why does it rain on us???. 3 cloud properties, 9 isccp cloud types why do clouds constitute a...

19
Why does it rain on us???

Upload: dale-young

Post on 16-Jan-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Why does it rain on us???.  3 cloud properties, 9 ISCCP cloud types  Why do clouds constitute a wildcard for climate change? Competition between greenhouse

Why does it rain on us???

Page 2: Why does it rain on us???.  3 cloud properties, 9 ISCCP cloud types  Why do clouds constitute a wildcard for climate change? Competition between greenhouse

3 cloud properties, 9 ISCCP cloud types

Why do clouds constitute a wildcard for climate change? Competition between greenhouse effect and albedo effect

Convection: 3 types of stability. Two factors limiting the height of clouds

Review of last lecture

Page 3: Why does it rain on us???.  3 cloud properties, 9 ISCCP cloud types  Why do clouds constitute a wildcard for climate change? Competition between greenhouse

Satellite observation of precipitationSatellite observation of precipitation

• Infrared-derived or visible-derived (GPI)• Microwave-derived (MSU, SSM/I, TMI)• Radar: Tropical Rainfall Measurement Mission (TRMM) • Merged with surface gauge measurements and model

forecast

Page 4: Why does it rain on us???.  3 cloud properties, 9 ISCCP cloud types  Why do clouds constitute a wildcard for climate change? Competition between greenhouse

Global distribution of precipitationGlobal distribution of precipitation

Page 5: Why does it rain on us???.  3 cloud properties, 9 ISCCP cloud types  Why do clouds constitute a wildcard for climate change? Competition between greenhouse

Precipitation formation - cloud drop growthPrecipitation formation - cloud drop growth

• Not all clouds precipitate due to their small sizes and slow fall rates• Balance between gravity and frictional

drag eventually become equal to achieve terminal velocity VT, which is proportional to the square root of cloud drop radius VT=c r0.5 ,where r is drop radius and c is a constant.

• For a cloud drop to fall, its terminal velocity must exceed the vertical velocity of the upward-moving air parcel. Otherwise it will be carried up.

• Cloud drop growth is required for precipitation to form

Fgravity

Fdrag

Page 6: Why does it rain on us???.  3 cloud properties, 9 ISCCP cloud types  Why do clouds constitute a wildcard for climate change? Competition between greenhouse

1. Collision Coalescence (warm clouds, T > 0 C, form rain)

2. Bergeron Process (cool/cold clouds, T < 0 C, form snow)

Mechanisms for cloud drops to grow larger

Cold Clouds Cool Clouds

Page 7: Why does it rain on us???.  3 cloud properties, 9 ISCCP cloud types  Why do clouds constitute a wildcard for climate change? Competition between greenhouse

• Process begins with larger collector drops which have higher terminal velocities

• Collector drops collide with smaller drops and merge with them (coalesce). Coalescence efficiency is generally very high, indicating that most collisions result in the two drops joining.

• If collector drop is too big: compressed air beneath falling drop forces small drops aside

• If collector drop is too small (same size as other drops) it will fall at same speed and no collision will occur

• So, collection efficiency is greatest when the size of collector drop is slightly larger than the size of the other drops

• After the collector drops become large, the larger one among them can serve as a “super-collector” to collide with other collector drops

1. Collision Coalescence: Growth in Warm Clouds

Page 8: Why does it rain on us???.  3 cloud properties, 9 ISCCP cloud types  Why do clouds constitute a wildcard for climate change? Competition between greenhouse

• Determined by competition between surface tension and frictional drag. Frictional drag is larger at the bottom than at the top

• Small drop (<0.08in): frictional drag << surface tension Sphere shape

• Medium-size drop (0.08in<size<0.25in): frictional drag approaches surface tension Parachute shape

• Large drop (>0.25in): frictional drag at bottom > surface tension Split (The surface tension at the top allows the raindrop to remain more spherical while the bottom gets more flattened out.)

• Maximum drop size of about 0.25in or 5 mm

Raindrop shape and maximum size

Page 9: Why does it rain on us???.  3 cloud properties, 9 ISCCP cloud types  Why do clouds constitute a wildcard for climate change? Competition between greenhouse

Video: Video: The Science of SnowflakesThe Science of Snowflakes

• https://www.youtube.com/watch?v=fUot7XSX8uA

Page 10: Why does it rain on us???.  3 cloud properties, 9 ISCCP cloud types  Why do clouds constitute a wildcard for climate change? Competition between greenhouse

Formation of snow and hails

Page 11: Why does it rain on us???.  3 cloud properties, 9 ISCCP cloud types  Why do clouds constitute a wildcard for climate change? Competition between greenhouse

• Clouds are usually composed of: liquid water, super-cooled water, and/or ice (supercooled water exists down to T= -40C !!)• Supercooled water can exist at

T<0C because ice formation requires ice nuclei, which, unlike condensation nuclei, are rare unless the temp. is very cold

• Coexistence of ice and super-cooled water is critical to the creation of cool/cold cloud precipitation - the Bergeron Process

http://www.uwsp.edu

2. Bergeron Process: Growth in Cool/Cold Clouds

Page 12: Why does it rain on us???.  3 cloud properties, 9 ISCCP cloud types  Why do clouds constitute a wildcard for climate change? Competition between greenhouse

• Key: Saturation vapor pressure of ice < that of super-cooled water at the same temperature.

• When air is in saturation wrt super-cooled water, it’s over-saturated wrt ice - deposition of water vapor over ice.

• When air is in saturation wrt ice, it’s sub-saturated wrt super-cooled water - evaporation of super-cooled water into water vapor.

• In this way, ice crystals grow rapidly at the expense of super-cooled drops http://www.uwsp.edu

Bergeron Process (cont.)

Page 13: Why does it rain on us???.  3 cloud properties, 9 ISCCP cloud types  Why do clouds constitute a wildcard for climate change? Competition between greenhouse

• Bergeron Process usually not enough to produce large enough crystals for preciptation

• Further growth is due to collisions between falling crystals and drops riming and aggregation

• Riming (or Accretion) = liquid water freezing onto ice crystals

• Aggregation = the joining of ice crystals through the bonding of surface water builds ice crystals, producing snowflakes

• Collision combined with riming and aggregation allow formation of crystals large enough to precipitate within 1/2 hour of initial formation

Further growth: Riming and Aggregation

Page 14: Why does it rain on us???.  3 cloud properties, 9 ISCCP cloud types  Why do clouds constitute a wildcard for climate change? Competition between greenhouse

Shape of snowflakes depend on formation conditions (humidity and temperature)

Dendrite ice crystals

Plate ice crystal

Wilson Bentley, a Vermont farmer, took photographs of snowflakes under a microscope as a hobby. These photographs were published in the "Monthly Weather Review" in 1902.

Page 15: Why does it rain on us???.  3 cloud properties, 9 ISCCP cloud types  Why do clouds constitute a wildcard for climate change? Competition between greenhouse
Page 16: Why does it rain on us???.  3 cloud properties, 9 ISCCP cloud types  Why do clouds constitute a wildcard for climate change? Competition between greenhouse

Shapes/sizes depend on formation conditions (humidity and temperature)

Page 17: Why does it rain on us???.  3 cloud properties, 9 ISCCP cloud types  Why do clouds constitute a wildcard for climate change? Competition between greenhouse

• Induce precipitation injection of dry ice or silver iodide into clouds

• Convert super-cooled droplets to ice initiate Bergeron process

• Dry ice (frozen CO2) – lowers temperature to -40C, • no ice nuclei are required for water droplets to freeze

• Silver iodide – acts as ice nuclei at warmer temp (-5C)

• Effectiveness is debated

Cloud Seeding

Page 18: Why does it rain on us???.  3 cloud properties, 9 ISCCP cloud types  Why do clouds constitute a wildcard for climate change? Competition between greenhouse

SummarySummary• Forces acting on a cloud/rain droplet. Terminal velocity.

How does it change with cloud drop radius?• Growth mechanisms for rain and snow (Warm clouds,

cool clouds, cold clouds)• Formation of rain: coalescence process (the collector is

larger than the cloud droplets but not too large)• Bergeron process: happens with coexistence of ice and

super-cooled water. Key: Saturation vapor pressure of ice < that of super-cooled water at the same temperature.

• Further growth of ice crystals (riming and aggregation)

Page 19: Why does it rain on us???.  3 cloud properties, 9 ISCCP cloud types  Why do clouds constitute a wildcard for climate change? Competition between greenhouse

Works citedWorks cited

• http://www.edudemic.com/study-finds-most-people-think-cloud-computing-is-run-on-actual-clouds/

• http://hyperphysics.phy-astr.gsu.edu/hbase/electric/diph2o.html

• http://nyffetyff.deviantart.com/art/Raindrop-189805290 • http://www.its.caltech.edu/~atomic/snowcrystals/photos/

photos.htm • http://www.crh.noaa.gov/unr/?n=06-04-99_pg1 • http://www.clker.com/clipart-cartoon-sun.html • http://pmm.nasa.gov/node/145