x-ray optics for the lcls free-electron laser2010/11/14  · coherent x-ray imaging (cxi) materials...

39
Regina Soufli [email protected] 14 November 2010 X-ray optics for the LCLS free-electron laser Regina Soufli Lawrence Livermore National Laboratory UCRL-PRES-433855 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Work was supported in part by DOE Contract DE-AC02-76SF00515. This work was performed in support of the LCLS project at SLAC. 2010 International Workshop on EUV Sources, University College Dublin, Ireland 14 November, 2010

Upload: others

Post on 08-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

X-ray optics for the LCLS free-electron laser

Regina SoufliLawrence Livermore National Laboratory

UCRL-PRES-433855

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Work was supported in part by DOE Contract DE-AC02-76SF00515. This work was performed in support of the LCLS project at SLAC.

2010 International Workshop on EUV Sources, University College Dublin, Ireland14 November, 2010

Page 2: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

Contributors

LLNL: Sherry L. Baker, Mónica Fernández-Perea (LLNL and CSIC),

Jeff C. Robinson, Stefan Hau-Riege, Tom J. McCarville,

Anton Barty (now with CFEL), Michael J. Pivovaroff, Jay Ayers,

Mark A. McKernan, Donn H. McMahon, Richard Bionta

LBNL: Eric M. Gullikson, Phil Heimann

SLAC: Peter Stefan, William Schlotter, Michael Rowen

Page 3: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

3

Atomic, Molecular and Optical science (AMO)

Soft X-Ray materials science (SXR)

Diffraction studies of stimulated dynamics: X-ray Pump-Probe (XPP)

X-ray Photon Correlation Spectroscopy (XPCS)

Nano-particle and single molecule Coherent X-ray Imaging (CXI)

Materials under Extreme Conditions (MEC)

Abs

orpt

ion

Res

onan

ce R

aman

t0

t1

t2t3

t4 t5

Aluminum plasma

10-4 10-2 1 102 104

classical plasma

dense plasmahigh den. matter

G =1

Density (g/cm-3)

G=10G=100

t=0t=τ

SLAC Report 611

Courtesy: Jerry Hastings, SLAC/SSRL

Linac Coherent Light Source (LCLS): the first x-ray Free-Electron Laser (FEL)

Page 4: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

The LCLS is located at the SLAC National Accelerator Center in Menlo Park, California

Page 5: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

Front-End Enclosure(X-ray optics)

Courtesy: Sébastien Boutet (SLAC)

Page 6: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

The FEL is small and bright in the Front-End Enclosure

1.9 x 1013 photons, total2.5 x 10-3 J, total0.2 J/cm2, center1.1 mm, FWHM120 Hz, 137 fs pulses

1.8 x 1012 photons, total2.4 x 10-3 J, total3.4 J/cm2, center160 mm, FWHM120 Hz, 73 fs pulses

X, mm X, mm

Y, m

m

Y, m

m

1.5 nm Soft X-Ray FEL(826 eV photon energy)

1.5 Å Hard X-Ray FEL(8261 eV photon energy)

Page 7: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

.. but is accompanied by spontaneous radiationSoft X-Ray Spontaneous

(4.5 GeV Linac K. E.)

2.1 x 1011 photons, total3.8 x 10-4 J, total9.1 x 10-5 J/cm2, center

9.2 x 1011 photons, total1.3 x 10-2 J, total7.3 x 10-3 J/cm2, center

Hard X-Ray Spontaneous(14.5 GeV Linac K. E.)

X, mmX, mm

Y, m

m

Y, m

m

Page 8: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

LLNL constructed the LCLS front-end enclosure x-ray optics and diagnostics, including the Soft X-ray and Hard X-ray Offset Mirror Systems (SOMS and HOMS). Also developed coatings and metrologies for x-ray mirrors and gratings for the AMO, SXR , CXI and MEC beamlines

Unique requirements for SOMS and HOMS:• Withstand instantaneous peak power of LCLS FEL (materials)• Coherence/intensity preservation of LCLS wavefront (< 2 nm rms figure, 0.25 nm rms MSFR)• Pointing stability and resolution (< 1 μrad for SOMS, 100 nrad for HOMS)

Page 9: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

9

LCLS characteristics lead to novel considerations

Do not have traditional thermal issues associated with synchrotron mirrorsInstead, concern is instantaneous damageConsider dose delivered eV/atom

Parameter 0.827 keV 8.27 keVFEL pulse (rms) 137 fs 73 fs

FEL width (FWHM) 81 μm 60 μmFEL divergence (FWHM) 8.1 μrad 1.1 μradFEL brightness [ph s-1 mm-2 mrad-2 (0.1% bw)-1] 0.28×1032 15×1032

Avg FEL power (at 120 Hz) 0.23 W 0.23 WAvg Spontaneous power (at 120 Hz) 0.24 W 2.2 W

Page 10: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

FEL beam dose considerations restrict the material choices for the LCLS x-ray mirrors

0.80

0.85

0.90

0.95

1.00

0.5x103 1.0x103 1.5x103 2.0x103 2.5x103

Si

B4C

SiC

Be

Photon Energy (eV)

Ref

lect

ivity

0.90

0.95

1.00

1.05

0 1x104 2x104 3x104

Si

B4C

SiC

Be

Photon Energy (eV)

Ref

lect

ivity

θ = 1.38 mradθ = 13. 85 mrad

Soft x-ray region: 0.5 < hν < 2 keV Hard x-ray region: 2 < hν < 8 (24.8) keV

Vertical bands = range of distances over which the absorbed FEL dose will reach melting temperature, or melt each material

10

Page 11: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

11

For LCLS soft x-ray mirrors: B4CPolish/figure B4C monolithic mirror: infeasibleProcure Si substrate from commercial vendor, deposit 50-nm thick B4C reflective coating at LLNL

For LCLS hard x-ray mirrors: SiC:Polish/figure SiC monolithic mirror: very challengingProcure Si substrate from commercial vendor, deposit 50-nm thick SiC reflective coating at LLNL

Manufacturing approach for LCLS x-ray mirrors

Page 12: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

12Summary of LCLS x-ray mirror specifications

Error Category Specification Spatial Wavelength

FigureHeight Error ≤ 2.0 nm rms‡

1 mm to Clear Aperture†

Slope Error ≤ 0.25 μrad rms

Mid-Spatial Roughness ≤ 0.25 nm rms 2 μm to 1 mm

High-Spatial Roughness ≤ 0.4 nm rms 20 nm to 2 μm

† SOMS mirrors: Flat, planar, 250×30×50 mm3, Clear Aperture = 175×10 mm2

† HOMS mirrors: Flat, planar, 450×30×50 mm3, Clear Aperture = 385×15 mm2

‡2 nm rms height error derived from Maréchal criterion: wavefront error < λ/14 rms

M. Pivovaroff, R. M. Bionta, T. J. Mccarville, R. Soufli, P. M. Stefan, “Soft X-ray mirrors for the Linac Coherent Light Source”, Proc. SPIE 6705, 67050O (2007).

Page 13: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

10-2

102

106

1010

1014

10-8 10-6 10-4 10-2

Spatial frequency f (nm-1)PS

D (n

m4 )

Si test substrate by Vendor 2Si test substrate by Vendor 1

0.37 mm2.95 mmZygo 2x Zygo 20x

10 μmAFM

2 μm

σ = 0.16 nm rmsσ = 0.36 nm rms

σ = 0.19 nm rmsσ = 0.19 nm rms

~ 0.16 μrad rms

~ 0.3 μrad rms

Full-

aper

ture

inte

rfer

omet

ry

AFM

Precision surface metrology was performed at LLNL on the LCLS mirror substrates in the figure, mid- and high spatial frequency ranges

Page 14: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

LLNL precision surface metrology lab Digital Instruments Dimension 5000™ Atomic Force Microscope (AFM) includes acoustic hood and vibration isolation. Noise level = 0.03 nm rmsZygo NewView™ Optical Profiling MicroscopeLEO 1560 ™ Scanning Electron Microscope (SEM)

Zygo AFM

SEM

Page 15: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

SOMS Si substrate metrology at LLNL

10-2

101

104

107

1010

10-6 10-5 10-4 10-3 10-2 10-1

SOMS#2 Si substrate

Loc. c

Loc. bLoc. a

Spatial frequency f (nm-1)

PSD

(nm

4 )

AFM

Optical profilometry

MSFR = 0.30 nm rms HSFR = 0.41 nm rms

SOMS Si substrates manufactured by InSync (Albuquerque, New Mexico)

Measured along central 200 mm

(spare)

Page 16: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

10-2

101

104

107

1010

10-6 10-5 10-4 10-3 10-2 10-1

HOMS#2 Si substrate

Loc. c

Loc. b

Loc. a

Spatial frequency f (nm-1)

PSD

(nm

4 )

HOMS Si substrate metrology at LLNL

AFM

Optical profilometry

MSFR = 0.15 nm rms HSFR = 0.15 nm rms

HOMS Si substrates manufactured by Carl Zeiss Laser Optics (Oberkochen, Germany)

Measured along central 420 mm

(spare)

(blank)

(spare)

Page 17: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

10-1

101

103

105

107

109

10-6 10-5 10-4 10-3 10-2 10-1

ZEISS

HOMS#2 Si substrate

LLNL, loc. cLLNL, loc. bLLNL, loc. a

Spatial frequency f (nm-1)

PSD

(nm

4 )

Recent comparison of LLNL and Zeiss metrology in the figure, mid- and high-spatial frequency ranges

Zeiss

LLNL

Zeiss measurements courtesy of Helge Thiess

Page 18: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

1 101E-5

1E-4

1E-3

0.01

0.1

1

10

10010 100

MET M2

1/P 0d

P/d

Ω

Scattering Angle (deg)

Measured Calculated

Displacement in image plane (mm)

1E-7 1E-6 1E-5 1E-4 1E-3 0.01 0.110-2

100

102

104

106

108

1010

1012MET M2-2a

PS

D (n

m4 )

Frequency (1/nm)

Zeiss LLNL

MET 1 (primary) MET 2 (secondary)

Substrate HSFR 0.37 nm rms 0.32 nm rms

Expected loss ΔR 6.1% 5.2%

Measured R 61.2% 62.4%

R + ΔR 67.3% 67.6%

LLNL metrology validation with independent measurements and models

D. G. Stearns, “Stochastic model for thin film growth and erosion,” Appl. Phys. Lett. 62, 1745-7 (1993). E. M. Gullikson, “Scattering from normal incidence EUV optics”, Proc. SPIE 3331, 72-80 (1998). D.G. Stearns et al, “Non-specular x-ray scattering in a multilayer-coated imaging system”, J. App. Phys. 84, 1003-1028 (1998).

LLNL / Zeiss metrology validation

LLNL metrology / scattering model / ALS scattering measurements validation

R. Soufli et al., Appl. Opt. 46, 3736-3746 (2007)

Page 19: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

Reflective coating requirements for LCLS x-ray mirrors

Figure: Coating should preserve the substrate figure specification of 0.25 μrad rms / 2 nm rmsσtotal

2 = σsub2 + σfilm

2

=> Coating is allowed to contribute < 1 nm rms figure error across clear aperture (175×10 mm2 for soft x-ray mirrors, 385×5 mm2 for hard x-ray mirrors)

Roughness: Coating should have low HSFR (will inherently replicate MSFR)

Stress: Coating should have low stress (< 1GPa for ~50 nm coating thickness), to prevent figure deformation or delamination from Si substrate

Lifetime stability: Coating should be stable over time in ambient conditions, and under the operating conditions of LCLS x-ray mirror system

Page 20: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

The LLNL DC-magnetron sputtering system is used to coat single-layer and multilayer optics

R=660 mm

R=1016 mm

Mo 559 X 127 mm2Si

M1

M3 M2

M4

Can accommodate multiple mirrors as longas 450 mm into chamber without significantmodifications to existing hardware

Underneath view of LLNL chamber lid with 5 sputtering targets

Page 21: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

1. Simulate deposition process

2. Select optimum (v2/v1, θ1), to achieve desired thickness profile

3. Measure results on test optic and iterate

Chamber center

Target

Optic

θ = 0o

v2

v1

v2

θ = θ1θ = - θ1

vspin

10x Schwarzchild primary

Secondary

Achieved using velocity modulation. Until recently, such steep thickness gradients were believed to be possible only by positioning hardware masks over the optical substrate

Velocity modulation is a rapidly converging method used for ultra-precise thin film thickness control

R. Soufli, et. al, Appl. Opt. 46, 3736-3746 (2007).

Page 22: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

We have developed multilayer projection optics with sub-diffraction-limited performance during the EUVL program

39-nm, 3:1 elbows (Patrick Naulleau, LBNL)

Added figure error = 0.032 nm rms

M1 mirror, PO Box 2 SES at ALS

M2 mirror, MET Set 1MET camera

Added figure error = 0.044 nm rms

Measured wavefront = 0.55 nm rmsK. A. Goldberg et al, J. Vac. Sci. Technol. B 22(6), 2956-2961 (2005)

Printed 25 nm equal-line, and 29 nm isolated-line features P. P. Naulleau et al, Proc. SPIE 5751, 56-63 (2005)

R. Soufli et al., Proc. SPIE 4343, 51-59 (2001)

R. Soufli et al., Appl. Opt. 46, 3736-3746 (2007)

Page 23: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

We have developed EUV multilayer optics and precision metrologies for next-generation EUV solar physics and space weather satellites

NASA’s Solar Dynamics Observatory (SDO). Launch date: February 11, 2010.http://sdo.gsfc.nasa.gov

R. Soufli, et al, Appl. Opt. 46, 3156-3163 (2007).R. Soufli, et al, Proc. SPIE 5901, 59010M (2005).

Multilayer-coated test mirrors for NASA/NOAA’s GOES-R space weather satellite. 6 EUV wavelengths , 9.4 nm to 30.4 nm. Launch date: 2014

7 EUV wavelengths (9.4 nm to 33.5 nm)

30.4 nm 21.1 / 19.3 / 17.1 nm

Page 24: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

R. Soufli, M. J. Pivovaroff, S. L. Baker, J. C. Robinson, E. M. Gullikson, T. J. McCarville, P. M. Stefan, A. L. Aquila, J. Ayers, M. A. McKernan, R. M. Bionta, “Development, characterization and experimental performance of x-ray optics for the LCLS free-electron laser” Proc. SPIE 7077, 707716 (2008).

10-6

10-4

10-2

100

0 20 40 60 80

IMD calc., dB4C= 50.5 ± 0.2 nm

λ = 13.5 nm (hν = 92.8 eV)

r = 90 mmr = 50 mmr = 30 mm

θ (deg)

Ref

lect

ance

0

0.005

0.010

0.015

0.020

0 20 40 60 80 100

M4-080131A1

d B4C

= 50

.5 ±

0.2

nm

d B4C

= 50

.5 ±

0.2

nm

θ/2θ = 37°/74°

θ/2θ = 22.5°/45°

d B4C

= 50

.5 ±

0.2

nm SO

MS clear aperture

Radial position, r (mm)

Ref

lect

ance

B4C measured thickness variation: < 0.4 nm P-V, < 0.14 nm rms (< 0.28% rms) across the 175-mm SOMS clear aperture

SOMS and HOMS coating thickness uniformity is well within 1 nm rms specification

Measurements obtained at ALS beamline 6.3.2. (LBNL)

SiC measured thickness variation: < 1 nm P-V, < 0.34 nm rms (< 0.7 % rms) across the 385-mm HOMS clear aperture

Page 25: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

100

101

102

103

104

105

10-4 10-3 10-2 10-1

1 mTorr, HSFR = 0.15 nm rms10 mTorr, HSFR = 0.47 nm rms

B4C films

Spatial frequency (nm-1)

PSD

(nm

4 )

Boron carbide thin film development for LCLS SOMS mirrors500×500 nm2 detail from

2x2 μm2 AFM scan

where S(f) ≡ PSD (nm4), f1= 5×10-4nm-1

f2 = 5×10-2 nm-1( )∫= 2

1

22 f

f dfff Sπσ

500×500 nm2 detail from 2x2 μm2 AFM scan

Stress = -1.1 GPa

Stress = -2.3 GPa

R. Soufli, S. L. Baker, J. C. Robinson, E. M. Gullikson, T. J. McCarville, M. J. Pivovaroff, S. P. Hau-Riege, R. M. Bionta, “Morphology, microstructure, stress and damage properties of thin film coatings for the LCLS x-ray mirrors”, Proc. SPIE 7361, 73610U (2009).

Page 26: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

AFM data from B4C films of different thicknesses are fitted to obtain the stochastic growth model parameters

dffSf filmCBf

f

)(2 4

2

1

2 πσ ∫= where f1= 10 -3 nm-1 , f2 = 5×10-2 nm-1

n

nfilmCB

ffdfS

)2(2])2(2exp[1)(4

πνπν−−

Ω=

n = 4, ν / Ω = 5

B4C film thickness dB4C (nm)

Ω (nm3)

28.9 1

54.2 1.5

112.5 3

1005 20

1385 30

Fitted parameters: n, ν, Ω

10-1

101

103

105

0.0001 0.001 0.01 0.1

10mTorr samplesdB4C

= 542 Å , σ = 4.6 Å rms

dB4C= 1125 Å , σ = 8.2 Å rms

dB4C= 289 Å , σ = 3.6 Å rms

dB4C= 1.385 μm, σ = 27.8 Å rms

dB4C= 1.005 μm , σ = 27.3 Å rms

Spatial frequency, f (nm-1)

Pow

er S

pect

ral D

ensi

ty S

(f) (

nm4 )

Page 27: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

10-2

101

104

107

1010

10-7 10-5 10-3 10-1

Spatial frequency f (nm-1)

PSD

(nm

4 )

We implemented a stochastic thin film growth model to predict B4C film roughness on non-ideal substrates

AFM

Optical profiling

microscope

Si test substrate, HSFR = 0.36 nm

(Si test substrate) + 50 nm B4C, HSFR = 0.79 nm

(Si test substrate) +50 nm B4C, HSFR = 0.64 nm (model)

n

nfilmCB

ffdfS

)2(2])2(2exp[1)(4

πνπν−−

Ω=

substratenfilmCBtop fSfdfSfS )(]})2({exp[)()( 24 πν−+=

For d = 50 nm: n=4, ν=7 nm3 , Ω=1.4 nm3

R= 88.4 % (900 eV) at SOMS angle of incidence (0.79 deg), measured at ALS beamline 6.3.2., LBNL

Page 28: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

Photoabsorption measurements yield updated values for the EUV/x-ray refractive index of B4C films, including NEXAFS

R. Soufli, A. L. Aquila, F. Salmassi, M. Fernández-Perea, E. M. Gullikson, “Optical constants of magnetron sputtered boron carbide thin films from photoabsorption data in the range 30 to 770 eV”, Appl. Opt. 47, 4633-4639 (2008).

• RBS results: B=74%, C=20%, O = 6%B:C = 3.7ρ = 2.28 g/cm3 (90% of bulk)

• XPS results: top 9 nm of surface are O- and C-rich

Measurements obtained at ALS beamline 6.3.2. (LBNL)

10-3

2x10-3

5x10-3

10-2

2x10-2

200 300 400 500

measuredatomic data tables22

O 1s

C 1s

B 1s

Photon Energy (eV)

α (n

m-1

)

Page 29: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

HOMS and SOMS installation and alignment at LCLS

T. J. McCarville, P. M. Stefan, B. Woods, R. M. Bionta, R. Soufli, M. J. Pivovaroff, “Opto-mechanical design considerations for the Linac Coherent Light Source X-ray mirror system”, Proc. SPIE 7077, 70770E (2008).

• T-controlled enclosure demonstrates ± 0.01 °C temperature and ± 30 nrad HOMS pointing stability • HOMS figure can be remotely controlled

Page 30: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

SOMS#1 figure summaryTotal Figure

Aspheric residual (sphere subtracted)

Before coating:1.81 nm & 0.19 μrad rms over central 200 mmCoated, un-mounted:1.62 nm & 0.173 μrad rmsCoated & mounted:1.88 nm & 0.18 μrad rms

Before coatingCoated, un-mountedCoated & mounted

Page 31: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

LLNL metrology data on SOMS and HOMS mirrors were used to predict LCLS coherent wavefront propagation and focal spot structure

A. Barty, R. Soufli, T. McCarville, S. L. Baker, M. J. Pivovaroff, P. Stefan, and R. Bionta, “Predicting the coherent X-ray wavefront focal properties at the Linac Coherence Light Source (LCLS) X-ray free electron laser”, Optics Express 17, 15508-15519 (2009).

• Scalar diffraction model was employed• Same methodology to select order of SOMS and HOMS elements for optimum performance

SOMS branch line before AMO end station

HOMS branch line before CXI end station

Page 32: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

• The single-pulse damage threshold is higher for bulk than for films

• Between 32 and 1.5 nm, the damage threshold is close to the melting threshold,in agreement with the general tenet for FEL optics design

Wavelength dependence of FEL damage thresholds

100

1000

10000

0 10 20 30 40

Dam

age Th

reshold (m

eV/atom)

Wavelength (nm)

100

1000

10000

0 10 20 30 40

Dam

age Th

reshold (m

eV/atom)

Wavelength (nm)

bulk

film

SiCB4C

bulk

film

LCLS FLASH LCLS FLASH

theory theory

S. P. Hau-Riege et al, Interaction of low-Z inorganic solids with short x-ray pulses at the LCLS free-electron laser, submitted to Optics Express (2010).S. P. Hau-Riege et al, ”Wavelength dependence of the damage threshold of inorganic materials under extreme-ultraviolet free-electron-laser irradiation”, Applied Physics Letters 95, 111104 (2009).S. P. Hau-Riege et al, ” Multiple pulse thermal damage thresholds of materials for x-ray free electron laser optics investigated with an ultraviolet laser”, Applied Physics Letters 93, 201105 (2008).

Page 33: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

SEM pictures of bulk B4C exposed to single XFEL pulses at 0.83 keV and peak fluences of (a) 2.6, (b) 5.4, (c) 7.0, (d) 11.4, (e) 19.6, and (f) 90.5 J/cm2

SEM pictures of a SiC film exposed to single XFEL pulses at 0.83 keV and peak fluences of (a) 1.0, (b) 1.6, (c) 2.9, (d) 5.8, (e) 14.8, and (f) 57.5 J/cm2.

S. P. Hau-Riege et al, “Interaction of low-Z inorganic solids with short x-ray pulses at the LCLS free-electron laser”, Optics Express (2010).

LCLS FEL damage experiments at normal‐incidence angles demonstrate ablation and cracking of materials

Page 34: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

Soft X-Ray (SXR) materials science beamline at LCLS

Page 35: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

SXR test 100 l/mm gratingAs-received After cleaning Coated w/ 37.4 nm B4C

SXR G4 200 l/mm gratingAfter cleaning

Monochromator gratings for LCLS SXR beamline

Measured at ALS beamline 6.3.2. Fits to measured data are preliminary

Grating substrate by Zeiss, ruling by Shimadzu

Page 36: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

LCLS coating lifetime

AMO beamline M2 K-B mirror

• The FEL-exposed area on some of the LCLS x-ray mirrors has formed visible blemishes after several months of use

• Contact profilometry measurements on a witness piece revealed a blemish height of 15 to 38 nm.

• XPS on blemish area: 87% C, 12% O and 1% Si. C found both as hydrocarbon and graphite

36

• These blemishes is currently attributed to imperfect vacuum conditions combined with the very high intensity of the LCLS FEL beam

Page 37: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

Future work: lifetime improvement of LCLS coatings

Candidate recovery strategies for coated mirrors/gratings:

• UV-ozone cleaning: Preliminary experiments on B4C thin films show degradation of coating performance (through oxidation and/or roughening)• Plasma (glow discharge) cleaning techniques • Substrate recovery and re-coating

37

Challenges: • Cleaning/recovery techniques must preserve the coating composition, thickness, uniformity, etc so that the x-ray reflectance, beam coherence and damage thresholds are also preserved.• Carbon, the major component of the blemish regions, is also a constituent of the B4C and SiC coatings.

Page 38: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

•Developed highly reflective B4C and SiC coatings for the LCLS x-ray mirror systems that preserve the LCLS wavefront•Designed, developed, characterized and installed x-ray mirrors for the LCLS SOMS and HOMS systems and LCLS AMO and SXR beamlines• SiC-coated X-ray mirrors for CXI and MEC beamlines are currently underwa• LLNL precision metrology results on SOMS and HOMS mirrors were incorporated in coherent wavefront propagation models, to predict LCLS focal spot structure• Damage experiments are being performed on B4C and SiC thin films and bulk samples• Future work: investigate damage and contamination mechanisms on x-ray optics under LCLS FEL irradiation, improve x-ray optics lifetime.

Summary and future plans for LCLS x-ray optics at LLNL

HOMS mirrors, coated with 50 nm SiC

450 mm

Page 39: X-ray optics for the LCLS free-electron laser2010/11/14  · Coherent X-ray Imaging (CXI) Materials under Extreme Conditions (MEC) Absorption Resonance Raman t0 t1 t2 t3 t4 t 5 Aluminum

Regina [email protected] November 2010

Acknowledgements

• LCLS executive management at SLAC• Angela Craig, Bruce Rothman and Patrick Schnabel (Evans Analytical Group, Sunnyvale, California) for the XPS and RBS measurements• This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Work was supported in part by DOE Contract DE-AC02-76SF00515. This work was performed in support of the LCLS project at SLAC.