work summery

44
Flow Field Measurements for a Cross Flow Tidal Turbine Advisors: M.L. Peterson, Professor of Mechanical Engineering H. Xue, Professor of Marine Science R.W. Kimball, Professor at Maine Maritime Academy !" $%&'()* +,-+ - By Matthew Cameron

Upload: matthew-cameron

Post on 16-Aug-2015

20 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Work Summery

Flow Field Measurements for a Cross Flow Tidal Turbine

Advisors:

M.L. Peterson, Professor of Mechanical Engineering

H. Xue, Professor of Marine Science

R.W. Kimball, Professor at Maine Maritime Academy

!"#$%&'()*##+,-+# -#

By Matthew Cameron

Page 2: Work Summery

!"#$%&'()*##+,-+# +#

1. Tidal energy resource assessment ~ A step to understanding of the impacts of

turbines on flow and the potential size of this renewable energy resource

2. Power array density ~ A single high efficiency turbine might not yield

highest power array density

!." R#$#% P#&'% C()%)*$'%+,$+*, -.-

Figure !."#. Power coe/cients of wind rotors of di0erent designs ["]

Figure !."". Torque coe/cients of wind rotors of di0erent designs ["]

Eric Hue, “Wind Power”

Method:

Analyze a single wake from a cross flow turbine in a steady and uniform flow

Motivations!

Page 3: Work Summery

!"#$%&'()*##+,-+# .#

Test Turbine!

• Outer Support

• Drive Shaft

• Inner Beam

• Horizontal Load Cell

• Turbine Support Arm

• Shroud

• Vertical Load Cell

Dynamometer & Drive Train

Blade Profile NACA 63018

~76. mm

Cross Flow Turbine

~0.3 meter

!"#$%&%'(!!)%*!"*++&!,-'%#!

Turbine Coefficients

Test Matrix

Page 4: Work Summery

!"#$%&'()*##+,-+# /#

Turbine Force Coefficients!

!

Ci =Energy outEnergy in

B!

A!

Page 5: Work Summery

The Acoustic Doppler Velocity Meter (ADV)!

!"#$!%&'()*%$+,-.$-/.$0-123,$#&3'1,$

./0!12'+32-$!4*+3-'%#2!

45  0*6/-3$)&$7&*(,$8-)*&$$

9$:-),8$/,,.,.$)&$;,$(,,.,.$*($-%&'()*%$2-8)*%3,($)&$1-*/)-*/$07<$=$4>$

?5  0-123,$<-),$@A$+B$

C5  #,3&%*)D$<-/6,$$$$E5EE4$)&$F$1(G4$9$H(,.$)I&$E5C1(G4$-/.$45E$1(G4$

A5  !%%'8-%*,($-8,$-$J'/%)*&/$&J$K,3&%*)D$8-/6,$-/.$(*6/-3$)&$/&*(,$8-)*&$

>5  L/),8/-3$.-)-$2&((,((*/6$9CG>$*/.*K*.'-3$2*/6($!$4$.-)-$2&*/)$

Page 6: Work Summery

~1.1m

8m

0.55m

Water Surface

Z

X

0.156m

h3 h2

h1

h4

2.4m

0.761m

1.2m

Y

Sample Volume

Center Line

Experimental Setup!

!"#$%&'()*##+,-+# 0#

./0!5!6+%78'+&!'3%*#&

49+39%+6:!

$$$$$9$!"#$*($M&'/),.$)&$)N,$O3&&8$$$$

$$$$$9$P'8;*/,$&K,82-(($)N,$!"#$

$$$$$9$PN,$!"#$(-123,$K&3'1,$*($3&%-),.$&/$)N,$%,/),8$&J$)N,$$ )'8;*/,$-/.$)&I$)-/Q$*/$)N,$R$.*8,%)*&/$

$$$$$9$P'8;*/,$)8-K,3($4>$1,),8($-/.$!"#$*($3&%-),.$$ -228&S*1-),3D$*/$)N,$%,/),8$$

)+;'!0-3%-<$+;:!

$$$$$9$!"#T($(-123,$K&3'1,$N,*6N)$

$$$$$9$!"#T($#,3&%*)D$8-/6,$$$$$$9$U-88*-6,$.*8,%)*&/$

$$$$$9$V3-.,$2&(*)*&/$&8$P0<$$

Page 7: Work Summery

Different Blade Positions Directly over ADV

Only for low solidity turbine (2 blade test) !

-# +# .#

Center Line !Of ADV#

C.L# C.L#

1#2%3'#45+,5+,--#

Page 8: Work Summery

3. Repeatability of velocity measurements!

!"#$%&'()*##+,-+# 6#

Test Accuracy & Repeatability!

1. Combination of different velocity range! 2. Repeatability Of blade position at x = 0!

±3.5°!

One dot (") is one blade form one test!

Page 9: Work Summery

1. Reynolds’ Time Averaging!! ~ Method of separating turbulent and steady flow!! ~ The results are need to determine 2 and 3 !

Wake Characteristics Objectives !

2. Turbulent Kinetic Energy (TKE)!! ~ Determines the amount of fluctuation !! ! ! energy per volume!!

UMeasured = U Mean + " U Fluctuation

!

U Mean = [u v w ]" U Fluctuation = [ " u " v " w ]

3. Reynolds’ Shear!! ! ~ Also know as turbulent shear!! ! ~ Depicts the amount of momentum transfer !! ! ! across a plane by turbulent motion!

!

TKE ="2( # u 2 + # v 2 + # w 2)

!

" turb =# u # v # v # w # w # u

$

%

& & &

'

(

) ) )

4. Energy Spectrum (Wavelet Transform)!! ! ~ Determines the magnitude of wide range of !! ! ! frequencies over a continues time period !

4#2%3'#45+,5+,--#!

WL = URaw(t)" #( f ,t)Time$

Frequency$

!

"( f ,t) =

!

" turb >> "Lam

Page 10: Work Summery

Wake Analysis!

!"#$%&'()*##+,-+#-,#

Raw ADV Velocity Data!

Rotation Matrix!

4<=+>'%9+:!

$$$$9$P&$.,),81*/,$)N,$<,D/&3.($U&12&/,/)($WXY$Z[$

$$$$9$:*)N$X$-/.$Z$)N,$I-Q,$%N-8-%),8*()*%($%-/$;,$28,.*%),.$

?@@+>';:!

~ low pass filter effect on !

~ The cut off frequency for the filter was shown to be 10Hz

:*/.&I$(*B,$'(,.$\$?>

Page 11: Work Summery

Free Stream

Laminar Flow

! = Vc ú " 0

!"#$%&'()*##+,-+# --#

Page 12: Work Summery

Introduce Turbine & Surface Elevation Change

Power side

Return side

Effect on Surface Elevation

Influence: strong

1. Blockage effect

(ATurbine/Atank = 0.09)

2. Inflow Speed

3. Turbine height

4. Solidity

5. TSR

weak

!"#$%&'()*##+,-+# -+#

Page 13: Work Summery

!"#$%&'()*##+,-+# -.#

Surface Elevation Change

Low Solidity Turbine (2 Blades) High Solidity Turbine (4 Blades)

Page 14: Work Summery

!"#$%&'()*##+,-+# -/#

Surface Elevation Change for Low Solidity Turbine

~Fast Fourier transform of surface elevation equal to blade frequency

Page 15: Work Summery

!"#$%&'()*##+,-+# -7#

Flow Field Visualization

Vector Field

U

u

w

Page 16: Work Summery

!"#$%&'()*##+,-+# -0#

Notes: ~ Four blade high solidity turbine (0.32) ~ TSR 1.4 (on design) ~ Random blade position - Blade position is a minor effect on flow field

~ One Vector is the mean of four data points

Page 17: Work Summery

!"#$%&'()*##+,-+# -1#

Page 18: Work Summery

!"#$%&'()*##+,-+# -6#

Flow Field of Rotating Turbine Notes: ~ Two blades low solidity turbine (.16) ~ Three different blade position

~ One Vector is the mean of three data points

Page 19: Work Summery

!"#$%&'()*##+,-+# -4#

Flow Field of Rotating Turbine

Page 20: Work Summery

Flow Recovery

Laminar Flow

! = Vc U` " 0

X/D

!"#$%&'()*##+,-+# +,#

Page 21: Work Summery

Flow Recovery using Reynolds !

1 0 1 2 3 4 5 6

1

0

1

u Mean for Position 1

Non Dimensional Distance (x/D)

Non

Dim

ensi

onal

Dis

tanc

e (x

/D)

& Ve

loci

ty (u

/Vc)

1 0 1 2 3 4 5 6

1

0

1

u’for Position 1

Non Dimensional Distance (x/D)

Non

Dim

ensi

onal

Dis

tanc

e (x

/D)

& Ve

loci

ty (u

/Vc)

1 0 1 2 3 4 5 6

1

0

1

u Mean for Position 3

Non Dimensional Distance (x/D)

1 0 1 2 3 4 5 6

1

0

1

u’for Position 3

Non Dimensional Distance (x/D)

1 0 1 2 3 4 5 6

1

0

1

u Mean for Position 2

Non Dimensional Distance (x/D)

1 0 1 2 3 4 5 6

1

0

1

u’for Position 2

Non Dimensional Distance (x/D)

!"#$%&'()*##+,-+# +-#

Low Solidity Turbine with Three Different Blade Positions

1 0 1 2 3 4 5 6

1

0

1

u Mean for Position 1

Non Dimensional Distance (x/D)

Non

Dim

ensi

onal

Dis

tanc

e (x

/D)

& V

eloc

ity (u

/Vc)

1 0 1 2 3 4 5 6

1

0

1

u’for Position 1

Non Dimensional Distance (x/D)

Non

Dim

ensi

onal

Dis

tanc

e (x

/D)

& V

eloc

ity (u

/Vc)

1 0 1 2 3 4 5 6

1

0

1

u Mean for Position 3

Non Dimensional Distance (x/D)

1 0 1 2 3 4 5 6

1

0

1

u’for Position 3

Non Dimensional Distance (x/D)

1 0 1 2 3 4 5 6

1

0

1

u Mean for Position 2

Non Dimensional Distance (x/D)

1 0 1 2 3 4 5 6

1

0

1

u’for Position 2

Non Dimensional Distance (x/D)

High Solidity Turbine

Page 22: Work Summery

Region of Entrained Flow

Characteristics

!

u v w

"

#

$ $ $

%

&

' ' ' (

000

"

#

$ $ $

%

&

' ' '

u'v 'w'

"

#

$ $ $

%

&

' ' ' )

000

"

#

$ $ $

%

&

' ' '

L.E. Myers, (2010) !"#$%&'()*##+,-+# ++#

Page 23: Work Summery

1 0 1 2 3 4 5 6

1

0

1

u Mean

Non Dimensional Distance (x/D)

Non

Dim

ensi

onal

Dis

tanc

e(z/

D) &

Vel

ocity

(U/V

c)

1 0 1 2 3 4 5 6

1

0

1

u Mean

Non Dimensional Distance (x/D)

Non

Dim

ensi

onal

Dis

tanc

e(z/

D) &

Vel

ocity

(U/V

c)

Off Design (TSR 0.9) Off Design (TSR 1.9)

1 0 1 2 3 4 5 61.75

1.25

0.75

0.25

0.25

0.75

1.25u Mean

Non Dimensional Distance (x/D)

Non

Dim

ensi

onal

Dis

tanc

e(z/

D)

& Ve

loci

ty(U

/Vc)

On Design (TSR 1.4)

u Mean for High Solidity & Different TSR

!"#$%&'()*##+,-+# +.#

Page 24: Work Summery

1 0 1 2 3 4 5 6

1

0

1

u Mean for Position 1

Non

Dim

ensi

onal

Dis

tanc

e (z

/D)

& Ve

loci

ty (u

/Vc)

1 0 1 2 3 4 5 6

1

0

1

u Mean for Position 3

1 0 1 2 3 4 5 6

1

0

1

u Mean for Position 2

Non Dimensional Distance (x/D)

u Mean for Low Solidity & Different Blade Position

!"#$%&'()*##+,-+# +/#

Page 25: Work Summery

Flow Bypass for High Solidity Turbine (0.32)

TSR Bypass Fraction

Power Side Return Side Total

0.9 0.033 0.013 0.05

1.4 (On design) 0.033 0.100 0.13

1.9 0.223 0.152 0.38

Results:#

!"#$%&'()*##+,-+# +7#

!

˙ V = wdA"

˙ V FB =˙ V Bypass

˙ V Re f

=wdx"

2# r# Vc

Page 26: Work Summery

Flow Bypass for High Solidity Turbine (0.32)

Results:#

Free Spin 2.25 Prediction 0.65 to 0.75

!"#$%&'()*##+,-+# +0#

!

˙ V = wdA"

˙ V FB =˙ V Bypass

˙ V Re f

=wdx"

2# r# Vc

TSR Bypass Fraction

Total

Page 27: Work Summery

Flow Bypass for Low Solidity Turbine (0.16)

Results:#

!"#$%&'()*##+,-+#+1#

TSR Blade Position

Bypass Fraction

Power Side

Return Side Total

2.25

1 ~0.032 ~0.052 ~0.08

2 ~0.043 ~0.091 ~0.13

3 ~0.045 ~0.068 ~0.11

Page 28: Work Summery

Propagation of Turbulent Energy

!"#$%&'()*##+,-+# +6#

Page 29: Work Summery

Turbulent Kinetic Energy for High Solidity Turbine (Vc=1.0ms-1)

!"#$%&'()*##+,-+# +4#1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.5

1

0.5

0

0.5

1

1.5

Turbulent Kinetic Energy

Non Dimensional Distance (x/D)

Non

Dime

nsio

nal

Dist

ance

(z/D

)&

Ener

gy p

er M

ass(

m2/

s2)

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.5

1

0.5

0

0.5

1

1.5

Turbulent Kinetic Energy

Non Dimensional Distance (x/D)

Non

Dimensional Distance(z/D)

& Energy per Mass(m2/ s2)

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.5

1

0.5

0

0.5

1

1.5

Turbulent Kinetic Energy

Non Dimensional Distance (x/D)

Non

Dime

nsio

nal

Dist

ance

(z/D

)&

Ener

gy p

er M

ass(

m2/

s2)

Page 30: Work Summery

Reynolds Stress (u`w`) for High Solidity Turbine at (Vc=1.0ms-1)

!"#$%&'()*##+,-+# .,#

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.5

1

0.5

0

0.5

1

1.5

Reynolds Shear

Non Dimensional Distance (x/D)

Non

Dime

nsio

nal

Dist

ance

(z/D

) &

She

ar(T

au/R

ho/V

c2)

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.5

1

0.5

0

0.5

1

1.5

Reynolds Shear

Non Dimensional Distance (x/D)

Non

Dimensional Distance(z/D)

& Shear(Tau/Rho/Vc2)

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.5

1

0.5

0

0.5

1

1.5

Reynolds Shear

Non Dimensional Distance (x/D)

Non

Dimensional Distance(z/D)

& Shear(Tau/Rho/Vc2)

Page 31: Work Summery

Turbulent Kinetic Energy for Low Solidity Turbine at Vc=0.8ms-1

!"#$%&'()*##+,-+# .-#

Page 32: Work Summery

Reynolds Stress (u`w`) for Low Solidity Turbine at Vc=0.8ms-1

!"#$%&'()*##+,-+# .+#

Page 33: Work Summery

!"#$%&'()*##+,-+# ..#

Energy Spectrum

Page 34: Work Summery

!"#$%&'()*##+,-+# ./#

Energy Spectrum

Page 35: Work Summery

Energy Spectrum For High Solidity Turbine (Vc=1.0ms-1)

!"#$%&'()*##+,-+# .7#

Page 36: Work Summery

!"#$%&'()*##+,-+# .0#

Energy Spectrum for Low Solidity Turbine (Vc=0.8ms-1)

Page 37: Work Summery

The Flow Field

!"#$%&'()*##+,-+# .1#

Page 38: Work Summery

Relation Turbulent Energy between Flow Bypass & Flow Recovery

How does turbulence diffusion compared to flow recovery & entrained flow?

X/D TKE " 0

!"#$%&'()*##+,-+# .6#

Page 39: Work Summery

Reynolds Decomposition for High Solidity Turbine

!"#$%&'()*##+,-+# .4#

A#'+!

! BC!D#$$-*;+!#@!'8+!E+-2!+2'3-%2+&!F$#6!-'!B!'#!G!!

! ! &%-E+'+3;!&#62!;'+-E!@3#E!!H!0>!'#!IJ+3#!

! GC!)8+!F$K>'K-'%#2!9+$#>%'(!+L8%<%'!-!;K&&+2!<K%$&!K*!-2&!!!

! ! -<3K*'!+2&!#9+3!'8+!;-E+!;*->+!-;!'8+!E+-2!F$#6!>#$$-*;+! ! !

Page 40: Work Summery

Reynolds Decomposition For Low Solidity Turbine

!"#$%&'()*##+,-+# /,#

Page 41: Work Summery

!"#$%&'()*##+,-+# /-#

Lessons Learned

)8+!M-9+$+'!8-;!8%78+3!*#'+2'%-$!-;!-2!-2-$(;%;!'##$!

!!!!!!I!)K3<K$+2'!N%2+'%>!?2+37(!

! ! !

!! !

! BC!.!M-9+$+'!@#3!+->8!KO!9O!-2&!6!6#K$&!(%+$&!+L->'!PK-2'%'%+;!#@!'8+!,+(2#$&;!"'3+;;!

2. Achieving the highest Nyquist frequency possible with hardware

3. Resolve a wide spectrum of vortices

!

WL = U(t)" e2# "i( t$ to ) f dfdt%%

!

TKE " WL( f ,t)df#

!

WLu = u(t)" #(t, f )dfdt$$WLv = v(t)" #(t, f )dfdt$$WLw = w(t)" #(t, f )dfdt$$

!

RS "WLu#WLwWLv#WLwWLv#WLu

Page 42: Work Summery

!"#$%&'()*##+,-+# /+#

Lessons Learned

)8+!M-9+$+'!8-;!8%78+3!*#'+2'%-$!-;!-2!-2-$(;%;!!'##$!

!!!!!!I!Q3+$%E%2-3(!6-9+$+'!%2'+73-'%#2!3+;K$';!(%+$&%27!)K3<K$+2'!N%2+'%>!?2+37(!

! ! !

!! !

Page 43: Work Summery

!"#$%&'()*##+,-+# /.#

University Of Maine

MTPI

Huijie Xue

Mick Peterson

Rich Kimball

Acknowledgments

Geoff deBree

Raul Urbina

Tom McKay

ORPC, Jarlath McEntee

Page 44: Work Summery

!"#$%&'()*##+,-+# //#

Questions

!"#$%&'()*##+,-+# //#

?