)-2-thiouracil 40 by reaction with thiourea in the

    presence of NaOEt (Scheme 3.17).40

    O R1

    COOEt H2N NH2

    S

    NaOEt

    NH

    NH

    O

    S

    R1

    39 40

    Scheme 3.17

    N-Substituted 5-acetyl-4-alkylthio-6-methyl-2(1H)-pyrimidinethiones 42

    can be obtained by the reaction of N,S-acetals 41 with phenylisothiocyanate

    and allylisothiocyanate in boiling toluene (Scheme 3.18).41

  • 63

    Me

    O

    Me

    O

    R1S NH2

    R2NCS

    Toulene, reflux N

    N S

    R2

    R1S

    Me

    O Me

    41 42

    Scheme 3.18

    Britsun et al. reported the synthesis of 3-amino-2-thioxo-2,3-dihydro-

    4(1H)-quinazolinone 44 by condensation of methyl 2-(thioxoamino)

    benzoate 43 with hydrazine in diethyl ether (Scheme 3.19).42

    NCS

    COOMe

    N2H4, Et2O N

    ONH2

    NH

    S

    43 44

    Scheme 3.19

    Condensation of substituted enaminones 45 with thiourea afforded

    corresponding 4,5-bisubstituted pyrimidine-2-thiones 46 (Scheme 3.20).43

    R1 O

    R2

    Thiourea

    NaOC2H5/EtOH reflux

    NH

    N SR1

    R2

    45 46

    N

    Scheme 3.20

    Condensation of ,-unsaturated ketones 47 with thiourea in

    refluxing ethanolic potassium hydroxide afforded 2-thioxopyrimidine

    derivatives 48 (Scheme 3.21). 44

    NH

    Ar

    O

    H2N

    S

    NH2NH

    HN

    Ar

    SNH

    47 48

    Scheme 3.21

  • 64

    Condensation of 3-(4-methoxyphenyl)-1-(3-pyridyl)-2-propene-1-one

    49 with thiourea in refluxing ethanolic potassium hydroxide afforded

    2-thioxopyrimidine 50 (Scheme 3.22).45

    N

    O

    OMe N

    HN

    OMe

    NH

    S

    H2N

    S

    NH2

    EtOH/KOH

    49 50

    Scheme 3.22

    Treatment of ethyl 3-substituted-trans-2,3-difluoro-2-acrylate 51

    with thiourea resulted in the formation of 6-n-butyl-5-fluoro-2-thiouracil 52

    in 68% yield (Scheme 3.23).46

    CO2Et

    n-Bu F

    F

    NH2CSNH2/DMF

    K2CO3/1000 C N

    H

    NH

    O

    S

    F

    n-Bu

    51 52

    Scheme 3.23

    The -methoxyvinyl trifluoromethyl ketones 53 on reaction with

    thiourea in propan-2-ol in the presence of a catalytic amount of BF3-Et2O

    afforded 4-trifluoromethyl-5,6,7,8-tetrahydro-2(1H)-thioquinazolinones 54

    (Scheme 3.24).47

    H2N NH2

    S

    ROMe

    CF3

    O

    i-PrOH, BF3.OEt2

    reflux, 20 h

    NH

    NR1

    CF3

    S

    R1 R

    53 54

    Scheme 3.24

    Joshi et al. have reported the reaction of thiourea 28 with

    malononitrile 55 in the presence of sodium ethoxide and anhydrous ethanol

    to afford 4,6-diamino-2-mercaptopyrimidine 56 (Scheme 3.25).48

  • 65

    H2N

    S

    NH2NC CN

    EtONa/EtOH

    2.5 h, reflux N

    N

    NH2

    SHH2N

    28 55 56

    Scheme 3.25

    Similarly 6-amino-2-thioxo-2,3-dihydro-1H-pyrimidin-4-one 58 can

    be synthesized by the reaction of ethyl cyanoacetate 57 with thiourea 28 in

    the presence of sodium ethoxide (Scheme 3.26).49

    H2N NH2

    S

    CO2Et

    CN EtONa

    reflux, 3h NH

    NH

    NH2

    SO

    28 57 58

    Scheme 3.26

    The reaction of ethoxymethylenemalononitrile 59 and thiourea

    afforded 4-amino-2-thioxo-1,2-dihydropyrimidine-5-carbonitrile 60 with the

    elimination of one molecule of ethanol (Scheme 3.27). 50

    NC CN

    OEt

    H2N NH2

    S

    N NH

    NH2

    S

    CN

    59 60

    Scheme 3.27

    El-Agrody et al. have synthesized 4-amino-6-aryl-1,2-dihydro-2-

    thioxopyrimidine-5-carbonitriles 62 from activated nitriles 61 by treating

    with thiourea (Scheme 3.28). 51

    H

    CN

    Ar

    CN

    N NH

    S

    H2N

    S

    NH2NH2Ar

    CN

    N N

    SH

    NH2ArCN

    61 62 63

    Scheme 3.28

  • 66

    Eljazi et al. have synthesized pyrazolopyrimidine 65 derivative by the

    reaction of 5-amino-1-aryl-3-methylthiopyrazole-4-carbonitrile 64 with

    thiourea (Scheme 3.29).52

    NN

    MeS CN

    NH2

    Ar

    H2N NH2

    S

    N N

    MeS

    Ar

    NH

    NH2N

    S

    64 65

    Scheme 3.29

    The reaction of ketene dithioacetal 66 with thiosemicarbazide in

    sodium isopropoxide gave 1,4-diamino-2-thioxo-6-methylthio-2-thioxo-1,2-

    dihydro-5-pyrimidinecarbthioamide 67 (Scheme 3.30).53

    MeS

    MeS CN

    SH2N

    H2NNHC(S)NH2

    NaiOPr/iPrOH

    heatN

    N

    NH2

    S

    NH2

    MeS

    H2N

    S

    66 67

    Scheme 3.30

    Ketene N,S-acetal 68 reacted with thiourea to form the corresponding

    2-thioxo-4-pyrimidinone 69 (Scheme 3.31).54

    Scheme 3.31

    6-Amino-2-thioxo-1,2-dihydropyrimidine-5-carbonitrile derivative 71

    was prepared by the reaction of thiosemicarbazone 70 with

    arylidenemalononitrile in boiling DMF containing few drops of piperidine

    (Scheme 3.32).55

    O

    EtOCN

    HN

    PhSCH3

    H2N NH2

    S

    KOH/EtOH NH

    NH

    SO

    NHPh

    NC

    68 69

  • 67

    Ar

    CN

    CN

    O

    O

    ClN

    HN NH2

    S DMF piperidine O

    OCl

    NN

    NS

    NH2

    CN

    Ar

    70 71

    Scheme 3.32

    The reaction of 3-amino-4-carbethoxy-2-phenylpyrazole 72 with

    thiourea and phenylisothiocyanate under microwave irradiation gave

    pyrazolo[3,4-d]thiopyrimidine derivatives 73 & 74 (Scheme 3.33). 56

    NN NH2

    COOEtR

    PhNH

    N

    NN

    NH

    NH

    NN

    Ph

    R NHAr

    S

    O

    S

    R

    Ph

    H2N NH2

    S

    Ar N C S

    MW MW

    7273 74

    Scheme 3.33

    The reaction of 6-amino-4-(4-chlorophenyl)-2-pyridin-2-yl-pyridine-

    5-carbonitrile 75 with carbon disulphide in the presence of aqueous KOH

    gave pyrido[2,3-d]pyrimidine-2,4-dithione 76 (Scheme 3.34).57

    N

    CNAr

    NH2Py

    CS2, KOH

    heat N NH

    NH

    Py

    Ar S

    S

    75 76

    Scheme 3.34

    When 2-aminothiophene-3-nitrile 77 was fused with thiourea at

    180 C, thioxopyrimidine derivative 78 was formed (Scheme 3.35).58

    SNH2

    CNH2N

    S

    NH2

    SNH

    NS

    H2N

    77 78

    Scheme 3.35

  • 68

    The reaction of 5-amino-1-benzyl-2-hydroxy-1H-imidazole-4-

    carbonitrile 79 with benzoyl isothiocyanate followed by treatment with

    sodium hydroxide afforded 6-amino-9-benzyl-2-sulfanyl-9H-purin-8-ol 80

    (Scheme 3.36).59

    N

    NOH

    H2N

    NC N

    N N

    NOH

    NH2

    HS

    (a) BzNCS, THF, rt

    (b) 2N NaOH, THF reflux

    79 80

    Scheme 3.36

    Interaction of 2-amino-4,5,6,7-tetrahydrobenzothiophene-3-

    carboxamide 81 with carbon disulphide yielded 2-thioxo-2,3,5,6,7,8-

    hexahydro[1]benzothieno-[2,3-d]pyrimidin-4(1H)-one 82 (Scheme 3.37).60

    SNH2

    ONH2

    CS2

    SNH

    ONH

    S

    SNH

    ON

    SH

    81 82 83

    Scheme 3.37

    The reaction of 4-chloro-2,3-dihydro-1,3-thiazole-5-carbaldehyde 84

    with thiourea in ethanol solution containing triethylamine at reflux

    temperature afforded thiopyrimidinone derivatives 85 (Scheme 3.38).61

    N

    S

    Cl

    CHO

    Ar

    Ar

    H2N NH2

    S

    N

    HNN

    S

    Ar

    Ar

    S

    84 85

    Scheme 3.38

    6-Amino-5-[bis(benzylthio)methylene]pyrimidine-2,4-dione 87 was

    prepared by the reaction of 3,3-bis(benzylthio)-2-cyanoacrylate 86 with

    thiourea (Scheme 3.39).62

  • 69

    S

    S

    NC

    EtOOC

    Ph

    pipiridine/EtOH

    O

    S

    S

    Ph

    Ph

    H2N HN

    HNS

    86 87

    NH2NH2

    S

    Ph

    Scheme 3.39

    Bioactive pyrimidines like 5-(1H-imidazol-1-yl)-4-phenyl-2(1H)-

    pyrimidinethione 90 can be synthesized from imidazolylacetophenone 88 on

    reaction with dimethylformamide dimethylacetal (DMFDMA) in xylene

    solution followed by treatment with thiourea (Scheme 3.40).63

    NN

    DMFDMA

    Ph

    O N NPh

    O

    NMe2

    H2N NH2

    SN N

    NH

    N

    Ph

    S

    88 89 90

    Scheme 3.40

    Ethyl 2-benzylaminocyclopent-1-enecarboxylate 91 on treatment with

    trimethylsilyl isothiocyanate yielded 1-benzyl-2-thioxo-1,2,3,5,6,7-

    hexahydro-4H-cyclopenta[d]pyrimidin-4-one 92 in 83% yield (Scheme

    3.41).64

    NH

    OEt

    O

    Ph

    (CH3)3SiNCS

    NaHCO3

    HN

    N

    O

    S

    Ph

    91 92

    Scheme 3.41

    Thiourea was reacted with 2-formyl-L-arabinal 93 in the presence of

    sodium hydride in tetrahydrofuran to afford pyrimidine C-nucleoside

    analogue 94 in 38% yield as a pale yellow syrup through the sequential

    combination of addition-elimination and ring closure reaction (Scheme

    3.42).65

  • 70

    OOBn

    BnO

    CHO

    H2N NH2

    S

    NaH, THF, 0-220C N

    NH

    S

    HOOBn

    OBn

    93 94

    Scheme 3.42

    Literature review showed that the reaction of thiourea with

    1,3-bielectrophiles is a general method for the synthesis of functionalized

    pyrimidinethiones. Our interest was to explore the synthetic potential of

    -formylketene dithioacetals for the synthesis of functionalized heterocyclic

    compounds and so we decided to treat -formylketene dithioacetals with

    thiourea to get versatile intermediates, pyrimidinethiones, which can find

    wide applications for the synthesis of natural products.

    3.4. Results and Discussion

    3.4.1. Synthesis of 5-Aroyl-4-(methylsulfanyl)-2(3H)-pyrimidinone (96)

    2-(4-Methoxybenzoyl)-3,3-bis(alkylsulfanyl)acrylaldehyde 95c on

    treatment with urea in the presence of Conc. HCl in methanol at reflux

    temperature for an hour, afforded 5-(4-methoxybenzoyl)-4-(methylsulfanyl)-

    2(3H)-pyrimidinone 96c as a white solid, mp 184-186, in 81% yield. The

    NMR spectrum in DMSO-d6 showed that 96c existed as an equilibrium mixture

    with 5-(4-methoxybenzoyl)-4-(methylsulfanyl)-2-pyrimidinol 97c in the

    ratio 60:40 (Scheme 3.43).

    O

    SCH3

    SCH3

    O H

    O

    NH

    SCH3

    N O

    O

    N

    SCH3

    N OH

    H2N NH2

    O

    Conc. HClMethanolreflux

    96c 97c95c

    H3CO H3COH3CO

    Scheme 3.43

    The products were characterized on the basis of spectroscopic

    methods and elemental analyses. GCMS (Fig.2) m/z 276 (M+). The IR

  • 71

    spectrum (Fig.3), gave major absorptions at 3062 due to NH group, 1722

    and 1672 due to carbonyl groups. In the 1H NMR spectrum (300 MHz,

    DMSO-d6, Fig.4), it gave peaks at 2.44 and 2.45 for methylsulfanyl group,

    3.83 and 3.85 for methoxy group, multiplets at 6.98-7.07, doublet at

    7.465 and 7.69-7.74 for aromatic protons, a singlet at 7.80 and 7.92 for H-

    6 protons and 11.32 for OH proton and a broad singlet at 11.78 for NH

    proton. The 13C NMR spectrum (Fig.5) of the compound shows resonance

    at 12.88 and 13.03 for methylsulfanyl group, 55.28 and 55.46 for

    methoxy group, 189.28 and 189.42 for carbonyl carbon and 177.77 for OH

    substituted carbon and 164.55 for carbonyl carbon atoms. The peaks at

    112.6, 113.19, 113.4, 113.9, 129.84, 130.43, 131.64, 146.48, 150.86, 152.43,

    161.2, 161.78, 162.82, and 162.94 for aromatic and heterocyclic carbon

    atoms of both the isomers were in accordance with the proposed structures.

    As the 1H NMR spectrum shows the presence of NH and OH groups

    in the ratio 60:40, it is clear that there is equilibrium between pyrimidinone

    and pyrimidinol.

    100 125 150 175 200 225 250 2750

    25000

    50000

    75000

    100000

    125000

    20191

    119

    230215

    24513926018789

    186172158103 273

    Figure 2 GCMS of 5-(4-methoxybenzoyl)-4-(methylsulfanyl)-2(3H)-

    pyrimidinone 96c

  • 72

    Figure 3 IR spectrum of 5-(4-methoxybenzoyl)-4-(methylsulfanyl)-2(3H)-pyrimidinone 96c

    Figure 4 1HNMR spectrum of 5-(4-methoxybenzoyl)-4-(methylsulfanyl)-

    2(3H)-pyrimidinone 96c

  • 73

    Figure 5 13C NMR spectrum of 5-(4-methoxybenzoyl)-4-(methylsulfanyl)-2(3H)-pyrimidinone 96c

    The mechanism for the formation of 5-(4-methoxybenzoyl)-4-

    (methylsulfanyl)-2(3H)-pyrimidinone from 2-(4-methoxybenzoyl)-3,3-

    bis(methylsulfanyl)acrylaldehyde is explained as follows: Initially, the urea

    is condensed with the aldehyde to form an imine intermediate. Cyclization

    of the imine intermediate by an intramolecular Michael reaction of the

    amino group to the ketene dithioacetal, followed by aromatization with the

    elimination of methanethiol resulted in the formation of expected

    pyrimidinones in good yields (Scheme 3.44). The pyrimidinone 96c is in

    equilibrium with the pyrimidinol 97c.

  • 74

    O

    SMe

    SMe

    O H H2N NH2

    O

    O

    SMe

    SMe

    N

    O NH2

    O

    NH

    SMe

    N O

    SMeO

    NH

    SMe

    N O

    O

    SMe

    SMe

    NH

    O NH2

    HO

    O

    N

    SMe

    N OH

    95c 98c 99c

    100c 96c 97c

    H3COH3CO H3CO

    H3COH3COH3CO

    Scheme 3.44

    The reaction was extended to other substituted 2-aroyl-3,3-

    bis(methylsulfanyl)acrylaldehydes 95a-e to get 5-aroyl-4-(methylsulfanyl)-

    2(3H)-pyrimidinones 96a-e (Scheme 3.45)

    Ar

    O

    SMe

    SMe

    Ar

    O

    NH

    SMe

    N OO H

    Urea, Con.HCl(Cat.)

    Methanol,reflux

    Ar

    O

    N

    SMe

    N OH

    95 96 97

    Scheme 3.45

    Table 1 Synthesis of 5-aroyl-4-(methylsulfanyl)-2(3H)-pyrimidinones 96a-e

    95 & 96 Ar Yield %

    a C6H5 81

    b CH3C6H4 80

    c 4-CH3OC6H4 81

    d 4-BrC6H4 84

    e 4-ClC6H4 82

  • 75

    3.4.2 Synthesis of (Aryl)[6-(methylsulfanyl)-2-thioxo-1,2-dihydro-5-pyrimidinyl]methanone (101)

    In a pilot experiment 2-(methoxybenzoyl)-3,3-bis(methylsulfanyl)-

    acrylaldehyde 95c was treated with thiourea in the presence of Conc.HCl in

    methanol at reflux temperature for one hour. The reaction afforded (4-

    methoxyphenyl)[6-(methylsulfanyl)-2-thioxo-1,2-dihydro-5-pyrimidinyl]-

    methanone 101c as a white solid, mp 200-202 C in 67% yield. The NMR

    spectrum in DMSO-d6 showed that 96c existed as an equilibrium mixture with

    (4-methoxyphenyl)[6-(methylsulfanyl)-2-mercaptyl-1,2-dihydro-5-

    pyrimidinyl]methanone 102c in the ratio 60:40 (Scheme 3.46).

    O

    SMe

    SMe O

    NH

    SMe

    N SO H

    O

    N

    SMe

    N SH

    Thiourea, Con.HCl(Cat.)

    Methanol,refluxH3CO H3CO H3CO

    95c 101c 102c

    Scheme 3.46

    The products were characterized on the basis of spectroscopic

    methods and elemental analyses. GCMS (Fig.6) m/z 292 (M+). In the IR

    spectrum (Fig.7), it gave major absorption peaks at 3068, 1664 due to NH

    and carbonyl groups respectively. In the 1HNMR spectrum(300 MHz,

    DMSO-d6, Fig.8), it gave peaks at major peaks at 2.35 and 2.45 for

    methylsulfanyl groups, 3.83 and 3.86 for methoxy groups, 6.99-7.10 (m,

    2.464H), 7.73-7.79 (m, 5H) for aromatic protons and 7.70 for H-6,

    12.75 for SH and 13.60 for NH proton. The 13C NMR spectrum (Fig.9) of

    the compound shows peaks at 12.56 and 13.18 for methylsulfanyl group,

    55.51 and 55.59 for methoxy group, 189.25 and 188.76 for carbonyl

    carbon,178.69 for thiocarbonyl carbon and 176.23 for SH substituted

    carbon. The peaks at 116.64, 116.69, 129.30, 129.78, 131.77, 132.19,

    144.52, 146.3, 158.8, 163.19 and 173.18 for aromatic and heterocyclic

    carbon atoms of both the isomers were in accordance with the proposed

    structures. As the 1H NMR spectrum shows the presence of NH and SH

  • 76

    groups in the ratio 60:40, it is clear that there is equilibrium between

    pyrimidinethione and pyrimidinethiol.

    80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 2900

    25000

    50000

    75000

    100000

    125000

    135

    77 185

    92273

    121

    107291

    187207170 258245146 218

    Figure 6 GCMS spectrum of (4-methoxyphenyl)[6-(methylsulfanyl)-2-thioxo-1,2-dihydro-5-pyrimidinyl]methanone 101c

    Figure 7 IR spectrum of (4-methoxyphenyl)[6-(methylsulfanyl)-2-thioxo-1,2-dihydro-5-pyrimidinyl]methanone 101c

  • 77

    Figure 8 1HNMR spectrum of (4-methoxyphenyl)[6-(methylsulfanyl)-2-thioxo-1,2-dihydro-5-pyrimidinyl]methanone 101c

    Figure 9 13C NMR spectrum of (4-methoxyphenyl)[6-(methylsulfanyl)-2-thioxo-1,2-dihydro-5-pyrimidinyl]methanone 101c

  • 78

    The mechanism of the reaction is expected to be same as that in

    the formation of pyrimidinones (Scheme 3.47).

    O

    SMe

    SMe

    O H H2N NH2

    S

    O

    SMe

    SMe

    N

    S NH2

    O

    NH

    SMe

    N S

    SMeO

    NH

    SMe

    N S

    O

    SMe

    SMe

    NH

    S NH2

    HO

    O

    N

    SMe

    N SH

    95c 103c 104c

    H3CO H3CO H3CO

    H3COH3COH3CO

    105c101c102c

    Scheme 3.47

    The reaction was generalized to other substituted 2-aroyl-3,3-

    bis(methylsulfanyl)acrylaldehydes 95a-e to get (aryl)[6-(methylsulfanyl)-2-

    thioxo-1,2-dihydro-5-pyrimidinyl]methanones 101a-e (Scheme 3.48).

    Ar

    O

    SMe

    SMe

    Ar

    O

    NH

    SMe

    N SO H

    Ar

    O

    N

    SMe

    N SH

    Thiourea, Con.HCl(Cat.)

    Methanol,reflux

    101 10295

    Scheme 3.48

    Table 2 Synthesis of (aryl)[6-(methylsulfanyl)-2-thioxo-1,2-dihydro-5-pyrimidinyl]methanones 101a-e

    95 & 101 Ar Yield %

    a C6H5 70

    b 4-CH3C6H4 66

    c 4-CH3OC6H4 67

    d 4-BrC6H4 73

    e 4-ClC6H4 75

  • 79

    3.5. Conclusion

    In conclusion we have developed a facile method for the synthesis of

    biologically important 5-aroyl-4-(methylsulfanyl)-2(3H)-pyrimidinones and

    aryl-[6-(methylsulfanyl)-2-thioxo-1,2-dihydro-5-pyrimidinyl]methanone from

    2-aroyl-3,3-bis(alkylsulfanyl)acrylaldehydes. The presence of alkylsulfanyl

    and thioxo groups on the pyrimidinone moiety makes the molecule more

    facile for further elaboration to annulated heterocyclic compounds.

    3.6. Experimental

    Melting points were determined on a Buchi 530 melting point

    apparatus and were uncorrected. The IR spectra were recorded as KBr

    pellets on a Schimadzu IR-470 spectrometer and the frequencies are reported

    in cm-1. The 1H NMR spectra were recorded on a Brucker WM 300 (300

    MHz) spectrometer using TMS as internal standard and DMSO-d6 as

    solvent. The 13C NMR spectra were recorded on a Brucker WM 300 (75.47

    MHz) spectrometer using DMSO-d6 as solvent. Both 1H NMR and

    13C NMR values are expressed as (ppm). The Electron Impact Mass

    spectra were obtained on a GCMS-Schimadzu 5050 model instrument. The

    CHN analyses were done on an Elementar Vario EL III Carlo Erba 1108

    instrument.

    All reagents were commercially available and were purified before

    use. The previously reported aroylketene dithioacetals66 and -formylketene

    dithioacetals67 were prepared by the known procedures. Anhydrous sodium

    sulphate was used as drying agent. All purified compounds gave a single

    spot upon TLC analyses on silica gel 7GF using ethyl acetate/hexane

    mixture as eluent. Iodine vapors or KMnO4 solution in water was used as

    developing agent for TLC.

  • 80

    3.6.1. Synthesis of 5-Aroyl-4-(methylsulfanyl)-2(3H)-pyrimidinone (96)

    General procedure

    To a solution of 2-aroyl-2-[3,3-bis(methylsulfanyl)acrylaldehyde 95

    (1.26 g, 5 mmol) in methanol, urea (300 mg, 5 mmol) and Conc.HCl (1 mL)

    were added. The reaction mixture was refluxed for one hour. When the TLC

    examination showed the complete disappearance of the aldehyde, the

    reaction mixture was cooled and poured into ice-cold water, extracted with

    ethyl acetate, the combined organic phase was washed with water, dried and

    the solvent was evaporated off. The crude product obtained was

    recrystallized from ethyl acetate.

    O

    N

    NH

    O

    SCH3

    C12H10N2O2SMol. Wt.: 246.29

    5-Benzoyl-4-(methylsulfanyl)-2(3H)-pyrimidinone

    96a was obtanied by the reaction of 2-benzoyl-3,3-

    bis(methylsulfanyl)acrylaldehyde 95a (1.26 g, 5

    mmol) with urea (300 mg, 5 mmol) as white solid;

    mp, 268-270 C; yield 997 mg (81%).

    1H NMR (300 MHz, DMSO-d6) = 2.39 (s, 3H,

    SCH3), 7.51-7.55 (m, 3H, ArH), 7.565-7.71 (m, 2H,

    ArH), 7.93 (s, 1H, H-4), 12.3 (s, 1H, NH) ppm.

    13C NMR (75.47 MHz, DMSO-d6) = 14.7 (SCH3),

    112.75, 128.99, 129.42, 132.74, 137.92, 151.29,

    152.54, 178.52 (CO), 191.19 (CO) ppm.

    IR (KBr, max) = 3050, 1670, 1630, 1598, 1527,

    1423, 1365, 1305, 1245 cm-1.

    GCMS m/z (%) = 246 (M+, 18), 231 (28), 213 (73),

    199 (9), 185 (17), 155 (54), 105 (65), 77 (100).

    Anal. Calcd for C12H10N2O2S: C, 58.52; H, 4.09; N,

    11.37; S, 13.02. Found: C, 58.50; H, 4.11; N, 11.39.

  • 81

    O

    N

    NH

    O

    SCH3

    O

    N

    N

    OH

    SCH3

    andH3C

    H3C

    C13H12N2O2SMol. Wt.: 260.31

    5-(4-Methylbenzoyl)-4-(methylsulfanyl)-2(3H)-

    pyrimidinone 96b was obtanied by the reaction of 2-

    (4-methylbenzoyl)-3,3-bis(methylsulfanyl)-

    acrylaldehyde 95b (1.33 g, 5 mmol) with urea (300

    mg, 5 mmol) along with 5-(4-methylbenzoyl)-4-

    (methylsulfanyl)-2-pyrimidinol 97b as white solid;

    mp 230-232 C; yield 1.04 g (80%, 96b:97b =

    60:40).

    1H NMR (300 MHz, DMSO-d6) = 2.37 (s, 1.92H,

    CH3), 2.38 (s, 1.08H, CH3) 2.39 (s, 1.92H, SCH3),

    2.43 (s, 1.08H, SCH3), 7.24-7.39 (m, 2.56H, ArH),

    7.59 -7.65 (m, 1.44H, ArH),, 7.83 (s, 0.64H, H-6),

    7.92(s, 0.46H, H-6), 11.33 (s, 0.46H, OH), 11.88 (s,

    0.64H, NH) ppm.

    13C NMR (75.47 MHz, DMSO-d6) = 13.03 (SCH3),

    13.19 (SCH3), 20.89 (CH3), 21.07 (CH3), 112.35,

    112.53, 128.28, 128.61, 129.08, 129.24, 134.72, 135.10,

    140.15, 142.94, 147.01, 150.76, 152.22, 161.63, 164.28

    (CO), 177.92 (C OH), 190.36 (CO) ppm.

    IR (KBr, max) = 3122, 1726, 1677, 1606, 1514,

    1338, 1218, 1174 cm-1.

    GCMS m/z (%) = 260 (M+, 76), 259 (54), 245 (100),

    243 (0.9), 244 (2), 230 (4), 229 (22), 218 (5), 216

    (5), 213 (2), 203 (2), 202 (11), 201 (15), 199 (4), 186

    (8), 141 (1), 134 (41), 119 (8), 103 (6), 77 (10)

    Anal. Calcd for C13H12N2O2S: C, 59.98; H, 4.65; N,

    10.76; S, 12.32. Found: C, 60; H, 4.62; N, 10.77; S,

    12.30.

  • 82

    O

    N

    NH

    O

    SCH3

    O

    N

    N

    OH

    SCH3

    andH3CO

    H3CO

    C13H12N2O3SMol. Wt.: 276.31

    5-(4-Methoxylbenzoyl)-4-(methylsulfanyl)-2(3H)-

    pyrimidinone 96c was obtanied by the reaction of 2-

    (4-methoxylbenzoyl)-3,3-bis(methylsulfanyl)-

    acrylaldehyde 95c (1.41 g, 5 mmol) with urea (300

    mg, 5 mmol) along with 5-(4-methoxybenzoyl)-4-

    (methylsulfanyl)-2-pyrimidinol 97c as a white solid;

    mp 184-186 C; yield 1.11 g (81%, 96c:97c =

    60:40).

    1H NMR (300 MHz, DMSO-d6) = 2.44 (s, 1.92H,

    SCH3), 2.45 (s, 1.08H, SCH3), 3.83 (s, 1.92H, OCH3),

    3.85 (s, 1.08H, OCH3), 6.98-7.07 (m, 2.56H, ArH), 7.46

    (d, 0.44H, J = 9 Hz, ArH), 7.69-7.74 (m, 1H, ArH),

    7.80 (s, 0.46H, H-6), 7.92 (s, 0.64H, H-6), 11.32 (s,

    0.64, NH), 11.78 (s, 0.46H, OH) ppm.

    13C NMR (75.47 MHz, DMSO-d6) = 12.88 (SCH3),

    13.03 (SCH3), 55.28 (OCH3), 55.46 (OCH3), 112.65,

    113.19, 113.40, 113.90, 129.84, 130.43, 131.64,

    146.48, 150.86, 152.43, 161.20, 161.78, 162.82,

    162.94, 164.55 (CO), 177.77 (OH C), 189.28 (CO),

    189.42 (CO) ppm.

    IR (KBr, max) = 3062, 1722, 1672, 1566, 1512,

    1375, 1282, 1261, 1122, 1026, cm-1.

    GCMS m/z (%) = 276 (M+, 0.2), 261 (4), 260 (22) 259

    (20), 245 (34), 230 (49), 229 (25), 215 (41), 202 (36),

    201 (100), 135 (9), 119 (67), 104 (1), 91 (9), 76 (16).

    Anal. Calcd for C13H12N2O3S: C, 56.51; H, 4.38; N,

    10.14; S, 11.60. Found: C, 56.53; H, 4.40; N, 10.11; S,

    12.32.

  • 83

    O

    N

    NH

    O

    SCH3

    O

    N

    N

    OH

    SCH3

    andBr

    Br

    C12H9BrN2O2SMol. Wt.: 325.18

    5-(4-Bromobenzoyl)-4-(methylsulfanyl)-2(3H)-

    pyrimidinone 96d was obtanied by the reaction of 2-(4-

    bromobenzoyl)-3,3-bis(methylsulfanyl)acrylaldehyde

    95d (1.66 g, 5 mmol) with urea (300 mg, 5 mmol) along

    with 5-(4-bromobenzoyl)-4-(methylsulfanyl)-2-

    pyrimidinol 97d as white solid; mp 224-226 C; yield

    1.37 g (84%, 96d:97d = 80:20).

    1H NMR (300 MHz, DMSO-d6) = 2.38 (s, 2.3H,

    SCH3), 2.41 (s, 0.7H, SCH3), 7.42 (d, 1.52H, J = 9

    Hz, ArH), 7.62-7.66 (m, 0.96H, ArH), 7.73 (d,

    1.52H, J = 9 Hz, ArH), 7.91 (s, 0.76H, H-6), 8.61 (s,

    0.24H, H-6), 12.39 (s, 0.76H, NH/OH) ppm.

    13C NMR (75.47 MHz, DMSO-d6) = 13.12 (SCH3),

    13.13 (SCH3), 106.69, 112.17, 123.72, 126.22,

    130.39, 130.70, 131.06, 131.60, 136.64, 151.17,

    152.12, 155.12, 163.85 (CO), 178.03 (OH C), 189.85

    (CO), 206.45 (CO) ppm.

    IR (KBr, max) = 3217, 3068, 1720, 1666, 1585,

    1560, 1413, 1359, 1278, 1116, 1089 cm-1.

    GCMS m/z (%) = 326 (M++2, 6), 324 (M+ 8), 310

    (30), 308 (27), 295 (97), 293 (100), 278 (3), 184

    (28), 182 (31), 77 (21).

    Anal. Calcd for C12H9BrN2O2S: C, 44.32; H, 2.79; N,

    8.61; S, 9.86. Found: C, 44.52; H, 2.57; N, 8.62; S, 9.88.

  • 84

    O

    N

    NH

    O

    SCH3

    O

    N

    N

    OH

    SCH3

    andCl

    Cl

    C12H9ClN2O2SMol. Wt.: 280.73

    5-(4-Chlorobenzoyl)-4-(methylsulfanyl)-2(3H)-

    pyrimidinone 96e was obtanied by the reaction of 2-(4-

    chlorobenzoyl)-3,3-bis(methylsulfanyl)acrylaldehyde

    95e (1.43 g, 5 mmol) with urea (300 mg, 5 mmol) along

    with 5-(4-chlorobenzoyl)-4-(methylsulfanyl)-2-

    pyrimidinol 97e as white solid; mp 244-246 C; yield

    1.15 g (82%, 96e:97e = 60:40). 1H NMR (300 MHz, DMSO-d6) = 2.38 (s, 1.71H, SCH3), 3.75 (s, 1.29, SCH3), 7.51-7.61 (m, 2.28H,

    ArH), 7.70-7.77 (m, 1.72, ArH), 7.94 (s, 0.57H, H-

    6), 8.62 (s, 0.43H, H-6), 11.38 (s, 0.43H, OH), 12 (s,

    0.57H, NH) ppm. 13C NMR (75.47 MHz, DMSO-d6) = 13.12 (SCH3), 13.3 (SCH3), 111.82, 127.77, 128.15, 130.19,

    130.94, 134.91, 136.29, 136.65, 137.17, 137.32,

    148.11, 150.79, 152.18, 161.67, 163.87 (CO), 178.02

    (C OH), 189.70 (CO), 189.85 (CO) ppm.

    IR (KBr, max) = 3072, 1687, 1645, 1587, 1479, 1427, 1380, 1292, 1230, 1164 cm-1.

    GCMS m/z (%) = 282 (M+2, 1), 280 (M+, 0.4), 279

    (0.5), 262 (20), 261 (100), 245 (1), 232 (3), 190 (5),

    139 (1), 103 (7), 77 (46).

    Anal. Calcd for C12H9ClN2O2S: C, 51.34; H, 3.23; N,

    9.98; S, 11.42. Found: C, 51.37; H, 3.20; N, 9.99; S,

    11.43.

    3.6.2 Synthesis of (Aryl)[6-(methylsufanyl)-2-thioxo-1,2-dihydro-5-pyrimidinyl]methanone

    General procedure

    The 2-aroyl-3,3-bis(methylsulfanyl)acrylaldehyde 95 (1.26 g, 5

    mmol) was dissolved in methanol, thiourea (380 mg, 5 mmol) and Conc.

    HCl (1 mL) were added. The reaction mixture was refluxed for an hour. The

  • 85

    TLC examination shows the complete disappearance of the aldehyde. Then

    the reaction mixture was poured into ice-cold water. Extracted with ethyl

    acetate, the combined organic phase was washed with water, dried and the

    solvent was evaporated off. The crude product obtained was recrystallized

    from ethyl acetate.

    O

    NH

    SMe

    N S

    C12H10N2OS2Mol. Wt.: 262.35

    [6-(Methylsulfanyl)-2-thioxo-1,2-dihydro-5-

    pyrimidinyl](phenyl)methanone 101a was obtanied by

    the reaction of 2-benzoyl-3,3-bis(methylsulfanyl)-

    acrylaldehyde 95a (1.26 g, 5mmol) with thiourea

    (380 mg, 5 mmol) as white solid; mp 240-242 C;

    yield 918 mg (70%).

    1H NMR (300 MHz, DMSO-d6) = 2. 5 (s, 3H, SCH3),

    7.31-7.78 (m, 6H, ArH, H-6), 13.23 (s, 1H, NH) ppm.

    13C NMR (75.47 MHz, DMSO-d6) = 13 (SCH3),

    116.44, 128.62, 129.57, 133.38, 137.64, 145.94,

    159.12, 176.78 (C=S), 190.92 (CO) ppm.

    IR (KBr, max) = 3066, 1658, 1652, 1589, 1546,

    1510, 1348, 1240, 1218, 1186, 1078.

    GCMS m/z (%) = 262 (M+, 32), 247 (14), 229 (46),

    215 (5), 142 (6), 105 (64), 77 (100).

    Anal. Calcd for C12H10N2OS2 C, 54.94; H, 3.84; N, 10.68;

    S, 24.44. Found: C, 54.97; H, 3.82; N, 10.65; S, 24.47.

  • 86

    O

    N

    SMe

    N SH

    C13H12N2OS2Mol. Wt.: 276.38

    O

    NH

    SMe

    N Sand

    (4-Methylphenyl)[6-(methylsulfanyl)-2-thioxo-1,2-

    dihydro-5-pyrimidinyl]methanone 101b was obtanied

    by the reaction of 2-(4-methylbenzoyl)-3,3-

    bis(methylsulfanyl)acrylaldehyde 95b (1.33 g, 5

    mmol) with thiourea (380 mg, 5 mmol) in equilibrium

    with (4-methylphenyl)[6-(methylsulfanyl)-2-

    mercaptyl-1,2-dihydro-5-pyrimidinyl]methanone

    102b as white solid; mp 234-236 C; yield 912 mg

    (66%, 101b: 102b = 50:50).

    1H NMR (300 MHz, DMSO-d6) = 2.37 (s, 1.5H,

    CH3), 2.39 (s, 1.5H, CH3), 2.45 (s, 1.5H, SCH3),

    2.49 (s, 1.5H, SCH3), 7.28 (d, 1H, J = 9Hz), 7.34 (d,

    1H, J = 9Hz), 7.71-7.63 (m, 2.5H, ArH, H-6), 7.76

    (s, 0.5H, H-6), 12.75 (s, 0.5H, SH), 13.49 (s, 0.5H,

    NH) ppm.

    13C NMR (75.47 MHz, DMSO-d6) = 13.22 (SCH3),

    21.13 (CH3), 21.17 (CH3), 116.34, 116.57, 128.81,

    129.26, 129.34, 129.40, 134.26, 134.61, 143.39,

    143.49, 145.06, 147.16, 158.73, 173.33, 176.30 (SH

    C), 178.69 (C=S), 189.98 (CO), 190.42 (CO) ppm.

    IR (KBr, max) = 3195, 1668, 1646, 1583, 1522,

    1393, 1298, 1203, 1146 cm-1.

    GCMS m/z (%) = 276 (M+, 32), 261 (13), 243 (42),

    228 (8), 185 (16), 171 (30), 157 (10), 156 (7), 137 (20),

    119 (74), 105 (11), 91 (100), 77 (7).

    Anal. Calcd for C13H12N2OS2 C, 56.49; H, 4.38; N,

    10.14; S, 23.20. Found: C, 56.45; H, 4.37; N, 10.17; S,

    23.22.

  • 87

    O

    NH

    SMe

    N SMeO

    C13H12N2O2S2Mol. Wt.: 292.38

    O

    N

    SMe

    N SHMeO

    OR

    (4-Methoxylphenyl)[6-(methylsufanyl)-2-thioxo-

    1,2-dihydro-5-pyrimidinyl]methanone 101c was

    obtanied by the reaction of 2-(methoxylbenzoyl)-

    3,3-bis(methylsulfanyl)acrylaldehyde 95c ( 1.41 g,

    5mmol) with thiourea (380mg, 5 mmol) in

    equilibrium with (4-methoxylphenyl)[6-

    (methylsufanyl)-2-mercaptyl-1,2-dihydro-5-

    pyrimidinyl]methanone 102c as white solid; mp 200-

    202 C; yield 979 mg (67%, 101c: 102c = 60: 40).

    1H NMR (300 MHz, DMSO-d6) = 2.45 (s, 1.8H,

    SCH3), 2.49 (s, 1.2H, SCH3), 3.84 (s, 1.2H, OCH3),

    3.86 (s, 1.8H, OCH3), 6.99-7.10 (m, 1.6H, ArH),

    7.70(s, 0.4H), 7.73-7.79 (m, 3H, ArH, H-6), 12.75

    (s, 0.4H, SH), 13.60 (s, 0.6H, NH) ppm.

    13C NMR (75.47 MHz, DMSO-d6) = 12.56

    (SCH3), 13.18(SCH3), 55.51(OCH3), 55.59 (OCH3),

    113.52, 114.02, 116.64, 116.69, 129.30, 129.78,

    131.77, 132.19, 144.52, 146.30, 158.80, 163.19,

    173.18 (ArC) 176.23 (SH C), 178.69 (C=S), 188.76

    (CO), 189.25 (CO) ppm.

    IR (KBr, max) = 3068, 1664, 1637, 1595, 1512,

    1392, 1240, 1180, 1080 cm-1.

    GCMS m/z (%) = 292 (M+, 4), 291 (17), 277 (2), 259

    (4), 245 (5), 218 (3), 185 (58), 135 (100), 121 (29), 107

    (22), 92 (44), 77 (59).

    Anal. Calcd for C13H12N2O2S2 C, 53.40; H, 4.14; N,

    9.58; S, 21.93. Found : C, 53.44; H, 4.16; N, 9.58;

    S, 21.93

    and

  • 88

    O

    N

    SMe

    N SHBr

    C12H9BrN2OS2Mol. Wt.: 341.25

    O

    NH

    SMe

    N SBrand

    (4-Bromophenyl)[6-(methylsulfanyl)-2-thioxo-1,2-

    dihydro-5-pyrimidinyl]methanone 101d was

    obtanied by the reaction of 2-(4-bromobenzoyl)-3,3-

    bis(methylsulfanyl)acrylaldehyde 95d (1.66 g,

    5mmol) with thiourea (380mg, 5 mmol) in

    equilibrium with (4-bromophenyl)[6-(methylsulfanyl)- 2-

    mercaptyl-1,2-dihydro-5-pyrimidinyl]methanone

    102d as white solid; mp 224-226 C.; yield 1.26 g

    (73%, 101d: 102d = 60:40).

    1H NMR (300 MHz, DMSO-d6) = 2.36 (s, 1.98H,

    SCH3), 2.46 (s, 1.02H, SCH3), 7.47 (d, 0.68H, J = 9

    Hz, ArH), 7.69-7.65 (m, 2.64H, ArH), 7.74 (s, 0.66H,

    H-6), 7.78 (d, 0.68H, J = 9 Hz, ArH), 7.83 (s, 0.44)

    12.80 (s, 0.44H, SH), 13.81 (s, 0.66H, NH) ppm.

    13C NMR (75.47 MHz, DMSO-d6) = 13.26

    (SCH3), 14.12 (SCH3), 115.65, 116.05, 126.76,

    130.74, 130.84, 131.12, 131.18, 131.23, 131.72,

    136.11, 138.44, 147.90, 158.71, 173.31, 176.44 (SH

    C), 178.74 (C=S), 189. 69 (CO), 189.94 (CO) ppm.

    IR (KBr, max) = 3150, 1724, 1666, 1598, 1564,

    1402, 1350, 1232, 1201 cm-1.

    GCMS m/z (%) = 342 (M+2, 33) 340 (M+, 35), 338

    (31), 325 (91), 323 (100), 311 (54), 309 (31), 295 (13),

    185 (17), 184 (43), 158 (14), 155 (26), 127 (44), 76 (41).

    Anal. Calcd for C12H9BrN2OS2: C, 42.24; H, 2.66; N,

    8.21; S, 18.79. Found: C, 42.23; H, 2.67; N, 8.21;

    18.79.

  • 89

    O

    NH

    SMe

    N SCl

    C12H9ClN2OS2Mol. Wt.: 296.80

    (4-Chlorophenyl)[6-(methylsulfanyl)-2-thioxo-1,2-

    dihydro-5-pyrimidinyl]methanone 101e was

    obtanied by the reaction of 2-(4-chlorobenzoyl)-

    3,3-bis(methylsulfanyl)acrylaldehyde 95e ( 1.43 g,

    5mmol) with thiourea (380mg, 5 mmol) as white

    solid; mp 244-246 C; yield 1.11 g 75%.

    1H NMR (300 MHz, DMSO-d6) = 2.46 (s, 3H,

    SCH3), 7.71(d, 2H, J = 8 Hz, ArH), 7.76 (d, 2H, J =

    8 Hz, ArH), 7.85 (s, 1H) 12.80 (s, 1H, NH) ppm.

    13C NMR (75.47 MHz, DMSO-d6) = 13.45 (SCH3),

    117.42, 128.52, 131.18, 139.65, 143.94, 155.12,

    164.56, 178.68 (C=S), 190.92 (CO) ppm.

    IR (KBr, max) = 3095, 1643, 1596, 1587, 1512,

    1353, 1253, 1176, 1078 cm-1.

    GCMS m/z (%) = 296 (M+, 21), 298 (M+2, 8), 281

    (10), 279 (21), 263 (7), 261 (4), 249 (10), 185 (100),

    141 (27), 139 (73), 111 (76), 77 (52).

    Anal. Calcd for C12H9ClN2OS2: C, 48.56; H, 3.06; N,

    9.44; S, 21.61. Found: C, 48.50; H, 3.9; N, 9.44; S,

    21.62.

  • 90

    3.7. References

    1. a) El-Agrody, M. A; Ali, M. F; Eid, A. F; El-Nassag, A. A. M; El-

    Sherbeny, G; Bedair, H. A. Phosphorus Sulfur and Silicon, 2006, 181,

    839; b) Katritzky, A. R. Advances in Heterocyclic Chemistry

    (Academic Press, New York, 1966), Vol. 6. Thioxopyrimidines and

    Related Derivatives 863; c) Criag C. R.; Shidenman, E. F J.

    Pharmacal. Exp. Ther., 1971, 35, 179; Chem.Abstr., 74, 62990j (1971).

    d) Hurst , D. T.; Christophides, J. C. Heterocycles, 6, 1977 (1999

    2. Ghoneim, K. M.; Youssef, R.; J. of Indian Chem. Soc., 1986, 53, 914.

    3. a) Giles, F. J. Expert Rev. Anticancer Ther., 2002, 2, 261; b) Knapp,

    S. Chem. Rev., 1995, 95, 1859; c) Felczak, K.; Drabikowska, A. K.;

    Vilpo, J. A.; Kulikowski, T.; Shugar, D. J. Med. Chem., 1996, 39,

    1720.

    4. Karale, B. K.; Gill, C. H.; Khan, M.; Chavan, V. P.; Mane, A. S.;

    Shingare M. S.; Indian J. of Chem.-Section B: Org. and Med. Chem.,

    2002, No. 9, 41B, 1957.

    5. Thore, S. N.; Oriental J. of Chem., 2006, 22, 651.

    6. Reddy, V. M.; Sarma Rama, G. V. S.; Indian J. of Heterocyclic

    Chem., 1993, 3, 111.

    7. a) Szczech, G. M.; Furman, P.; Painter, G. R.; Barry, D. W.; Borroto-

    Esoda, K.; Grizzle, T.B.; Blum, M. R.; Sommadossi, J. P.; Endoh, R.;

    Niwa, T.; Yamamoto, M.; Moxham C. Antimicrob. Agents

    Chemother., 2000, 44, 123; b) Giles, F. J.; Feldman, E. J.; Roboz, G.

    J.; Larson, R. A.; Mamus, S. W.; Cortes, J. E.; Verstovsek, S.; Federl,

    S.; Talpaz, M.; Beran, M.; Albitar, M.; OBrien, S. M.; Kantarjian, H.

    M. Leuk. Res., 2003, 27, 1091; c) Giles, F. J. Expert Rev. Anticancer

    Ther., 2002, 2, 261; d) Toyohara, J.; Hayashi, A.; Sato, M.; Gogami,

  • 91

    A.; Tanaka, H.; Haraguchi, K.; Yoshimura, Y.; Kumamoto, H.;

    Yonekura, Y.; Fujibayashi, Y. Nucl. Med. Biol., 2003, 30, 687; e)

    Mangner, T. J.; Klecker, R. W.; Anderson, L.; Shields, A. F. Nucl.

    Med. Biol., 2003, 30, 215. (f) Toyohara, J.; Fujibayashi, Y. Nucl.

    Med. Biol., 2003, 30, 681; g) Dieterle, F.; Mller-Hagedon, S.;

    Liebich, H. M.; Gauglitz, G. Artif. Intell. Med., 2003, 28, 265

    8. a) Rowley, D. C.; Hansen, M. S. T.; Rhodes, D.; Striffer, C. A.; Ni,

    H.; McCammon, J. A.; Bushman, F. D.; Fenical, W. Bioorg. Med.

    Chem., 2002, 10, 3619; b) Arnaud, A.; Fontana, L.; Angulo, A. J.;

    Gil, .; Lpez-Pedrosa, J. M. Clin. Nutr., 2003, 22, 391; c) Gallant, J.

    E. J. Clin. Virol., 2002, 25, 317.

    9. a) Molina, P.; Aller, E.; Lorenzo, A.; Lopez-Cremades, P.; Rioja, I.;

    Ubeda, A.; Terencio, M. C.; Alcaraz, M. J. J. Med. Chem., 2001, 44,

    1011; b) Kumar, A.; Sinha, S.; Chauhan, P. M. S. Bioorg. Med.

    Chem. Lett., 2002, 12, 667.

    10. Shingare M. S.; Karale, B. K.; Gill, C. H.; Gange, K. N.; Bachute, M.

    T.; Indian J. of Heterocyclic Chem., 1999, 9, 153.

    11. a) Bher, J.-B.; Gourlain, T.; Helimi, A.; Guillerm, G. Bioorg. Med.

    Chem. Lett., 2003, 13, 1713; b) De Koning, H. P.; Al-Salabi, M. I.;

    Cohen, A. M.; Coombs, G. H.; Wastling, J. M. Int. J. Paras., 2003, 33,

    821; c) Behr, J.-B.; Gourlain, T.; Helimi, A.; Guillerm, G. Bioorg. Med.

    Chem. Lett., 2003, 13, 1713; d) De Koning, H. P.; Al-Salabi, M. I.;

    Cohen, A. M.; Coombs, G.; Wastling, J. M. Int. J. Paras., 2003, 33, 821.

    12. Faulkner, D. J. Natural Product Reports, 1998, 113.

    13. a) Mange, A.; Merino, M. V.; Sammartin, C.; Fernandwz, F. J.;

    Ochoda, M. C.; Bellver, C.; Artigas, P.; Alverez, F. E. Eur. J. Med.

    Chem., 1989, 24, 209; b) Hurst, D. T.; Beaumont, C.; Jones, D. T. E.;

  • 92

    AKingsly, D.; Partridge, J. D.; Rutherford, T. J. Aut. J. Chem., 1988,

    41, 1209; c) Kikuawa, K.; Kato, J.; Iwata, A. Anal. Biochem., 1988,

    174, 512; d) Knight, J. A.; Pieper, R. K.; Meclellan, L. Clin. Chem.,

    1988, 34, 2433; e) Albro, P. W.; Corbett, J. T.; Schroeder, J. L. J.

    Biochem. Biophs. Methods, 1986, 13, 185.

    14. T. Kata, Japn. Kokai Tokkyo Koho JP., 1984, 59, 974.

    15. a) Sadanandam, Y. S.; Shetty, M. M.; Diwan, P. V. Eur. J. Med.

    Chem., 1992, 27, 87; b) Bozing, D.; Benko, P.; Petocz, L.; Szecsey,

    M.; Toempe, P.; Gigles, G.; Gacsalyi, I.; Gyertyan, I. EGIS

    Gyoyszergyar, Eur. pat. Appl. Ep., 1991, 409, 233 ; Chem. Abstr.,

    1991,114, 247, 302z.

    16. Ertan, M.; Balkan, A.; Sarac, S.; Uma, S.; Ruebseman, K.; Renaud J.

    F. Arzneim-Forsch., 1991, 41, 725.

    17. Springthorpe, B.; Bailey, A.; Barton, P.; Birkinshaw, T. N.; Bonnert,

    R. V.; Brown, R. C.; Chapman, D.; Dixon, J.; Guile, S. D.;

    Humphries, R. G.; Hunt, S. F.; Ince, F.; Ingall, A. H.; Kirk, I. P.

    Bioorg. Med. Chem. Lett., 2007, 17, 6013.

    18. Pontikis, R.; Benhida, R.; Aubertin, A. M.; Grierson, D. S.;

    Monneret, C. J. Med. Chem., 1997, 40, 1845.

    19. Robins, R. K.; Revankar, G. R. Med. Res. Rev., 1985, 5, 273.

    20. Botta, M.; Artico, M.; Massa, S.; Gambacorta, A.; Marongiu, M. E.;

    Pani, A.; La Colla, P. Eur. J. Med. Chem., 1992, 27, 251.

    21. a) Kappe, C.O.; Fabian, W.M.F. Tetrahedron, 1997, 53, 2803;

    b) Kappe C.O. Eur. J. Med. Chem., 2000, 35, 1043; c) Kappe, C.O.;

    Shishkin, O.V.; Uray, G.; Verdino, P. Tetrahedron, 2000, 56, 1859.

  • 93

    22. a) Lu, J.; Bai, Y. Synthesis, 2002, 466; b) Sedova, V. F.; Shkurko, O.

    P. Chem. of Heterocyclic Comp., 2004, 40, 194.

    23. a) Skulnick, H.I.; Ludens; Wendling, M.G.; Glenn, E.M.; Rohloff, N.A.;

    Smith, Gedye, R.; Smith, R.J. Wierenga, W. J. Med. Chem., 1985, 28,

    1864; b) Skulnick, H.I.; Wierenga, W. Heterocycles, 1986, 29, 1499; c)

    Lamon, R.W. J. Heterocycl. Chem., 1986, 5, 837; d) Lapucha, A.

    Synthesis, 1987, 256; e) Vuano, B.M.; Pieroni, O.I.;Cabaleiro, M.C. J.

    Chem. Research (S), 2000, 318.

    24. Mohammad M. Mojtahedi, M. M.; Saidi, M.R.; Shirzi, J. S.;

    Bolourtchian, M. Synth. Commun., 2002, 32, 851.

    25. Yadav, J. S.; Subba Reddy, B. V.; Reddy, K. B.; Raj, K. S.; Prasad, A.

    R. J. Chem. Soc., Perkin Trans. 1, 2001, 1939.

    26. a) Geneste, H.; Backfisch, G.; Wilfried Braje, W.; Delzer, J.; Haupt, A.;

    Hutchins, C. W.; King, L. L.; Kling, A.; Teschendorf, H.; Unger, L.;

    Wernet, W. Bioorg. Med. Chem. Lett., 2006, 16, 490. b) Jones, W. D.;

    Huber, E. W.; Grisan, J. M.; Schnettler, R. A. J. Heterocycl.Chem.,

    1987, 24, 1221. c) The preparation of the building blocks mentioned,

    typical procedures and assay setup are described in DE 10311065, 2004;

    Chem. Abstr., 2004, 141, 296038.

    27. Guan, H.-P.; Hu, Q.-S.; Hu, C.-M. Synthesis, 1996, 997.

    28. Bonacorso, H.G.; Lopes, I.S.; Wastowski, A.D.; Zanatta, N.; Martins,

    M.A.P. J. Fluorine Chem., 2003, 120, 29.

    29. Bonacorso, H. G.; Costa, M. B.; Lopes, I. S.; Oliveira, M. R.; Drekener,

    R. L.; Martins, M. A. P.; Zanatta, N.; Flores, A. F. C. Synth. Commun.,

    2005, 35, 3055.

    30. Abdel-Latif, N. A; Sabry, N. M.; Mohamed, A. M; Abdulla, M. M.

    Monatshefte fr Chemie, 2007, 138, 715.

  • 94

    31. El-Gazzar, A. B. A M.; Hegab, I.; Swelam, S. A.; Aly, A. S.

    Phosphorus, Sulfur and Silicon, 2002, 177, 123.

    32. Eljazi I. Al-Afaleq, E. I.; Abubshait, S. A. Molecules, 2001, 6, 621.

    33. Sharma, A. K.; Jayakumar, S.; Hundal, M. S.; Mahajan, M. P. J. Chem.

    Soc., Perkin Trans. 1, 2002, 774.

    34. Hazarkhani, H.; Karimi, B. Synthesis, 2004, 1239.

    35. Cassis, R.; Tapia, R.; Valderrama, J.A. Synth. Commun., 1984, 14, 961.

    36. Mohammad M. Mojtahedi, M. M.; Saidi, M.R.; Shirzi, J. S.;

    Bolourtchian, M. Synth. Commun., 2002, 32, 851.

    37. Parlato, M. C.; Mugnaini, C.; Renzulli, M. L.; Corelli, F.; Botta, M.

    Arkivoc, 2004, v, 349.

    38. Bio, M. M.; Xu, F.; Waters, M.; Williams, J. M.; Savary, K. A.; Cowden,

    C. J.; Yang, C.; Buck, E.; Song, Z. J.; Tschaen, D. M.; Volante, R. P.;

    Reamer, R. A.; Grabowski, E. J. J. J. Org. Chem., 2004, 69, 6257.

    39. a) Kaiser, C. J. Org. Chem., 1959, 24, 113; b) Mai, A.; Sbardella, G.;

    Artico, M.; Ragno, R.; Massa, S.; Novellino, E.; Greco, G.; Lavecchia,

    A.; Musiu, C.; Colla, M. L.; Murgioni, C.; Colla, P. L.; Loddo, R. J.

    Med. Chem., 2001, 44, 2544; c) Macchia, M.; Barontini, S.; Bertini, S.;

    Bussolo, V. D.; Fogli, S.; Giovannetti, E.; Grossi, E.; Filippo; Danesi, R.

    J. Med. Chem., 2001, 44, 3994; d) Rodriguez, A.; Tamrazi, A.; Collins,

    M. L.; Katzenellenbogen, J. A. J. Med. Chem., 2004, 47, 600-611; e)

    Wang, Y.; Chen, F.; Clercq, E. D.; Balzarini, J.; Pannecouque, C. Eu. J.

    of Med.Chem., 2009, 44 1016; f) Nawrozkij, M. B.; Rotili, D.;

    Tarantino, D.; Botta, G.; Eremiychuk, A. S.; Musmuca, I.; Ragno, R.;

    Samuele, A.; Zanoli, S.; Armand-Ugn, M.; Clotet-Codina, I.;

    Novakov, I. A.; Orlinson, B. S.; Maga, G.; Est, J. A.; Artico, M.; Mai,

    A. J. Med. Chem., 2008, 51, 4641.

  • 95

    40. a) Danel K., Larsen E., Pedersen E. B., Synthesis, 1995, 934; b) Meng,

    G.; Chen, F.; Clercq, E. D.; Balzarini, J.; Pannecouque, C. Chem.

    Pharm. Bull., 2003, 51, 779.

    41. Dorokhov, V.; Komkov, A.; Baranin, S. Arkivoc, 2003, xiv, 178.

    42. Britsun, V. N.; Esipenko, A. N.; Kudryavtsev, A. A.; Lozinskii, M. O.

    Russian Journal of Organic Chemistry, 2005, 41, 1333.

    43. Laufer, S. A.; Wagner, G. K. J. Med. Chem., 2002, 45, 2733.

    44. Radwan, M. A. A; Abbas, E. M. H. Monatsh Chem 2009, 140, 229.

    45. Abdel-Latif, N. A; Sabry, N. M.; Mohamed, A. M; Abdulla, M. M.

    Monatshefte fr Chemie, 2007, 138, 715.

    46. Zhang, Q.; Long Lu Tetrahedron Lett., 2000, 41, 8545.

    47. Bonacorso, H. G.; Costa, M. B.; Lopes, I. S.; Oliveira, M. R.; Drekener,

    R. L.; Martins, M. A. P.; Zanatta, N.; Flores, A. F. C. Synth. Commun.,

    2005, 35, 3055.

    48. Joshi, A. A.; Viswanathan, C. L. Bioorg. Med. Chem., 2006, 16, 2613.

    49. Crepaldi, P.; Cacciari, B.; Bonache, M.; Spalluto, G.; Varani, K.; Borea,

    P. A.; Kgelgen, I.; Hoffmann, K.; Pugliano, M.; Razzari, C.; Cattaneo,

    M. Bioorg. Med. Chem., 2009, 17, 4612.

    50 a) Chatterjee, S. K; Anand, N. J. Sci. Ind, Re., Sect. B., 1958, 17, 63; b)

    Cottis, G; Tiecklmann, H. J. Org. Chem., 1961, 26, 79.

    51. El-Agrody, M. A; Ali, M. F; Eid, A. F; El-Nassag, A. A. M; El-Sherbeny,

    G; Bedair, H. A. Phosphorus, Sulfur, and Silicon, 2006, 181, 839.

    52. Eljazi I. Al-Afaleq, E. I.; Abubshait, S. A. Molecules, 2001, 6, 621.

    53. Elgemeie, G.; Elghandour, A. H.; Elzanate, A. M.; Ahmed, S. A. J.

    Chem. Soc., Perkin Trans. 1, 1997, 3285.

    54. Elgemeie, G. H.; Elghandour, A. H.; Abd Elaziz, G. W. Synth.

    Commun., 2007, 37, 2827.

  • 96

    55. El-Sayed Ali,T; Abdel-Monem, W. R. Phosphorus, Sulfur, and Silicon,

    2008, 183, 2161

    56. Heravi, M. M; Nami, N; Seifi, N; Oskooie, A. H; Hekmatshoar, R.

    Phosphorus, Sulfur, and Silicon, 2006, 181, 591.

    57. Rashad, A. E.; Sayed, H. H.; Shamroukh, A. H.; Awad, H. M.

    Phosphorus, Sulfur, and Silicon, 2005, 180, 2767.

    58. El-Gazzar, A. B. A M.; Hegab, I.; Swelam, S. A.; Aly, A. S.

    Phosphorus, Sulfur and Silicon, 2002, 177, 123.

    59 a) Hirota, K.; Kazaoka, K.; Niimoto, I.; Sajiki, H. Org. Biomol. Chem.,

    2003, 1, 1354; b) Kurimoto, A.; Ogino, T.; Ichii, S.; Isobe, Y.; Tobe,

    M.; Ogita, H.; Takaku, H.; Sajiki, H.; Hirota, K.; Kawakami, H. Bioorg.

    Med. Chem., 2004,12, 1091.

    60. El-Sharief, A. M. Sh.; Micky, J. A. A.; Shmeiss, N. A. M. M.; El-

    Gharieb, G. Phosphorus, Sulfur and Silicon, 2003, 178, 439.

    61. El Rady, E. A. Phosphorus, Sulfur, and Silicon, 2008, 183, 1659.

    62 Padmavathi, V.; Reddy, G. S.; Deepti, D.; Padmaja, A. J. Heterocyclic Chem., 2008, 45, 1089.

    63. Mohamed Abdel-Megid, M. Synth. Commun., 2003, 33, 153.

    64. Therkelsen, F. D.; Hansen, A. L.; Pedersen, E. B.; Nielsen, C. Org.

    Biomol. Chem., 2003, 1, 2908.

    65. Bari, A.; Feist, H.; Michalik, M.; Peseke, K. Molecules, 2005, 10, 837.

    66 (a) Junjappa, H.; Ila, H.; Asokan, C. V. Tetrahedron, 1990, 46, 5423;

    (b) Dieter, R. K. Tetrahedron, 1986, 42, 3029; (c) Kolb, M.

    Synthesis, 1990, 171

    67. Anabha, E. R.; Asokan, C. V. Synthesis., 2006, 151.