xavier querol, idaea-csicairuse.eu/wp-content/uploads/2015/01/2-xquerol_airuse-qualitat-de... ·...

79
QUALITAT DE LAI‘E Barcelona, 13/07/2015 Xavier Querol, IDAEA-CSIC

Upload: duongtram

Post on 11-Feb-2018

216 views

Category:

Documents


2 download

TRANSCRIPT

QUALITAT DE L AI‘E

Barcelona, 13/07/2015

Xavier Querol, IDAEA-CSIC

ididæididididæaæ aaæInstitute of Environmental Assessment and Water Research

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS SPANISH RESEARCH COUNCIL

http://www.idaea.csic.es/

ididæididididæaæ aaæ

CSIC es un organismo de investigación público multi-disciplinar afiliado al Ministerio de Economía y Competitividad de España, con su propia personalidad legal (Agencia Estatal) y presencia a lo largo del territorio nacional.

Objetivos y función del CSIC (R.D. 140/1993, de 29 de Enero ) :

• Preparar y desarrollar proyectos de investigación científica y tecnológica

• Asesoramiento en la definición de objetivos de investigación científica y tecnológica para apoyar decisiones de la administración sobre cuestiones de innovación científica y tecnológica

• Desarrollar investigación científica básica

• Colaborar con las universidades en aspectos de investigación y de formación

• Desarrollar programas de formación científica y tecnológica

• Colaborar con el Programa Nacional de I+D en tareas de asesoramiento y administración que le sean asignadas

Institute of Environmental Assessment and Water Research

ididæididididæaæ aaæ

Mission:

Study the natural and anthropogenically-induced changes in the ecosystems, mainly those involving toxicity

increases in organisms and humans, by means of chemical and geochemical techniques

Leading roles in the application of:

- analytical chemistry

- geochemistry and hydrology

- molecular biology

- methods for the study of environmental problems

Departamental structure:

2 departments:

- Environmental Chemistry

- Geosciences

IDAEA

Institute of Environmental Assessment and Water Research

ididæididididæaæ aaæ

A. Fuels, combustion and combustion by-products

• Mass balances for trace pollutants in combustion and gasification power plants

• Study of the fate of trace pollutants during waste disposal

DEPARTMENT OF GEOSCIENCES: 2 research lines

B. Atmospheric Geochemistry

• Long term measurements for aerosol-climate studies; increase the number of measuring parameters (EUSAAR,

CIRCE, GRACCIE, ACTRIS)

• Research on urban/industrial aerosols towards health impact assessment (APHEKOM, APHEIS, INTARESE)

• Implementation of new instrumentation for the development of new research lines on aerosol and health.

• Policy implementation assessment (ETC-ACM, national and EU administrations)

Institute of Environmental Assessment and Water Research

ididæididididæaæ aaæ Research team on Geochemistry

Department of Geosciences

28 staff (67 permanent scientists)

Research tools: R&D projects in National and EC calls, & contracts with Administration and private companies

Research focus: Atmospheric pollution Waste management and recycling

Institute of Environmental Assessment and Water Research

ididæididididæaæ aaæ

• Permanent gases, con t>1000 years: N2 (78%v), O2 (21%v) and noble gases

• Variable gaseous species, 100<t>1 years: CO2 (395 ppmv ), CH4, H2, N2O, O3

• Highly Variable gaseous species, t<1 year H2O(v): CO (<1ppmv), NO2, NH3, SO2 (ppbv ), H2S,…..

Residence time (t)

Blue colour due to light dispersion by air molecules

Troposphere: meteorological processes take place, 8km (poles) and 18km (equator) 70% atmosphere weight, T gradient of 6,5°C/km

The atmosphere

ididæididididæaæ aaæ

1855. Austria, Germany - Enacted laws against pollution with specific exemptions for air and water!

1872. Robert Angus Smith - "Air and Acid Rain: The Beginnings of a Chemical Climatology" - First use of the term "acid rain".

1895. Earliest known US air pollution law making illegal the "showing of visible vapor" as exhaust from steam automobiles.

1911. Crowther and Ruston - Tie together acid rain and combustion.

1956. British Clean Air Act

1963. US Clean Air Act (CAA)

1965. Title II (US CAA) Motor Vehicle Air Pollution Control Act

1977. Amendments to CAA look for carcinogenic materials (POMS, PNAs).

1980. US/Canada Memorandum of Intent to develop a bilateral approach to the acid rain problem.

1987. Montreal protocol to reduce CFC production (ozone destruction in upper atmosphere)

1987-1997. US NAAQS, 2003 review.

1996 and 2008- EU Air Quality Directives

Ca. 1800 BC. Earliest documented impact of anthropogenic air pollution on human beings. The Beauty of Loulan’s lungs were extensively damaged by sand dust and campfire smoke. Ca. 500 BC. Lao Tzu states impact of man on environment, including air quality. Ca. 300 AD. Local Roman magistrate passes laws regulating certain sources of air pollution in York, England. (breweries, meat slaughtering) 1180. Moses Maimonides - Describes air pollution in cities and its effects on man. 1272. Edward I - Banned use of "sea coal ". Parliament ordered punishment by torturing and hanging of people who sold and burned the outlawed coal. 1390 (?) Richard II - Regulated and restricted use of coal in London. 1420 (?) Henry V - Ditto. 1661. John Evelyn - Earliest extant treatise on air pollution. "Fumifugium; or the Inconvenience of the Air and Smoke of London Dissipated; Together with Some Remedies Humbly Proposed". 1692. Robert Boyle - " a General History of the Air ", mentions "nitros or salino-sulphureous spirits". 1772. Hales- Analysis of dew and rain, noted that "the air is full of acid and sulphurus particles". 1734. Linne (Sweden) - Studied effects of an iron smelter on local air. 1775. Sir Percival Pott - Intuited that soot has a carcinogenic component causing high incidence of cancer of the scrotum in chimney sweeps. 1852. Robert Angus Smith - Noted three zones of air pollution; fields and open country with carbonate and ammonia, ammonium sulfate in suburbs, and acid sulfate and sulfuric acid in town.

Historic Dates on Air Quality

Atmospheric pollution

ididæididididæaæ aaæ

Co pa a ai e de iudades o el ai e de los desie tos y las tierras áridas es como comparar las aguas que son podridas

y turbias con las limpias y puras. En la ciudad, a causa de la

altura de sus edificios, lo angosto de sus calles y de todo lo

ue se vie te desde sus ha ita tes y sus lí uidos…… el ai e se to a esta ado, espeso, u oso y e li oso…

Si el aire se altera alguna vez ligeramente, el estado del

Espíritu Psíquico se á alte ado pe epti le e te.

Maimónides (Rabi Mose Ben MAIMON)

médico sefardí cordobés, 1135-1204

Atmospheric pollution

ididæididididæaæ aaæ

RD, 102/2011, 28th January, for Air Quality & Protection of the Atmosphere:

At ospheric Pollutio : The occurrence in atmosphere of matter, substances or energy that may imply risk or damage for the safety or health of human beings, the environment……..

Atmospheric pollution

Bearing in mind:

• Not all harmful substances in atmosphere are already known

• For some components there is not a threshold for human protection

• Many activities and process (natural and anthropogenic) emit atmospheric pollutants

ididæididididæaæ aaæ The scales of the atmospheric pollution

Planetary-Global: Global warming and climate change Destruction of stratospheric ozone

Macro-meso scale: Transport and acidification Tropospheric ozone

Micro-scale: Urban air quality, local impact of industrial

emissions

Atmospheric pollution

ididæididididæaæ aaæ

Industrial processes, incineration

Chemical, metallurgical, petrochemical, mineral food, incineration

Fe, P, Al,

Si, Ca,..

Cu, Zn, Hg, V, Ni

F-, NH3, As, Pb, Cl-

Stationary sources

combustion

Power plants, heating, industry V, Ni (As, Se,..)

Various

Agriculture, fires, biomass combustion

NH3, K+

CO2, CO, HC, NOx, PM,

Corg+Celem, SO2

H+

Transport

Road, air, rail, fuel storage,………..

UF-PM, Sb,

Ba (Pb), Cl-

Biogenic, re-suspension, marine, lightening, volcanoes, fires

Natural emissions Cl-, Na+

Other: Harbor (shipping) emissions Air transport Construction-demolition Domestic and residential

EMISSION SOURCES AND TRACERS

Atmospheric pollution

ididæididididæaæ aaæ

Emission characteristics

Pollutant load

T and V of emission

High of emission

ATMOSPHERIC DIFUSION OR DISPERSION

Meteorological features

Atmospheric stratification, W-V, W-D, convection

Topographic and local effects

Marine and slope breeze, topographic obstacles

0

2 0

4 0

6 0

8 0

µg

/m3

S O 2 O 3 N O 2

00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12

January February March April May June July August September October November December

LLODIO

Atmospheric pollution

ididæididididæaæ aaæ EUROPEAN THEMATIC STRATEGY

Emissions levels

emission sources (natural, anthropogenic..)

primary pollutants (SO2, NOx, HC, PM,…

standards Control measures

1996-1999

minimization strategies

new standards

target levels

new standards

2005-2010

2013-2014 (2020)

Local and global effects Impact on receptors,

epidemiology

measuring (concentration and meteorology)

Levels in ambient air

meteorology, dispersion, transport,...

chemical transformation

(secondary pollutants: O3, PAN, HNO3, H2SO4)

Modelling and integrated assessment

Atmospheric pollution

ididæididididæaæ aaæ ENVIRONMENTAL STRANDARDS FOR AIR QUALITY

Directive 1999/30/EC SO2, NO2, NOx, PM10, Pb (PM2.5??)

Directive 2000/69/EC benzene, CO Directive 2002/03/EC O3

Directive 2004/107/EC PAH, Cd, As, Ni, Hg (PM2.5) Directive Clean Air for Europe and Air Quality, 2008/50/EC & 2004/107/EC

Deadlines: 2005-2010, 2015, 2020

MATHER DIRECTIVE 1996/62/CE

Emission

Ambient air

RD, 102/2011 (Spanish legisltaion)

IPPC Integrated Prevention and Pollution Control, substituted by the Industrial Emissions Directive (IED)

DIRECTIVES 1996/61/EC, 2008/1/EC, 2010/75/EC 2002/51/EC, 2006/120/EC 1998/69/EC, 2002/80/EC, 2007/715/EC 2001/80/CE 2001/81/CE 2014/??/CE

EURO standards for vehicles

Large Combustion Plants National Emission Ceilings Medium scale combustion plants

REVISION IN 2013 & 2014

REVISION OF AQ DIRECTIVE DELAYED UNTIL 2020 EVEN WHEN WHO (REVIHAAP+HRAPIE PROJECTS)

RECOMMENDED CHANGING PM2.5 AND SOME TARGET VALUES TO LIMIT VALUES

Atmospheric pollution

ididæididididæaæ aaæ

CRITICAL PARAMETRES (INFRINGEMENTS)

293 °K , 101,3 kPa,

Directive 2008/50/EC, RD 102/2011 except PM and metals, Evriron. Cond.

Hourly 350 µg/m3 SO2 24 times per year Daily 125 µg/m3 SO2 3 times per year Annual prot. ecos. 20 µg/m3 SO2 not exceeding annual and mean 1 Oct-31 Mar Hourly 200 µg/m3 NO2 8 times per year Annual 40 µg/m3 NO2 not exceeding Annual prot. vegetation 30 µg/m3 NOx (reported as NO2) not exceeding Annual 5 µg/m3 Benzene not exceeding Mean 8-h max. in a day 10 mg/m3 CO not exceeding Annual 500 ng/m3 Pb not exceeding Annual 40 µg/m3 PM10 not exceeding Daily 50 µg/m3 PM10 n<35 per year Annual (25 and 20 (18) µg/m3 PM2.5) not exceeding 2010-2020 (reducing 20% PM2.5 triennial for mean of urban background)

ENVIRONMENTAL STRANDARDS FOR AIR QUALITY

2004/107/EC, RD 102/2011

Annual 6 ng/m3 As not exceeding Annual 20 ng/m3 Ni not exceeding Annual 5 ng/m3 Cd not exceeding Annual 1 ng/m3 Benzo[]pirene not exceeding

Atmospheric pollution

ididæididididæaæ aaæ

AOT40 [expressed in (µg/m3·h] = as sum of the difference between hourly levels exceeding 80 µg/m3 and 80 µg/m3 along a given period using only hourly values measured between 8.00 and 20.00 h, Central Europe Time (CET), for every day.

Target value Protection human health Maximum of 8 h means of a day 120 µg/m3 O3 not exceeding 25 day/year mean for 3 years Target Value Protection of vegetation AOT40, hourly values from Mayo to July 18.000 µg/m3·h O3 not exceeding as a mean of 5 years (c) Information threshold value: hourly 180 µg/m3 O3

Alert threshold value : hourly 240 µg/m3 O3

High levels out of urban agglomerations or in external urban areas

ENVIRONMENTAL STRANDARDS FOR AIR QUALITY

Atmospheric pollution

ididæididididæaæ aaæ GUIDELINES WHO (2005 & 2006)

Atmospheric pollution

2008/50/EC WHO (2006) guide lines RD 102/2011 Hourly 350 µg/m3 SO2 -- 24 times per year Daily 125 µg/m3 SO2 -- 3 times per year Hourly 200 µg/m3 NO2 EC-WHO coincide 18 times per year Annual 40 µg/m3 NO2 EC-WHO coincide not exceeding Annual 5 µg/m3 C6H6 EC-WHO coincide not exceeding Mean 8-h max. in a day 10 mg/m3 CO EC-WHO coincide not exceeding Annual 500 ng/m3 Pb EC-WHO coincide not exceeding Annual 40 µg/m3 PM10 20 µg/m3 PM10 not exceeding Annual 25 µg/m3 PM2.5 10 µg/m3 PM2.5 not exceeding Max 8 h means of a day 120 µg/m3 O3 100 µg/m3 O3 not exceeding 25 day/year mean for 3 years BaP annual 1 ng/m3 BaP 0.12 ng/m3 BaP not exceeding

ididæididididæaæ aaæ

19/11/2014

NO2 annual limit value, 2012

The problem of NO 2

ididæididididæaæ aaæThe problem of NO2

Causas de superación del VLA de NO 2:promedio 2001-2009 (53 estaciones)

63%

29%

3% 2%2% 1%

Heavy traffic

Proximity to a major road

Local industry

Quarrying/mining

Domestic heating

Industrial accident

Non-industrial accident

Natural source

Winter sanding

African dust

Local petrol station

Parking facility

Benzene storage

Industry

0

10

20

30

40

50

60

70

80

90

100

FONERS

BARCELONA

CORNELL

A

STA PERPETU

A

L'HOSPIT

ALET

MONTC

ADA

STA COLO

MA

ST ANDREU

EL PRAT

BADALONA

BARCELONA

ST ADRIÀ

B.

BARCELONA

TERRASSA

MOLL

ET

SABADELL

BARCELONA

BARCELONA

BADALONA

NO

2 (

µg

/m3)

2005 2006 2007 2008 2009 2010CATALUNYA

Valor límite desde 2010

0

10

20

30

40

50

60

70

80

90

100

ALCOBENDAS

MADRID

GETAFE

MADRID

MADRID

COSLA

DA

MADRID

MADRID

MADRID

MADRID

ALCORCÓN

COSLA

DA

GETAFE

MADRID

NO

2 (

µg

/m3)

2005 2006 2007 2008 2009 2010COMUNIDAD DE MADRID

Valor límite desde 2010

0

10

20

30

40

50

60

70

80

90

100

CASTE

LLÓ

VALE

NCIA

VALE

NCIA

VALE

NCIA

VALE

NCIA

LEON

SALA

MANCA

SEGO

VIA

PALE

NCIA

SEVI

LLA

GRAN

ADA

GRAN

ADA

ZARAG

OZA

ZARAG

OZA

AVILES

OVI

EDO

LAS P

ALMAS

A CO

RUÑA

NO

2 (

µg/m

3)

2005 2006 2007 2008 2009 2010CC AA: VALENCIA, CASTILLA Y LEÓNANDALUCÍA, ARAGÓN, ASTURIAS, GALICIA

Valor límite desde 2010

•MADRID, COSLADA, GETAFE, LEGANÉS •BARCELONA, BARBERÀ DEL V., MARTORELL, MONTCADA I R., ST. ANDREU DE LA B., MOLLET DEL VALLÈS, ST ADRIÀ DE BESÒS, SABADELL, STA. COLOMA G., TERRASSA •PALMA DE MALLORCA •GRANADA, SEVILLA

2011

http://www.magrama.gob.es/es/calidad-y-evaluacion-ambiental/temas/atmosfera-y-calidad-del-aire/Informe_evaluaci%C3%B3n_calidad_aire_Espa%C3%B1a_2012_final_v2_tcm7-299046.pdf

2012: ZONAS CON SUPERACIÓN VALOR LÍMITE ANUAL

2013: ZONAS CON SUPERACIÓN VALOR LÍMITE ANUAL

ididæididididæaæ aaæ

• Dosimeter NO2 Palmes

• Molecular diffusion

• Absorbent = 20% TEA in H2O

• Analysis: colorimetry

Length 7.1 cm

Absorber at closed end

Open end for sampling

Length 7.1 cm

Absorber at closed end

Open end for sampling

The problem of NO2

Levels

NO2 MAY-JUNE 2008 (120 PASSIVE

DOSIMETRES)

The problem of NO2

ididæididididæaæ aaæ NO2, high spatial variability

The problem of NO2

Levels

ididæididididæaæ aaæ Fabra - Barceloneta

The problem of NO2 NO2 MAY-JUNE 2008 (120 PASSIVE DOSIMETRES)

ididæididididæ

aæaa

æW

hy so

high

NO

2 ?

The

pro

ble

m o

f NO

2

0 1 2 3 4 5 6

Barcelona

Madrid

València

Amsterdam

Belgrade

Berlin

Bern

Bologna

Budapest

Stockholm

Firenze

Frankfurt

Genoa

Hamburg

Helsinki

London2007

Luxemburg

Milan

Munich

Napoli

Oslo

Praha

Roma

Torino

Wien

Zurich

Cars x 1

00

0 / km

2

Ve

ry high

de

nsity o

f veh

icles (#/km2),

Bu

t also >5

0%

of ve

hicle

s circulatin

g in th

e city co

me

from

ou

tside

0

500

1000

1500

2000

2500

3000

Barcelona

Madrid

València

AmsterdamBelgrade

Berlin

BernBologna

Budapest

Stockholm

FirenzeFrankfurt

Genoa

Hamburg

HelsinkiLondon2007

Luxemburg

MilanMunich

Napoli

Oslo

PrahaRoma

Torino

Wien

Zurich

Cars x1

00

0

ididæididididæaæ aaæ Ámsterdam

Madrid

Barcelona

500m

El Problema de NO2

Napoli

Why so high NO2?

The problem of NO2

ididæididididæaæ aaæ El Problema de NO2 Why so high NO2?

The problem of NO2

ididæididididæaæ aaæ El Problema de NO2

Euro4 (2005)

NOx mg/km

PM

mg/

km

Euro5 (2009)

Euro6 (2015)

Euro2 (1996)

Euro3 (2000)

Euro1 (1992)

(7)(8)

(10)(10)

(36)(16) (NOx/PM rates for each specific Euro standard)

Euro standards for Diesel Passenger Cars

(NOx+HC/PM rates for each specific Euro standard)1

10

100

1000

0 200 400 600 800 1000 1200

7 810 10

36

16

5

9

17

30

180

50

1

10

100

1000

1990 1995 2000 2005 2010 2015 2020

Euro4(2005)

Euro5(2009)

Euro6(2015)Euro2

(1996)

Euro3(2000)Euro1

(1992)

NO

x/P

M

Ratio of NOx/PM emissions from Euro standards for Diesel Passenger Cars

Ratio of real life NOx/PM emissions for Diesel Passenger Cars

98

Ratio of (NOx+HC)/PM emissions from Euro standards for Diesel Passenger Cars

Why so high NO2?

The problem of NO2

ididæididididæaæ aaæThe problem of NO2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

EU 0 EU 1 EU 2 EU 3 EU 4 EU 5

NO

x [g

/km

]

NONO2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

EU 0 EU 1 EU 2 EU 3 EU 4 EU 5

NO

x [g

/km

]

NONO2

Actual emissions: type approval vs. real world for PC Diesel NEDC Diesel CADC (hot start)

Courtesy: Prof. Dr. S. Hausberger T.U. Graz 0

0.05

0.1

0.15

0.2

0.25

1990 1995 2000 2005 2010 2015 2020

Year

Pass

enge

r car

s NO2

[g/km

]

0

0.5

1

1.5

2

2.5

HDV

NO2

[g/km

]

Passenger cars gasoline

Passenger cars diesel

HDV

NO2 Total effect of NOx and NO2 fleet emission reduction may not be sufficient to reach NO2 air quality targets near roads with high traffic volumes until 2015:

NO2 fleet emission factors in urban traffic (share in mileage for AUT)

NON TECHNOLOGICAL MEASURES ARE NEEDED

FOR URBAN AREAS: REDUCING THE NUMBER OF VEHICLES

(2015!!!!!!)

EU 6

Atmospheric particulate matter (PM): heterogeneous solid and/or liquid material present in suspension into the atmosphere

• Health impact • Ecosystems • Climate change • Building materials • Visibility

The problem of PM

ididæididididæaæ aaæ IPCC, 2013

+3.21

-0.69

The problem of PM

ididæididididæaæ aaæ

Shindell et al (2012) Science 315

The problem of PM

ididæididididæaæ aaæ

Impact on ecosystems

Slamba Poremba, Poland (C. Martin, The Environmental

Picture Library)

PM EFFECTS

The problem of PM

ididæididididæaæ aaæ

Weathering of building materials

The problem of PM

PM EFFECTS

ididæididididæaæ aaæ

26/03/00

26/02/00

VISIBILITY

The problem of PM

PM EFFECTS

ididæididididæaæ aaæ

1. Process of formation: Primary particles: directly emitted to the atmosphere as a solid Secondary particles: produced into the atmosphere from gaseous precursors example: SO2 (g) oxidation SO4

2- (s) 2. Origin: Natural particles Anthropogenic particles (human activities)

CLASSIFICATION OF ATMOSPHERIC PARTICLES

The problem of PM

ididæididididæaæ aaæ PRIMARY PM

The problem of PM

ididæididididæaæ aaæ SECONDARY PM

The problem of PM

ididæididididæaæ aaæ FORMATION OF SECONDARY INORGANIC AEROSOLS

Process of oxidation SO2 H2SO4 and NOx HNO3

Homogeneous (gas to particle)

Heterogeneous (gas-H2O-particle)

Maximal velocities (summer, max hv): 6%SO2h-1, 18%NO2h-1 34%SO2day-1, 98%NO2day-1

Dry oxidation (homogeneous) Generation of oxidant radicals

O3+hν (solar) O* O*+H2O 2OH Oxidation

SO2+OH+m HOSO2+m HOSO2+O2 HO2+SO3

SO3+H2O H2SO4

NO+O3 NO2+O2 NO2+OH+m HNO3+m

Reaction

Wet oxidation (dissolution of gases, mainly SO2) (condensation nuclei, fog, precipitation, wet aerosol fil s Oxidants: H2O2 (pH<5), O3 (pH>5), O2 (catalysers, Cl, m) Oxidation

HCOH+hv (solar) H+HCO* HCO*+O2 HO2 + CO* (formaldehyde)

HO2 + HO2 H2O2+O2

2SO2 + 2H2O SO32-+HSO3

-+3H+

HSO3- + H2O2 HSO4

-+H2O

Maximal velocities (summer, max hv): 270%SO2h-1 (H2O2) 410%SO2h-1 (O3)

Nucleation

Condensation

The problem of PM

ididæididididæaæ aaæ

PRIMARY

• Natural

re-suspension (loc/ext)

evap./precip.

• Anthropogenic

direct emissions

fugitive emissions

SECONDARY

• Natural

natural sulphate

biogenic emissions

• Anthropogenic

PM from gas by nucleation

condensation evaporation

SO4=, NO3

-, NH4+, H+

Corg, metals

0.1 µm 1.0 µm 10 µm 25 µm

PM ORIGIN

SiO2,Al2O3,Fe2O3,TiO2

CaCO3, NaCl, Corg, metals

0.1 µm 1.0 µm 10 µm 25 µm

(Soot)

The problem of PM

ididæididididæaæ aaæThe problem of PM

Vo

lcanic +

Bio

gen

ic su

lfate,7

8

Bio

ge

nic S

OA

,

25

Tera grams / Year, Andreae and Rosenfeld (2008) and Durant et al. (2010)

Mineral dust

1600

Sea spray

10130

Primary A

nth

r+N

at

nitra

te,1

8

An

thro

po

gen

ic su

lfate, 1

22

An

tho

p.

SO

A,3

.5

Secondary

Volcanic*

dust, 200

Biological

POA, 35

BC Biomass burning, 6

POA Biomass burning, 54

POA Fossil fuels, 4

Industrial dust,

100

BC Fossil fuels, 4.5

Natural Anthropogenic

ididæididididæaæ aaæ

Secondary Inorganic aerosols

NH4+

SO42-

NO3-

Crustal-mineral

Al2O3

Mg

Ti

Fe

K

SiO2

CO32-

P

Ca

Sea spray

Na+

Cl-

SO42-

Carbonaceous aerosols (OM and EC)

Trace elements

As, Ba, Bi, Cd, Ce, Co, Cr, Cs, Cu,

Dy, Er, Ga, Gd, Ge, Hf, La, Li, Mn,

Mo, Nd, Ni, Pb, Pr, Rb, Sb, Sc, Se,

Sm, Sn, Sr, Ta, Th, Ti, Tl, U, V, W,

Yb, Zn, Zr

PM ORIGIN

The problem of PM

Bioaerosol (natural)

pollen

Vegetal de ris, inse ts, a teria,….

The problem of PM

Sea spray

NaCl

Sodium, potassium, magnesium chloride, sodium, magnesium sulphate ,

DMS

The problem of PM

ididæididididæaæ aaæ

TEM-EDX analysis

The problem of PM

ididæididididæaæ aaæ

Scale = 500nm

fly ash

glass Magnetite

The problem of PM

ididæididididæaæ aaæ

Quartz Clay minerals (kaolinite, Illite, Chlorite, ((Paligorskite, Smectite)) Feldespars Other silicate i erals talc, pirophillite,…. Carbonate minerals (calcite, dolomite) Phosphates, o ides, g psu ,….

PM ORIGIN

The problem of PM

combustion power plant

SI, Al, S, K, Fe, Ti

quartz

SI, S, Fe

The problem of PM

Marine aerosols

Natural minerals

Bioaerosols + biogenic

Natural Background

x

x

x

x

x

x

x

x

NH4NO3

(NH4)2SO4

Long Range Transp.

x

x

Carbonaceous

NH4NO3

(NH4)2SO4

Carbonaceous (Soot, mainly road traffic)

Local emissions

Pavement, demolition, constr.

Carbonaceous (fuel-oil ash)

Heavy metals

Interaction among species

The problem of PM

ididæididididæaæ aaæ

19/11/2014

PM10 daily limit value 2012

The problem of PM

ididæididididæaæ aaæhttp://www.magrama.gob.es/es/calidad-y-evaluacion-ambiental/temas/atmosfera-y-calidad-del-aire/Informe_evaluaci%C3%B3n_calidad_aire_Espa%C3%B1a_2012_final_v2_tcm7-299046.pdf

Zonas con superaciones 2012 valor límite diario

2012: ZONAS CON SUPERACIÓN VALOR LÍMITE DIARIO 2012: ZONAS CON SUPERACIÓN VALOR LÍMITE ANUAL

2013: ZONAS CON SUPERACIÓN VALOR LÍMITE DIARIO

2013

2013: ZONAS CON SUPERACIÓN VALOR LÍMITE ANUAL

The problem of PM

ididæididididæaæ aaæ BaP valor objetivo anual, 2012

19/11/2014

The problem of Benzo-α-pierene

ididæididididæaæ aaæ

Resultados medidas de BaP 2013

Resultados medidas de BaP 2012

The problem of Benzo-α-pierene

ididæididididæaæ aaæ

0

2

4

6

8

10

12

14

16

02/06/2008 02/06/2009 02/06/2010 02/06/2011 02/06/2012 02/06/2013 02/06/2014

ng/m

3

benzo[a]pireno MANLLEU

The problem of Benzo-α-pierene

ididæididididæaæ aaæ

19/11/2014

EMISSIONS EU-28, 2012 The problem of Benzo-α-pierene

ididæididididæaæ aaæThe problem of ozone

19/11/2014

O3 target level for triennal values 2012

ididæididididæaæ aaæThe problem of ozone

ididæididididæaæ aaæO3

The problem of ozone

OUTDOOR AND INDOOR PARTICLE CONCENTRATIONS IN SCHOOLS OF BARCELONA DURING THE BREATHE STUDY

QUEROL X.1, RIVAS I.1,2, BOUSO L.2, RECHE C.2, AMATO F.1, VIANA M.1, MORENO T.1, PANDOLFI M.1, ALASTUEY A., ÁLVAREZ M.2, SUNYER J.2,

1 Institute of Environmental Assessment and Water Research, IDAEA, CSIC, Barcelona, Spain 2 Centre de Recerca en Epidemiologia Ambiental CREAL-UPF, Barcelona, Spain

Zurich, 30th June 2015

[email protected]

Objectives of BREATHE

Exposure to air pollution at school

PLoS Med. 2015;12(3):e1001792

Dashed line = high traffic air pollution Continuous line = low traffic air pollution Gray shading = 95% CIs

ERC-Advanced Grant, PI: Jordi Sunyer CREAL

OBJECTIUS

• Characterizing children exposure to urban air pollutants in schools

• Identification and quantification of the main sources of these pollutants affecting

indoor and outdoor environments

• Defining factors affecting PM (including UFP) levels and composition in both

indoor and outdoor environments: road traffic emissions, ventilation and type of

playground

• Characterize children’s daily BC exposure and sources

Objectives on ambient air & exposure

ERC-Advanced Grant , Leader of the exposure studies: Xavier Querol, IDAEA-CSIC

• Two simultaneous schools & a urban

background reference station of

Palau Reial (UB)

• Simultaneously in indoor and outdoor

school environments

• Sampling in teaching hours (9 to 17h),

from Monday to Thursday

• 2 campaigns at each school:

- 1 week/school in winter-spring

- 1 week/school in fall-winter

Monitoring sites

Measurement periods 1. February to June 2012 2. September 2012 to February 2013

Metodology: Measurements

36 schools in Barcelona

3 schools in Sant Cugat

SCHOOLS

DUSTTRAK DRX

HIGH-VOLUME SAMPLERS

MICROAETH® AE51

MINIDISC

GRADKO NO2 TUBES

GRIMM

HIGH-VOLUME

SAMPLERS

MAAP

WCPC

NSAM

GRADKO NO2 TUBES

PM2.5

PM2.5 COMPONENTS

BC

N

SIZE

LDSA

NO2

Metodology: Measurements & sampling

UB REFERENCE SITE

H2O leaching

Ion Chromat.:

NO3-, Cl-, SO4

=

Colorimetry FIA and ICP-AES:

NH4+, K+, Ca2+,

Mg2+,…

Acidic digestion (HF:HNO3:HClO4)

ICP-AES:

Al, Ca, K, Na,

Mg, Fe, Ti, P

ICP-MS:

Li, Ti, V, Cr, Co,

Ni, Cu, Zn, As, Se,

Rb, Sr, Y, Zr, Cd,

Sn, Cs, Ba, La, Ce,

Pr, Nd, Hf, Tl, Pb,

Bi, Th, U

OC, EC

Mass determined: 75-85% PM2.5

Metodology: Chemical analysis

Rivas I., et al ., 2014. Child exposure to indoor and outdoor air pollutants in schools. Env ironment International 69, 200 –212.

Results: Mean levels

NO2 outdoor levels for the rest of schools in Barcelona = 50 µg·m-3

• High levels of PM 2.5 in schools Local (school ) emission of PM 2.5

• Mean levels of pollutants are intermediate between traffic and urban

background sites

INDOOR OUTDOOR UB REF. STATION

Mean SD Mean SD Mean SD

NO2

(µg·m-3) 30 13 47 19 41 20

PM2.5 (µg·m-3)

37 16 29 24 17 8

N (pt·cm-3)

15625 6673 23614 9514 14665 6034

EBC (µg·m-3)

1.3 0.9 1.4 1.1 1.3 0.8

Results: PM2.5 source apportionment

Mineral sources

Results: PM2.5 source apportionment

PM2.5 (µg/m3) Paved playground

Unpaved playground

Reference site 0.6

Schools (outdoor) 2.5 16.0

Schools (indoor) 3.6 9.1

Indoor

resuspension

Increases indoors

PM2.5 by

5-6 µg/m3

Reference Station BREATHE Schools

EC levels perimeter

Low

High

Results: Spatial variation

PM2.5 BC

NO2 UFP

EBC (µg·m3)

< 1.25

1.25 – 1.60

> 1.60

PM2.5 (µg·m3)

< 24

24 – 32

> 32

NO2 (µg·m3)

< 42

42 – 53

> 53

N (103 pt·cm3)

< 18

18 - 24

> 24

Estació referència Escoles BREATHE

EC levels perimeter

Low

High

Results: Spatial variation

EBC (µg·m3)

< 1.15

1.15 – 1.55

> 1.55

PM2.5 (µg·m3)

< 34

34 – 50

> 50

NO2 (µg·m3)

< 22

22 – 34

> 34

N (103 pt·cm3)

< 13

13 - 18

> 18

PM2.5 BC

NO2 UFP

PERSONAL EXPOSURE TO EBC

- EBC median concentration is higher in

personal monitoring than in the fixed

station (school indoor, school outdoor,

urban background)

classroom playground other commuting home

020

0040

0060

0080

0010

000

EBC from personal monitoring by children location

EB

C (n

g/m

3)

010

0020

0030

00

EBC concentrations

classroom school playground UB personal

EB

C (n

g/m

3)

- Highest EBC median concentrations

found during commuting

Results: Levels of BC Childre s exposure

Results: Levels of BC

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2022

23

24

25

26

27

28

29

30

31

3233

3435

36

37

38

39

40

4575000

4580000

4585000

4590000

420000 425000 430000 435000long

lat

500

1000

1500

2000

2500

200

400

600

800

1000

1200

1000

1500

2000

2500

3000

3500

200

400

600

800

1000

1200

1000

2000

3000

4000

2000

3000

4000

5000

6000

500

1000

1500

2000

2500

1000

2000

3000

500

1000

1500

500

1000

1500

2000

2500

3000

1000

2000

3000

4000

5000

1000

2000

3000

4000

5000

6000

500

1000

1500

2000

1000

2000

3000

4000

0

500

1000

1500

2000

2500

0 6 12 18 23

1000

2000

3000

4000

5000

500

1000

1500

200

400

600

800

1000

1200

1400

200

400

600

800

1000

1200

1000

1500

2000

500

1000

1500

2000

2500

x

y

40

39

38

1

4 35

7

815

11

14

3 25

5

28

9 23

1327

18

2

31

34

26

12

3632

37

19

29

33

17

10

20

2224

30

500

1000

1500

1000

2000

3000

4000

5000

6000

16

6

Daily cyles from 0 to 23h

EBC Indoor

EBC Outdoor

5000

10000

15000

20000

25000

30000

10000

20000

30000

40000

50000

5000

10000

15000

20000

5000

10000

15000

10000

20000

30000

0 6 12 18 23

10000

20000

30000

10000

20000

30000

40000

0 6 12 18 23

10000

20000

30000

40000

10000

20000

30000

40000

0 6 12 18 2310000

20000

30000

40000

0 6 12 18 23

10000

20000

30000

40000

0 6 12 18 23

10000

20000

30000

40000

0

50000

100000

150000

200000

5000

10000

15000

20000

10000

20000

30000

40000

50000

60000

5000

10000

15000

20000

25000

30000

35000

10000

20000

30000

40000

0 6 12 18 23

5000

10000

15000

20000

5000

10000

15000

20000

10000

15000

20000

25000

30000

35000

5000

10000

15000

20000

25000

30000

35000

10000

20000

30000

40000

6000

8000

10000

12000

14000

16000

18000

4

4

4

4

5000

10000

15000

20000

25000

10000

20000

30000

40000

50000

10000

20000

30000

40000

50000

0 6 12 18 23

5000

10000

15000

20000

10000

20000

30000

40000

Daily cyles from 0 to 23h

Particles/cm3 Indoor

Particles/cm3 Outdoor when outdoor

temperature <20ºC

Particles/cm3 Outdoor when outdoor

temperature >20ºC

Results: Levels of ultrafine particles

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16 18 20 22

EBC

(µgm

-3)

Hour (lLocal Time)

Outdoor-Schools Indoor-Schools

Start of

school

hours

End of

school

hours

Results: Levels of BC & ultrafine paticles

EBC (µg/m3)

INDOOR

500

1000

1500

2000

500

1000

1500

2000

2500

35%

35%

High traffic

Lowtraffic

Particles/cm3

R2=0.52

Particles/cm3 Outdoor

Pa

rtic

les/

cm3 I

nd

oo

r

1500

020

000

2500

030

000

3500

0

15000

35000

40%

40%

10000

30000

High traffic

Lowtraffic

OUTDOOR

0 500 1000 1500 2000 2500

0

500

1000

1500

2000

2500

3000

510

1520

25

R2=0.75

EBC Outdoor

EB

C I

nd

oo

r

.0

.5

.0

.5

0 20 40 60

1.0

1.5

2.0

2.5

10 20 30 40

R2=0.61 R2=0.32

EB

C (

µg

m-3

)

Percentage of area used for the

road network

Percentage of area used for parks

Results: Levels of BC & ultrafine patyicles

y = 584.1x + 6913.7R² = 0.3082

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 5 10 15 20 25 30 35 40 45

Ou

tdo

or

N b

y d

istr

ict

(#cm

-3)

Percentage of roads by district (%)

y = -267.34x + 28128R² = 0.3393

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 10 20 30 40 50 60 70 80

Ou

tdo

or

N b

y d

istr

ict

(#cm

-3)

Percentage of green areas by district (%)

Correlation between average EBC levels and ultrafine particle concentrations at different districts of the city of Barcelona and

the percentage of surface area used for the road network and for parks

Closed windows Opened windows

Results: Infiltration of pollutants

y = 0.0489x + 17.26R² = 0.0022

y = -0.0142x + 14.093R² = 0.0001

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

indoor (µg·m-3)

outdoor (µg·m-3)

OC

y = 0.2543x + 8.2251R² = 0.1992

y = 0.0858x + 8.1893R² = 0.0265

0

10

20

30

40

50

60

0 10 20 30 40 50 60

indoor (µg·m-3)

outdoor (µg·m-3)

Mineral (sandy playgrounds)

Closed windows Opened windows

y = 0.4977x + 7.6411R² = 0.5136

y = 0.5405x + 2.2478R² = 0.6122

0

20

40

60

80

100

120

0 20 40 60 80 100 120

indoor (µg·m-3)

outdoor (µg·m-3)

NO2

y = 0.5761x + 0.5922R² = 0.3949

y = 1.1187x - 0.1451R² = 0.9548

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0.0 1.0 2.0 3.0 4.0 5.0

indoor (µg·m-3)

outdoor (µg·m-3)

EC

y = 0.2716x + 7555.4R² = 0.2201

y = 0.5913x + 6562.3R² = 0.3452

0

10000

20000

30000

40000

50000

60000

0 10000 20000 30000 40000 50000 60000

indoor (pt·cm-3)

outdoor (pt·cm-3)

N

y = 0.2252x + 43.839R² = 0.1102

y = -0.0252x + 46.549R² = 0.0017

0

20

40

60

80

100

120

140

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0

indoor (µg·m-3)

outdoor (µg·m-3)

PM2.5

Outdoor measurements carried out more distant from highly traffiqued roads than indoor measurements

Indoor

Outdoor

Results: Infiltration of pollutants

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

3/2/12 4/2/12 5/2/12 6/2/12 7/2/12 8/2/12 9/2/12 10/2/12 11/2/12

N/c

m3

ID 19

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

3/2/12 4/2/12 5/2/12 6/2/12 7/2/12 8/2/12 9/2/12 10/2/12 11/2/12

N/c

m3 ID 32

Indoor

Outdoor

Mon

Opening

Cleaning

Pollutants infiltration: 2 opposite cases

Results: Infiltration of pollutants

• Schools in Barcelona have high levels of pollutants because most of them are very close to highly traffic streets. Outdoor levels are intermediate between those from traffic and urban background air quality monitoring sites

• PM2.5 is an exception, the influence of sand playgrounds as well as indoor organic

emissions from clothes and skin of children accounts for higher PM2.5 levels than in traffic sites

• BC levels are governed by traffic, with 35% higher levels in high traffic schools • UFP increase also by 40% as a mean in high traffic schools, but in most of the schools

photochemically generated secondary UFPs highly contribute at midday when BC is at the lowest. We are currently investigating health effects of primary and secondary UFP

• In spite of this secondary generation of UFP, both UFP and BC show and inverse

correlation with green areas and a direct correlation with 5 of area used by traffic

Conclusions

MOLTES GRÀCIES PER LA VOSTRA ATENCIÓ!!!!!

Barcelona, 13/07/2015

[email protected]