willkommen an der fh münster - fh münster - on the vuv ......2017/03/08  · mail to:...

1
On the VUV Luminescence and Degradation of UV-C Emitting Phosphors Mike Broxtermann* and Thomas Jüstel mail to: [email protected] or [email protected] Research Group Tailored Optical Materials Münster University of Applied Sciences Stegerwaldstraße 39, D-48565 Steinfurt Germany 150 200 250 300 350 400 450 500 550 600 650 700 750 800 8,3 6,2 5,0 4,1 3,5 3,1 2,8 2,5 2,3 2,1 1,9 1,8 1,7 1,5 3 F J 3 H 6 3 H 4 Energy /eV Intensity (norm.) Wavelength /nm 172 nm YPO 4 :Pr Exc.: 160 nm Em.: 233 nm Germicidal efficiancy (DIN 5031-10): 61% 4f 1 5d 1 3 H 5 0 10 20 30 40 50 60 70 80 90 100 Reflectance / % BaSO 4 150 200 250 300 350 400 450 500 550 600 650 700 750 800 8,3 6,2 5,0 4,1 3,5 3,1 2,8 2,5 2,3 2,1 1,9 1,8 1,7 1,5 3 p 1 3 p 2 1 p 1 Energy /eV Intensity (norm.) Wavelength /nm 172 nm Germicidal efficiancy (DIN 5031-10): 66% YPO 4 :Bi Exc.: 160 nm Em.: 233 nm 3 p 1 MMCT 0 10 20 30 40 50 60 70 80 90 100 Reflectance / % BaSO 4 150 200 250 300 350 400 450 500 550 600 650 700 750 800 8,3 6,2 5,0 4,1 3,5 3,1 2,8 2,5 2,3 2,1 1,9 1,8 1,7 1,5 2 G 7/2 2 H 11/2 4 F 9/2 Energy /eV Intensity (norm.) Wavelength /nm 172 nm Germicidal efficiancy (DIN 5031-10): 57% YPO 4 :Nd Exc.: 160 nm Em.: 233 nm 4f 2 5d 1 4 I J 0 10 20 30 40 50 60 70 80 90 100 Reflectance / % BaSO 4 Fig. 1 Xe-DBD Lamp operated in water. Fig. 2 Schematic illustration of the principle of operation of two different phosphor converted Xe-excimer DBD lamp patterns. YPO 4 is a radiation stable wide band gap material (∆ BG = 9.2 eV) which turns into a very efficient UVC / VUV emitter upon doping with e.g. Pr 3+ , Bi 3+ , or Nd 3+ . [2],[3] Doping with Bi 3+ leads to an emission band peaking at 241 nm due to a s-p transition of the [Xe]4f 14 5d 10 6s 2 cation, whereas a doping with Pr 3+ or Nd 3+ leads to a maximum emission around 235 and 192 nm, respectively. This emission is due to f-d transitions of the trivalent lanthanides. 1. Phosphor converted Xe DBD lamps Fig. 3 VUV-excitation-, emission and reflectance spectra of the UV-C emitting phosphors YPO 4 :Bi and YPO 4 :Pr and the VUV-Emitting Phosphor YPO 4 :Nd, respectively Fig. 13 Illustration of UV driven particle coating process [4] 2. UV emitting LnPO4:X phosphors for Xe DBD lamps – effective disinfection 3. Device lifetime limitations: aging effects on LnPO 4 based phosphor materials within an Xe excimer discharge 4. Device lifetime improvement: Application and impact of protective inert particle coatings Acknowledgement Literature 200 220 240 260 280 300 320 0,0 0,2 0,4 0,6 0,8 1,0 rel. eff. DIN 5031-10 Em. YPO 4 :Bi (norm.) Em. YPO 4 :Pr (norm.) Em. YPO 4 :Nd (norm.) relative photolytic germicidal afficacy: E.Coli relative photolytic germicidal afficacy /a.u. Wavelength /nm R N O NH O R N O HN O R N O HN O R N O NH O h ν 200 250 300 350 400 450 500 550 600 650 700 750 800 6,2 5,0 4,1 3,5 3,1 2,8 2,5 2,3 2,1 1,9 1,8 1,7 1,5 Energy /eV Intensity (norm.) Wavelength /nm Exc.: 160 nm Em.: 233 nm YPO 4 aged 0 10 20 30 40 50 60 70 80 90 100 YPO 4 Reflectance / % BaSO 4 neat Aged YPO 4 (Xenotime) 200 250 300 350 400 450 500 550 600 650 700 750 800 6,2 5,0 4,1 3,5 3,1 2,8 2,5 2,3 2,1 1,9 1,8 1,7 1,5 77K 100K 123K 150K 175K 200K 225K 250K Energy /eV Intensity /a.u. Wavelength /nm 275K 300K 325K 350K 375K 400K Ex.: 350 nm Em.: 750 nm YPO 4 aged @ 425K 450K 475K 500K 0 10 20 30 40 50 60 70 80 90 100 Reflectance / % BaSO 4 Aged LaPO 4 (Monazite) Aged LuPO 4 (Xenotime) 200 250 300 350 400 450 500 550 600 650 700 750 800 6,2 5,0 4,1 3,5 3,1 2,8 2,5 2,3 2,1 1,9 1,8 1,7 1,5 Energy /eV Intensity /arb. units Wavelength /nm Exc.: 330 nm Em.: 720 nm LuPO 4 aged @ 80 K 100 K 120 K 140 K 160 K 180 K 200 K 220 K 240 K 260 K 280 K 300 K 320 K 340 K 360 K 380 K 400 K 420 K 440 K 460 K 480 K 500 K 0 10 20 30 40 50 60 70 80 90 100 Reflection @ RT Reflectance / % BaSO 4 -30 -20 -10 0 10 0,0 0,2 0,4 0,6 0,8 1,0 31 P SS-NMR: YPO 4 vs. YPO 4 aged norm. δ 31 P /ppm YPO 4 YPO 4 aged YPO 4 & LuPO 4 structure (Xenotim, I4 1 /amd) -20 -10 0 10 20 0,0 0,2 0,4 0,6 0,8 1,0 LaPO 4 LaPO 4 aged 31 P SS-NMR: LaPO 4 vs. LaPO 4 aged norm. δ 31 P /ppm LaPO 4 structure (Monazit, P2 1 /c) 50 100 150 200 250 300 350 400 450 500 550 600 650 700 100 120 140 160 180 200 220 240 260 I UV-C YPO 4 :Bi I UV-C Al 2 O 3 @YPO 4 :Bi (4m%, UV-R, 1400°C calc.) Integrated UV-C Intensity /a.u. Run-time /h 0 -10 -20 -30 -40 -50 -60 -70 -80 Degradation mit YPO4:Bi Degradation Al 2 O 3 @YPO 4 :Bi (4m%, UV-R, 1400°C calc.) Degradation / % Micro discharge channel hν (>172 nm) surface discharge surface discharge SiO 2 SiO 2 outer electrode inner electrode phosphor layer phosphor layer inner electrode outer electrode phosphor layer SiO 2 SiO 2 internal phosphor external phosphor Xe + Xe*+ e - Xe* + 2 Xe Xe2* + Xe Xe2* 2 Xe + hν (172nm) 250 300 350 400 450 500 550 600 650 700 750 800 5,0 4,1 3,5 3,1 2,8 2,5 2,3 2,1 1,9 1,8 1,7 1,5 100 K 120 K 140 K 160 K 180 K 200 K 220 K 240 K 260 K 280 K 300 K Energy /eV Intensity (norm.) Wavelength /nm 320 K 340 K 360 K 380 K 400 K 420 K 440 K 460 K 480 K 500 K LaPO 4 aged @ Exc.: 335 nm Em.: 705 nm 0 10 20 30 40 50 60 70 80 90 100 Reflectance / % BaSO 4 C A B 1 S 0 3 P 0 3 P 1 3 P 2 1 P 1 A 1 S 0 3 P 0 3 P 1 3 P 2 1 P 1 Exc. Em. x 200 250 300 350 400 450 500 550 600 650 700 750 800 6,2 5,0 4,1 3,5 3,1 2,8 2,5 2,3 2,1 1,9 1,8 1,7 1,5 Energy /eV Intensity /arb. units Wavelength /nm 80 K 100 K 120 K 140 K 160 K 180 K 200 K 220 K 240 K 260 K 280 K 300 K 320 K 340 K 360 K 380 K 400 K 420 K 440 K 460 K 480 K 500 K 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 Reflection @ RT Reflectance / % BaSO 4 1 S 0 S P J 3 P 1 1 S 0 Energy level scheme for nS 2 luminescence Optical grade YPO 4 , LuPO 4 and LaPO 4 were aged analogous to the doped phosphor materials. All analysed ortho- phosphates exhibit comparable aging effects indicated by characteristic photoluminescence Solid State NMR reveals that the bulk host material remains unaltered (within the detection limits) The apparent photo- luminescence shows features characteristic for ns 2 cations e.g. Bi 3+ , Sb 3+ , As 3+ P +V P +III [Ne]3s 0 [Ne]3s 2 YPO 4 :Bi YPO 4 :Bi Al 2 O 3 172 nm 241 nm coating Phosphor converted Xe excimer lamps comprising YPO 4 :Bi (internal phosphor) exhibit a distinct and fast characteristic aging under continuous operation: Observable greying of the actually clear white phosphor coating Continuous decrease of UV radiation output over operation time (after 24 h forerun) A dimming of 30 % (L70) is already reached after 230 hours run- time Spectroscopy of aged YPO 4 and YPO 4 doped with Bi 3+ , Pr 3+ and Gd 3+ , respectively reveals: The distinct aging effect is evident regardless the dopant cation and is as well observed for the undoped host material YPO 4 As a detectable main symptom of aging, a novel broad emission band appears rising from the visual beginning at around 500 - 600 nm towards the UV region The uprising absorption band may be accompanied by a general overall absorption (greying) and a absorption band ascribed to a reduced activator species in case of YPO 4 :Bi (Bi 3+ Bi + /Bi 2+ ) Upon PL excitation into the new host absorption bands in the UV yields deep red luminescence, regardless which or any doping. This phenomenon was further followed by the temperature dependent PL spectra of aged undoped YPO 4 , LaPO 4 , and LuPO 4 (see B) 50 100 150 200 250 300 350 400 450 500 550 600 650 700 100 120 140 160 180 200 220 240 260 I UV-C Lamp with YPO 4 :Bi Integrated UV-C Intensity /a.u. Run-time /h 0 -10 -20 -30 -40 -50 -60 -70 -80 Degradation Lamp with YPO 4 :Bi Degradation / % 150 200 250 300 350 400 450 500 550 600 650 700 750 800 8,3 6,2 5,0 4,1 3,5 3,1 2,8 2,5 2,3 2,1 1,9 1,8 1,7 1,5 Energy /eV Intensity (norm.) Wavelength /nm Exc.: 160 nm Em.: 233 nm YPO 4 :Bi YPO 4 :Bi aged 0 10 20 30 40 50 60 70 80 90 100 Reflectance / % BaSO 4 240 260 280 300 320 340 360 380 L70 @≈230 h Bi 3+ 150 200 250 300 350 400 450 500 550 600 650 700 750 800 8,3 6,2 5,0 4,1 3,5 3,1 2,8 2,5 2,3 2,1 1,9 1,8 1,7 1,5 Energy /eV Intensity (norm.) Wavelength /nm Exc.: 160 nm Em.: 235 nm YPO 4 :Pr YPO 4 :Pr aged 0 10 20 30 40 50 60 70 80 90 100 Reflectance / % BaSO 4 Pr 3+ 150 200 250 300 350 400 450 500 550 600 650 700 750 800 8,3 6,2 5,0 4,1 3,5 3,1 2,8 2,5 2,3 2,1 1,9 1,8 1,7 1,5 Energy /eV Intensity (norm.) Wavelength /nm Exc.: 160 nm Em.: 311 nm YPO 4 :Gd YPO 4 :Gd aged 30 40 50 60 70 80 90 100 Reflectance / % BaSO 4 300 310 320 Gd 3+ A) B) Em.λ max = 241 nm Em.λ max = 235 nm Em.λ max = 192 nm Bi + /Bi 2+ host lattice absorption of degrading host lattice 150 200 250 300 350 400 450 500 550 600 650 700 750 800 8,3 6,2 5,0 4,1 3,5 3,1 2,8 2,5 2,3 2,1 1,9 1,8 1,7 1,5 Energy /eV Intensity (norm.) Wavelength /nm Exc.: 160 nm Em.: 233 nm YPO 4 :Bi YPO 4 :Bi aged 0 10 20 30 40 50 60 70 80 90 100 Reflectance / % BaSO 4 240 260 280 300 320 340 360 380 Particle Coating: Ideally, each and every single phosphor particle is coated with an homogeneous and surface covering coating of α-Al 2 O 3 to prevent phosphor aging (degradation) under exposure to the Xe discharge. We would like to express our gratitude to Prof. Dr. Rainer Pöttgen and Dr. Christopher Benndorf for conducting solid-state NMR measurements. Further thanks goes to our cooperation partners GVB GmbH, Tailorlux GmbH, the German centre for air- and space travel (DLR). Additional gratitude goes to the foundation of German economy and the German ministry of education and science for funding. An optimal coating quality in terms of homogeneity and particle surface coverage were yielded with a photochemically driven precipitation process, recently described in literature. [4] For further information look up literature 4 or follow The application of an Al 2 O 3 coating onto YPO 4 :Bi particles results in a reduced phosphor degradation (approximately factor 2) with respect to an uncoated material and under analogous aging conditions This positive effect appears to act upon the reduction of the activator Bi 3+ as well as the degradation of the host material itself, as indicated by the comparison of spectra displayed by figure 14. [1] U. Kogelschatz,, Plasma Chem. Plasma Process 23 (2003) 1 [2] P. Dorenbos for band gap 9,25 eV [3] T. Jüstel, P. Huppertz, W. Mayr, D.U. Wiechert, J. Luminescence 106 (2004) 225 [4] M. Broxtermann, T. Jüstel, Mater. Res. Bull. 80 (2016) 249 Fig. 4 relative photolytic disinfection efficacy for Escheria Coli according DIN 5031-10 YPO 4 :Bi 3+ /Pr 3+ /Nd 3+ comprising lamps can be used as efficient UV-C or VUV light sources in disinfection The germicidal efficacy typifies a useful tool to evaluate a phosphor for its disinfection suitability Fig. 8 Solid state 31 P NMR measured for aged and untreated YPO 4 (left) and aged and untreated LaPO 4 (right). Fig. 9 Xenotime structure Fig. 10 Monazite structure Fig.6 Excitation, emission and reflectance spectra of aged and untreated YPO 4 :Pr, YPO 4 :Pr, YPO 4 Fig. 7 Temp. dependent excitation and emission spectra measured from aged samples of YPO 4 , LuPO 4 and LaPO 4 . Fig. 11 Left: Energy level scheme for ns 2 luminescence; Middle: Temp. dependent excitation and emission spectra measured from aged samples of LuPO 4 supplemented by proposed electron transitions; Right: Proposed scheme for P 5+ reduction due to plasma contact Fig. 5 Left: UV-C output vs run-time for a YPO 4 :Bi comprising Xe lamp. Right: Excitation, emission and reflectance spectra of untreated and aged YPO 4 :Bi (after 700 hrs run-time) Fig. 14 Fig. Top: UV-C output vs run-time for a YPO 4 :Bi and a Al 2 O 3 coated YPO 4 :Bi comprising Xe lamp. Bottom: Excitation, emission and reflectance spectra of the aged YPO 4 :Bi and Al 2 O 3 coated YPO 4 :Bi (after 700 hrs run-time) Fig. 13 Illustration of YPO 4 :Bi a particle coated with a protective but 172 nm transmitting Al 2 O 3 layer or shell. Reduction of P 5+ by hot e - and Xe +∙ impingement in plasma contact Dielectric barrier Xenon excimer discharge lamps are known as efficient sources of vacuum ultraviolet radiation, while the main band peaks at 172 nm. 1 By the use of VUV excitable conversion materials which are applied as a coating layer onto the lamp body it is feasible to manufacture efficient UV-C, near VUV, or even UV-A/B emitting Xe excimer lamps which may perform well for the replacement of established Hg discharge lamps and respective UV radiation systems.

Upload: others

Post on 08-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Willkommen an der FH Münster - FH Münster - On the VUV ......2017/03/08  · mail to: mike.b@fh-muenster.de or tj@fh-muenster.de Research Group Tailored Optical Materials Münster

On the VUV Luminescence and Degradation of UV-C Emitting Phosphors Mike Broxtermann* and Thomas Jüstel mail to: [email protected] or [email protected] Research Group Tailored Optical Materials Münster University of Applied Sciences Stegerwaldstraße 39, D-48565 Steinfurt Germany

150 200 250 300 350 400 450 500 550 600 650 700 750 800

8,3 6,2 5,0 4,1 3,5 3,1 2,8 2,5 2,3 2,1 1,9 1,8 1,7 1,5

3FJ

3H6

3H4

Energy /eV

Inte

nsity

(nor

m.)

Wavelength /nm

172

nm

YPO4:PrExc.: 160 nmEm.: 233 nm

Germicidal efficiancy (DIN 5031-10): 61%

4f15d1

3H5

0

10

20

30

40

50

60

70

80

90

100

Ref

lect

ance

/ %

BaS

O4

150 200 250 300 350 400 450 500 550 600 650 700 750 800

8,3 6,2 5,0 4,1 3,5 3,1 2,8 2,5 2,3 2,1 1,9 1,8 1,7 1,5

3p13p2

1p1

Energy /eV

Inte

nsity

(nor

m.)

Wavelength /nm

172

nm

Germicidal efficiancy (DIN 5031-10): 66%

YPO4:BiExc.: 160 nmEm.: 233 nm

3p1

MMCT0

10

20

30

40

50

60

70

80

90

100

Ref

lect

ance

/ %

BaS

O4

150 200 250 300 350 400 450 500 550 600 650 700 750 800

8,3 6,2 5,0 4,1 3,5 3,1 2,8 2,5 2,3 2,1 1,9 1,8 1,7 1,5

2G7/2

2H11/2

4F9/2

Energy /eV

Inte

nsity

(nor

m.)

Wavelength /nm

172

nm

Germicidal efficiancy (DIN 5031-10): 57%

YPO4:NdExc.: 160 nmEm.: 233 nm

4f25d1

4IJ

0

10

20

30

40

50

60

70

80

90

100

Ref

lect

ance

/ %

BaS

O4

Fig. 1 Xe-DBD Lamp operated in water.

Fig. 2 Schematic illustration of the principle of operation of two different phosphor converted Xe-excimer DBD lamp patterns.

YPO4 is a radiation stable wide band gap material (∆BG = 9.2 eV) which turns into a very efficient UVC / VUV emitter upon doping with e.g. Pr3+, Bi3+, or Nd3+

. [2],[3] Doping with Bi3+ leads to an emission band peaking at 241 nm due to a s-p transition of the [Xe]4f145d106s2 cation,

whereas a doping with Pr3+ or Nd3+ leads to a maximum emission around 235 and 192 nm, respectively. This emission is due to f-d transitions of the trivalent lanthanides.

1. Phosphor converted Xe DBD lamps

Fig. 3 VUV-excitation-, emission and reflectance spectra of the UV-C emitting phosphors YPO4:Bi and YPO4:Pr and the VUV-Emitting Phosphor YPO4:Nd, respectively

Fig. 13 Illustration of UV driven particle coating process [4]

2. UV emitting LnPO4:X phosphors for Xe DBD lamps – effective disinfection

3. Device lifetime limitations: aging effects on LnPO4 based phosphor materials within an Xe excimer discharge

4. Device lifetime improvement: Application and impact of protective inert particle coatings

Acknowledgement Literature

200 220 240 260 280 300 3200,0

0,2

0,4

0,6

0,8

1,0 rel. eff. DIN 5031-10 Em. YPO4:Bi (norm.) Em. YPO4:Pr (norm.) Em. YPO4:Nd (norm.)

relative photolytic germicidal afficacy: E.Coli

rela

tive

phot

olyt

ic g

erm

icid

al a

ffica

cy /a

.u.

Wavelength /nm

R

N O

NH

O

R

NO

HN

O

R

NO

HN

O

R

N O

NH

O

200 250 300 350 400 450 500 550 600 650 700 750 800

6,2 5,0 4,1 3,5 3,1 2,8 2,5 2,3 2,1 1,9 1,8 1,7 1,5

Energy /eV

Inte

nsity

(nor

m.)

Wavelength /nm

Exc.: 160 nmEm.: 233 nm

YPO4 aged

0

10

20

30

40

50

60

70

80

90

100

YPO4

Ref

lect

ance

/ %

BaS

O4

neat

Aged YPO4 (Xenotime)

200 250 300 350 400 450 500 550 600 650 700 750 800

6,2 5,0 4,1 3,5 3,1 2,8 2,5 2,3 2,1 1,9 1,8 1,7 1,5

77K 100K 123K 150K 175K 200K 225K 250K

Energy /eV

Inte

nsity

/a.u

.

Wavelength /nm

275K 300K 325K 350K 375K 400K

Ex.: 350 nmEm.: 750 nmYPO4 aged @

425K 450K 475K 500K

0

10

20

30

40

50

60

70

80

90

100

Refle

ctan

ce /

% B

aSO

4

Aged LaPO4 (Monazite) Aged LuPO4 (Xenotime)

200 250 300 350 400 450 500 550 600 650 700 750 800

6,2 5,0 4,1 3,5 3,1 2,8 2,5 2,3 2,1 1,9 1,8 1,7 1,5

Energy /eV

Inte

nsity

/arb

. uni

ts

Wavelength /nm

Exc.: 330 nmEm.: 720 nmLuPO4 aged @

80 K 100 K 120 K 140 K 160 K 180 K 200 K 220 K 240 K 260 K 280 K 300 K

320 K 340 K 360 K 380 K 400 K 420 K 440 K 460 K 480 K 500 K

0

10

20

30

40

50

60

70

80

90

100

Reflection @ RT

Refle

ctan

ce /

% B

aSO

4

-30 -20 -10 0 100,0

0,2

0,4

0,6

0,8

1,0

31P SS-NMR: YPO4 vs. YPO4 aged

norm

.

δ31P /ppm

YPO4 YPO4 aged

YPO4 & LuPO4 structure (Xenotim, I41/amd)

-20 -10 0 10 200,0

0,2

0,4

0,6

0,8

1,0

LaPO4

LaPO4 aged

31P SS-NMR: LaPO4 vs. LaPO4 aged

norm

.

δ31P /ppm

LaPO4 structure (Monazit, P21/c)

50 100 150 200 250 300 350 400 450 500 550 600 650 700

100

120

140

160

180

200

220

240

260 IUV-C YPO4:Bi IUV-C Al2O3@YPO4:Bi (4m%, UV-R, 1400°C calc.)

Inte

grat

ed U

V-C

Inte

nsity

/a.u

.

Run-time /h

0

-10

-20

-30

-40

-50

-60

-70

-80

Degradation mit YPO4:Bi Degradation Al2O3@YPO4:Bi (4m%, UV-R, 1400°C calc.)

Deg

rada

tion

/ %

Micro discharge channel

hν (>172 nm)

surface discharge

surface discharge

SiO2

SiO2

outer electrode

inner electrode

phosphor layer

phosphor layer

inner electrode

outer electrode phosphor layer

SiO2

SiO2

internal phosphor external phosphor

Xe + Xe*+ e-

Xe* + 2 Xe Xe2* + Xe Xe2* 2 Xe + hν (172nm)

250 300 350 400 450 500 550 600 650 700 750 800

5,0 4,1 3,5 3,1 2,8 2,5 2,3 2,1 1,9 1,8 1,7 1,5

100 K 120 K 140 K 160 K 180 K 200 K 220 K 240 K 260 K 280 K 300 K

Energy /eV

Inte

nsity

(nor

m.)

Wavelength /nm

320 K 340 K 360 K 380 K 400 K 420 K 440 K 460 K 480 K 500 K

LaPO4 aged @ Exc.: 335 nmEm.: 705 nm

0

10

20

30

40

50

60

70

80

90

100

Ref

lect

ance

/ %

BaS

O4

C A B

1S0

3P0

3P1

3P2

1P1

A 1S0

3P0

3P1

3P2

1P1

Exc. Em.

x

200 250 300 350 400 450 500 550 600 650 700 750 800

6,2 5,0 4,1 3,5 3,1 2,8 2,5 2,3 2,1 1,9 1,8 1,7 1,5

Energy /eV

Inte

nsity

/arb

. uni

ts

Wavelength /nm

80 K 100 K 120 K 140 K 160 K 180 K 200 K 220 K 240 K 260 K 280 K 300 K

320 K 340 K 360 K 380 K 400 K 420 K 440 K 460 K 480 K 500 K

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Reflection @ RT

Ref

lect

ance

/ %

BaS

O4

1S0 SPJ

3P1 1S0

Energy level scheme for nS2 luminescence

Optical grade YPO4, LuPO4 and LaPO4 were aged analogous to the doped phosphor materials. All analysed ortho-phosphates exhibit comparable aging effects indicated by characteristic photoluminescence

Solid State NMR reveals that the bulk host material remains unaltered (within the detection limits)

The apparent photo-luminescence shows features characteristic for ns2 cations e.g. Bi3+, Sb3+, As3+

P+V P+III [Ne]3s0 [Ne]3s2

YPO4:Bi YPO4:Bi

Al2O3

172 nm 241 nm

coating

Phosphor converted Xe excimer lamps comprising YPO4:Bi (internal phosphor) exhibit a distinct and fast characteristic aging under continuous operation: • Observable greying of the actually clear white phosphor coating • Continuous decrease of UV radiation output over operation time

(after 24 h forerun) • A dimming of 30 % (L70) is already reached after ≈ 230 hours run-

time

Spectroscopy of aged YPO4 and YPO4 doped with Bi3+, Pr3+ and Gd3+, respectively reveals:

• The distinct aging effect is evident regardless the dopant cation and

is as well observed for the undoped host material YPO4 • As a detectable main symptom of aging, a novel broad emission band

appears rising from the visual beginning at around 500 - 600 nm towards the UV region

• The uprising absorption band may be accompanied by a general overall absorption (greying) and a absorption band ascribed to a reduced activator species in case of YPO4:Bi (Bi3+ Bi+/Bi2+)

• Upon PL excitation into the new host absorption bands in the UV yields deep red luminescence, regardless which or any doping. This phenomenon was further followed by the temperature dependent PL spectra of aged undoped YPO4, LaPO4, and LuPO4 (see B)

50 100 150 200 250 300 350 400 450 500 550 600 650 700

100

120

140

160

180

200

220

240

260

IUV-C Lamp with YPO4:Bi

Inte

grat

ed U

V-C

Inte

nsity

/a.u

.

Run-time /h

0

-10

-20

-30

-40

-50

-60

-70

-80

Degradation Lamp with YPO4:Bi

Deg

rada

tion

/ %

150 200 250 300 350 400 450 500 550 600 650 700 750 800

8,3 6,2 5,0 4,1 3,5 3,1 2,8 2,5 2,3 2,1 1,9 1,8 1,7 1,5

Energy /eV

Inte

nsity

(nor

m.)

Wavelength /nm

Exc.: 160 nmEm.: 233 nm

YPO4:Bi YPO4:Bi aged

0

10

20

30

40

50

60

70

80

90

100

Ref

lect

ance

/ %

BaS

O4

240 260 280 300 320 340 360 380L70 @≈230 h

Bi3+

150 200 250 300 350 400 450 500 550 600 650 700 750 800

8,3 6,2 5,0 4,1 3,5 3,1 2,8 2,5 2,3 2,1 1,9 1,8 1,7 1,5

Energy /eV

Inte

nsity

(nor

m.)

Wavelength /nm

Exc.: 160 nmEm.: 235 nm

YPO4:Pr YPO4:Pr aged

0

10

20

30

40

50

60

70

80

90

100

Ref

lect

ance

/ %

BaS

O4

Pr3+

150 200 250 300 350 400 450 500 550 600 650 700 750 800

8,3 6,2 5,0 4,1 3,5 3,1 2,8 2,5 2,3 2,1 1,9 1,8 1,7 1,5

Energy /eV

Inte

nsity

(nor

m.)

Wavelength /nm

Exc.: 160 nmEm.: 311 nm

YPO4:Gd YPO4:Gd aged

30

40

50

60

70

80

90

100

Ref

lect

ance

/ %

BaS

O4

300 310 320

Gd3+

A) B)

Em.λmax= 241 nm Em.λmax= 235 nm Em.λmax= 192 nm

Bi+/Bi2+

host lattice

absorption of degrading host lattice

150 200 250 300 350 400 450 500 550 600 650 700 750 800

8,3 6,2 5,0 4,1 3,5 3,1 2,8 2,5 2,3 2,1 1,9 1,8 1,7 1,5

Energy /eV

Inte

nsity

(nor

m.)

Wavelength /nm

Exc.: 160 nmEm.: 233 nm

YPO4:Bi YPO4:Bi aged

0

10

20

30

40

50

60

70

80

90

100

Ref

lect

ance

/ %

BaS

O4

240 260 280 300 320 340 360 380

Particle Coating: Ideally, each and every single phosphor particle is coated with an homogeneous and surface covering coating of α-Al2O3 to prevent phosphor aging (degradation) under exposure to the Xe discharge.

We would like to express our gratitude to Prof. Dr. Rainer Pöttgen and Dr. Christopher Benndorf for conducting solid-state NMR measurements. Further thanks goes to our cooperation partners GVB GmbH, Tailorlux GmbH, the German centre for air- and space travel (DLR). Additional gratitude goes to the foundation of German economy and the German ministry of education and science for funding.

An optimal coating quality in terms of homogeneity and particle surface coverage were yielded with a photochemically driven precipitation process, recently described in literature. [4]

For further information look up literature 4 or follow

The application of an Al2O3 coating onto YPO4:Bi particles results in a reduced phosphor degradation (approximately factor ≈ 2) with respect to an uncoated material and under analogous aging conditions This positive effect appears to act upon the reduction of the activator Bi3+ as well as the degradation of the host material itself, as indicated by the comparison of spectra displayed by figure 14.

[1] U. Kogelschatz,, Plasma Chem. Plasma Process 23 (2003) 1 [2] P. Dorenbos for band gap 9,25 eV [3] T. Jüstel, P. Huppertz, W. Mayr, D.U. Wiechert, J. Luminescence 106 (2004) 225 [4] M. Broxtermann, T. Jüstel, Mater. Res. Bull. 80 (2016) 249

Fig. 4 relative photolytic disinfection efficacy for Escheria Coli according DIN 5031-10

YPO4:Bi3+/Pr3+/Nd3+ comprising lamps can be used as efficient UV-C or VUV light sources in disinfection

The germicidal efficacy typifies a useful tool to evaluate a phosphor for its disinfection suitability

Fig. 8 Solid state 31P NMR measured for aged and untreated YPO4 (left) and aged and untreated LaPO4 (right). Fig. 9 Xenotime structure Fig. 10 Monazite structure

Fig.6 Excitation, emission and reflectance spectra of aged and untreated YPO4:Pr, YPO4:Pr, YPO4

Fig. 7 Temp. dependent excitation and emission spectra measured from aged samples of YPO4, LuPO4 and LaPO4.

Fig. 11 Left: Energy level scheme for ns2 luminescence; Middle: Temp. dependent excitation and emission spectra measured from aged samples of LuPO4 supplemented by proposed electron transitions; Right: Proposed scheme for P5+ reduction due to plasma contact

Fig. 5 Left: UV-C output vs run-time for a YPO4:Bi comprising Xe lamp. Right: Excitation, emission and reflectance spectra of untreated and aged YPO4:Bi (after 700 hrs run-time)

Fig. 14 Fig. Top: UV-C output vs run-time for a YPO4:Bi and a Al2O3 coated YPO4:Bi comprising Xe lamp. Bottom: Excitation, emission and reflectance

spectra of the aged YPO4:Bi and Al2O3 coated YPO4:Bi (after 700 hrs run-time)

Fig. 13 Illustration of YPO4:Bi a particle coated with a protective but 172 nm transmitting Al2O3 layer or shell.

Reduction of P5+ by hot e- and Xe+∙ impingement in plasma contact

Dielectric barrier Xenon excimer discharge lamps are known as efficient sources of vacuum ultraviolet radiation, while the main band peaks at 172 nm.1 By the use of VUV excitable conversion materials which are applied as a coating layer onto the lamp body it is feasible to manufacture efficient UV-C, near VUV, or even UV-A/B emitting Xe excimer lamps which may perform well for the replacement of established Hg discharge lamps and respective UV radiation systems.