winkler curved beam theory

21
Bending of Curv ed Beams – Strength of Materials Approach N M V r θ cross-section must be symmetric but does not have to be rectangular assume plane sections remain plane and just rotate about the neutral axis, as for a straight beam, and that the only significant stress is the hoop stress θθ σ θθ σ 

Upload: fddssaa

Post on 02-Jun-2018

242 views

Category:

Documents


0 download

TRANSCRIPT

8/11/2019 Winkler Curved Beam Theory

http://slidepdf.com/reader/full/winkler-curved-beam-theory 1/21

Bending of Curved Beams – Strength of Materials Approach

N

M

V

θ

cross-section must besymmetric but does not have

to be rectangular 

assume plane sections remain plane and just rotate about the

neutral axis, as for a straight beam, and that the only significant

stress is the hoop stress

θθ σ 

θθ σ 

8/11/2019 Winkler Curved Beam Theory

http://slidepdf.com/reader/full/winkler-curved-beam-theory 2/21

N

M

centroidneutral axis

n R R

R = radius to centroid

Rn = radius to neutral axis

r = radius to general fiber in the beam

N, M = normal force and bending momentcomputed from centroid

θ ∆

 A

B

 A

B

P

P

n R r −

φ ∆

( )1

n   n R r    Rl

el r r 

θθ 

φ ω 

θ 

φ ω 

θ 

− ∆∆   ⎛ ⎞= = = −⎜ ⎟∆   ⎝ ⎠

∆=∆

Let ∆φ = rotation of the

cross-section

Reference: Advanced Mechanics of Materials : Boresi, Schmidt, and

Sidebottom

8/11/2019 Winkler Curved Beam Theory

http://slidepdf.com/reader/full/winkler-curved-beam-theory 3/21

8/11/2019 Winkler Curved Beam Theory

http://slidepdf.com/reader/full/winkler-curved-beam-theory 4/21

( )

( )

n m

n m

 M E R RA A

 N E R A A

ω 

ω 

= −

= −

from (1)

(1)

(2)

n

m

 M  E R

 RA Aω    =

from (2)   ( )n m

m

m

 N E R A E A

 MA E A

 RA A

ω ω 

ω 

= −

= −−

so solving for  E ω ( )

m

m

 MA   N  E  RA A A

ω  = −−

1

n

n

 R

 Ee E  r 

 E R E 

θθ θθ  σ ω 

ω ω 

⎛ ⎞

= = −⎜ ⎟⎝ ⎠

= −

Recall, the stress is given by

so using expressions for ,n E R E ω ω 

8/11/2019 Winkler Curved Beam Theory

http://slidepdf.com/reader/full/winkler-curved-beam-theory 5/21

we obtain the hoop stress in the form

( )( )

m

m

 M A rA N 

 Ar RA Aθθ σ 

−= +−

axial

stress

bending

stress

nr R=

setting the total stress = 0 gives

0 N  ≠

( )0

m m

 AM r 

 A M N A RAθθ σ    =  =

+ −

0 N  =setting the bending stress = 0 and gives   n

m

 A R

 A=

which in general is not at the centroid

location of the

neutral axis

8/11/2019 Winkler Curved Beam Theory

http://slidepdf.com/reader/full/winkler-curved-beam-theory 6/21

For composite areas

 A1

 A2

1 R2

 R

i

m mi

i i

i

 A A

 A A

 R A R

 A

=

=

=

∑∑∑

radii to centroids

areas

8/11/2019 Winkler Curved Beam Theory

http://slidepdf.com/reader/full/winkler-curved-beam-theory 7/21

Example

P

P

100 mm30 mm

For a square 50x50 mm cross-section,

find the maximum tensile and

compressive stress if P = 9.5 kN and

plot the total stress across the cross-

section

8/11/2019 Winkler Curved Beam Theory

http://slidepdf.com/reader/full/winkler-curved-beam-theory 8/21

P = 9500 N

M

N

155 mm

a

c

b

( )

2

lnm

 A b c a

a c R

c A b

a

= −

+=

⎛ ⎞=   ⎜ ⎟⎝ ⎠

a = 30 mm

b = 50 mm

c = 80 mm

so we have

( ) ( )   250 50 2500

8050ln 49.04

30

80 30 552

m

 A mm

 A mm

 R mm

= =

⎛ ⎞= =⎜ ⎟⎝ ⎠

+= =

250051

49.04n R mm= =

T C

8/11/2019 Winkler Curved Beam Theory

http://slidepdf.com/reader/full/winkler-curved-beam-theory 9/21

max tensile stress is at r = 30 mm

( )

( )

( ) ( ) ( ) ( )( )( ) ( )( )155 9500 2500 30 49.049500

2500   2500 30 55 49.04 2500

106.2

m

m

 M A rA N 

 A Ar RA A

 MPa

θθ σ 

−= +

−⎡ ⎤⎣ ⎦= +−⎡ ⎤⎣ ⎦

=

max compressive stress is at r = 80 mm

( )

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

155 9500 2500 80 49.049500

2500   2500 80 55 49.04 2500

49.3

m

m

 M A rA N 

 A Ar RA A

 MPa

θθ σ −

= +

−−⎡ ⎤⎣ ⎦= +

−⎡ ⎤⎣ ⎦= −

8/11/2019 Winkler Curved Beam Theory

http://slidepdf.com/reader/full/winkler-curved-beam-theory 10/21

>> r= linspace(30, 80, 100);

>> stress = 3.8 + 589*(2500 - 49.04.*r)./(197.2*r);

>> plot(r, stress)

30 35 40 45 50 55 60 65 70 75 80-60

-40

-20

0

20

40

60

80

100

120

radius, r 

  s   t  r  e  s  s

8/11/2019 Winkler Curved Beam Theory

http://slidepdf.com/reader/full/winkler-curved-beam-theory 11/21

Comparison with Airy Stress Function Results

Consider a rectangular beam under pure moment

a

b

MM

thickness = t

R

h

Note: ( )( )

( )

( )

/ 1/

2 / 1

2 / 1/

2 / 1

b a R h

b a

 R hb a

 R h

+=−

+=

y

8/11/2019 Winkler Curved Beam Theory

http://slidepdf.com/reader/full/winkler-curved-beam-theory 12/21

2 2 2

2

4ln ln ln 1

 M a b b b r a r b

 Nta r a a a a b a a

θθ σ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + − + −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

From Airy Stress Function

2 22 2

1 4 lnb b b

 N a a a

⎡ ⎤   ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎢ ⎥⎣ ⎦

Strength Approach

( )

( )

ln

/ 2

m

b A t 

a

 A t b a

 R a b

⎛ ⎞=   ⎜ ⎟⎝ ⎠

= −

= +

8/11/2019 Winkler Curved Beam Theory

http://slidepdf.com/reader/full/winkler-curved-beam-theory 13/21

( )

( )( )

( )  ( )

( )

2

ln

ln

2

2 1 ln

1 2 1 1 ln

m

m

 M A rA

 Ar RA Ab

 M b a r a

a b   bt r b a b a

a

b r b M 

a a a

r b b b bt a

a a a a a

θθ σ − −

=

−⎡ ⎤⎛ ⎞− − −   ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦=

+⎡ ⎤⎛ ⎞− − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦=⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − +

⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

If we had used the ordinary straight beam formula

instead

( )

( )

3

32

2

1

12

6 2 1

1

a b M r 

 My

 I 

t b a

r b

a a M 

ta   b

a

θθ σ 

+⎡ ⎤−⎢ ⎥

⎣ ⎦= =

−⎡ ⎤⎛ ⎞− +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦=

⎛ ⎞−⎜ ⎟⎝ ⎠

minus on M since it is opposite to what

we had before

8/11/2019 Winkler Curved Beam Theory

http://slidepdf.com/reader/full/winkler-curved-beam-theory 14/21

Comparison of the ratio of the max bending stresses

0.93310.99945.0

0.88810.99863.0

0.83130.99732.0

0.77370.99611.5

0.65450.99701.0

0.52621.01240.75

0.43901.04550.65

Strength/elasticity

Straight beam

formula My/I

Strength/elasticity

Curved beam

formula

R/h

R

h

y

8/11/2019 Winkler Curved Beam Theory

http://slidepdf.com/reader/full/winkler-curved-beam-theory 15/21

Compare bending stress distributions at the smallest R/h value

1 2 3 4 5 6 7 8-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

r/a

  n  o  r  m

  a   l   i  z  e   d  s   t  r  e  s  s

solid curve – Airy stress function (elasticity)

dashed blue – Curved Strength formula

dashed red – Straight beam formula

R/h = 0.65 (b/a = 7.667)

8/11/2019 Winkler Curved Beam Theory

http://slidepdf.com/reader/full/winkler-curved-beam-theory 16/21

% beam_compare.m

m=1;

Rhvals = [0.65 0.75 1.0 1.5 2.0 3.0 5.0]; % R/h ratios to consider 

for Rh = Rhvalsba = (1+2*Rh)/(2*Rh -1); %corresponding b/a values

ra= linspace(1, ba, 100); % r/a values

N=(ba^2-1)^2 -4*ba^2*(log(ba))^2;

% Airy function flexure stress expression

pa =4*(-(ba./ra).^2.*log(ba)+(ba)^2.*log(ra./ba) - log(ra) +(ba)^2 -1)./N;

% Curved beam strength expression for flexure stress

ps = 2*((ba-1)-ra.*log(ba))./(ra.*(ba-1).*(2.*(ba-1) -(ba+1).*log(ba)));% Straight beam flexure formula My/I

pb = 6*(2*ra-(ba+1))./((ba-1)^3);

%obtain ratio of max stresses Curved beam Strength formula/Airy

ratio1(m) = max(abs(ps))/max(abs(pa));

%obtain ratio of max stresses: Straight beam strength formula/Airy

ratio2(m) = max(abs(pb))/max(abs(pa));

m=m+1;

end% Now plot stress distributions for smallest R/h value

Rh=0.65

ba = (1+2*Rh)/(2*Rh -1); %corresponding b/a values

ra= linspace(1, ba, 100);

N=(ba^2-1)^2 -4*ba^2*(log(ba))^2;

pa =4*(-(ba./ra).^2.*log(ba)+(ba)^2.*log(ra./ba) - log(ra) +(ba)^2 -1)./N;

ps = 2*((ba-1)-ra.*log(ba))./(ra.*(ba-1).*(2.*(ba-1) -(ba+1).*log(ba)));pb = 6*(2*ra-(ba+1))./((ba-1)^3);

plot(ra, pa)

hold on

plot(ra, ps, '--b')

plot(ra, pb, '--r')

xlabel('r/a')

ylabel( 'normalized stress')

hold off 

8/11/2019 Winkler Curved Beam Theory

http://slidepdf.com/reader/full/winkler-curved-beam-theory 17/21

Comparison with Bickford’s expression (pure bending)

( )   21

1/

kM My

 A ky I 

k R

θθ σ    = − −+

=

 R

centroid

y

 y−

First note that

0

 A

 ydA =∫

Here, y is distance from the centroid

so   ( )   2

2

1

1 /   10

1 / 1 / 1 / A A A

 y y R   I  ydA y dAdA I 

 y R y R R y R R

+= + = + =

+ + +∫ ∫ ∫ 1

2

2

1 /

1 /

 A

 A

 ydA I  y R

 y dA I 

 y R

=+

=+

∫2

1

 I  I 

 R= −

 R r y− = −

or    r y R= +

8/11/2019 Winkler Curved Beam Theory

http://slidepdf.com/reader/full/winkler-curved-beam-theory 18/21

m A A

dA dA RA R R

r y R= =

+∫ ∫( )

( )

1

 A A A A

m

 y R   y dA A dA dA dA R

 y R y R y R

 I   RA R

+= = = +

+ + +

= +

∫ ∫ ∫ ∫

1 / I R

Thus,( )   1 2

 /m R RA A I I R− = − =

8/11/2019 Winkler Curved Beam Theory

http://slidepdf.com/reader/full/winkler-curved-beam-theory 19/21

( )   21

1/

kM My

 A ky I 

k R

θθ σ    = − −+

=

Now, start with Bickford’s expression

( )

( )

( )

( ) ( )

( ) ( )

( )

( )

( ) ( )

( )

2

2

2

2

2   32

2 2

2   2

2

2 2

222

2 2

2 3

2

2

2

1

/

/

 yR M 

 AR y R I 

 y R I yAR M 

 y R ARI 

 y R I y R AR   AR

 M   y R ARI y R ARI 

 I AR R M 

 ARI y R I 

 I AR R M 

 y R I ARI 

 A y R I AR R M 

 y R AI R

θθ σ ⎡ ⎤

= − +⎢ ⎥+⎣ ⎦

⎡ ⎤+ += −   ⎢ ⎥

+⎣ ⎦

⎡ ⎤+ + +

= − −⎢ ⎥+ +⎣ ⎦

⎡ ⎤+= − −⎢ ⎥

+⎣ ⎦

⎡ ⎤+= −⎢ ⎥+⎣ ⎦

⎡ ⎤− + +⎢ ⎥=

+⎢ ⎥⎣ ⎦

same terms added in and subtracted out

8/11/2019 Winkler Curved Beam Theory

http://slidepdf.com/reader/full/winkler-curved-beam-theory 20/21

( ) ( )( )

2 3

2

2

2

/

/

 A y R I AR R

 M   y R AI Rθθ σ 

⎡ ⎤− + +

⎢ ⎥= +⎢ ⎥⎣ ⎦

but 2

2 /m RA A I R− = so   ( )2 3

2  /m A I AR R= +

and we find

 y R r + =

( )m

m

 A rA

r RA A Aθθ σ 

⎡ ⎤−= ⎢ ⎥

−⎣ ⎦

which agrees with our previous expression

8/11/2019 Winkler Curved Beam Theory

http://slidepdf.com/reader/full/winkler-curved-beam-theory 21/21

from Bickford’s expression

( )   21

1/

kM My

 A ky I 

k R

θθ σ    = − −+

=

it is easy to see, as , R → ∞   0k  →

and   2

2

2

1 / A A

 y dA I y dA I 

 y R

= → =

+∫ ∫

and we recover the straight beam flexure expression

 My

 I θθ σ    = −