what is engineering? what would the world be like without engineers? look at the following comics...

44
What is Engineering? What would the world be like without engineers? Look at the following comics and figure out what engineers do!

Upload: louisa-green

Post on 30-Dec-2015

255 views

Category:

Documents


1 download

TRANSCRIPT

What is Engineering?

What would the world be like without engineers?

Look at the following comics and figure out what engineers do!

The World Without Engineers

The World Without Engineers

The World Without Engineers

The World Without Engineers

The World Without Engineers

The World Without Engineers

The World Without Engineers

Engineers are Inventors!

Engineers use science and math to solve real world problems!

What are some of the types of engineers you have heard of?

Possibly:Chemical, electrical, mechanical, software, civil,

biomedical, and environmental. AND MANY MORE!

Look around you, virtually every manmade contraption you see was conceived of and created by an engineer!

SCIENCE vs. ENGINEERING SCIENCE

Analysis: ask questions, look for patterns, develop knowledge

Produce knowledge Characteristic activity:

research (learn about nature) Study of what is

ENGINEERING

Synthesis: integrate bits of knowledge to create something new

Produce processes and things (part of technology)

Characteristic activity: creative design

Study of what never was

ENGINEERING IS EVERYWHERE

Engineering gives shape to our world We all know cars, computers, airplanes, and

bridges are all products of imaginative engineering

But did you know bubble gum, baseball bats, movie special effects, roller coasters, and synthetic human tissue replacements are also engineering products?

ENGINEERING IS EVERYWHERE

Engineers design, create, or modify nearly everything we touch, wear, eat, see, and hear in our daily lives.

Their innovations and inventions fuel economic growth, fortify national security, improve healthcare, and safeguard the environment.

The First Engineer

Imhotep Designed the pyramid near Memphis, Egypt

around 2550 BC.

Imhotep He set a precedent by including temples,

pavilions, corridors, chapels and halls within the closed walls.

He was a commoner by birth. Which means he did not have a formal

education (that was only for the rich). At that time engineers learned the trade through

the apprenticeship system.

Imhotep

He became one of the king’s most trusted advisors.

His reputation lives on still today in many fictional stories such as:

The Mummy &

The Mummy Returns

•Scientists discover the world that exists; engineers create the world

that never was." - Theodore Von Karman aerospace engineering

What is needed to

Create a Product?Example Science Technology Engineering Math

Pencil Discovery of graphite and the fact that rubber (eraser) will remove graphite

Creating a writing device that doesn’t use ink

Designing a device with graphite insert, exterior holder, and attached eraser

What is the optimal length, diameter, or shape for the device?

Engineering

Engineering uses scientific, technological, and mathematical knowledge to solve practical problems.

Engineers Can Do Anything

Invent – Develop a new product, system, or process that has never existed before

Innovate – Improve an existing technological product, system, or method

Create

Build

Conceive

Design

Evaluate

AnalyzeOrchestrate

Invent

Improve

An electrical engineer may design a GPS for your vehicle.

A pharmaceutical/chemical engineer may find a cure for disease.

A computer engineer may build a computer the size of your watch.

A mechanical engineer may create a robot to discover water on a planet.

An agricultural engineer may evaluate the effects of global warming on food production.

Engineers Work to Solve Many Kinds of Problems

Engineers make our lives better

What are Some Types of Engineering?

Just as science is divided into separate fields such as biology, chemistry and physics, engineering is divided into a variety of disciplines. The five largest engineering disciplines are chemical, civil, electrical, industrial and mechanical. Engineers within all of these disciplines can work in product-oriented companies, government, or academia.

Aerospace Engineering Aerospace engineers design, analyze, model, simulate, and test aircraft, spacecraft, satellites, missiles, and rockets. Aerospace technology also extends to many other applications of objects moving within gases or liquids. Examples are golf balls, high-speed trains, hydrofoil ships, or tall buildings in the wind. Aerospace engineers are typically specialists in fields with fancy names such as aerodynamics, propulsion, navigation, flight testing, and more.

Biomedical Engineering This is an interdisciplinary field combining mechanical, electrical, and chemical engineering to study the human body. Biomedical Engineers study biology and medicine to develop technologies related to health care. They develop medical diagnostic machines, medical instruments, artificial organs, joint replacement parts, and prosthetic devices.

Chemical Engineering Chemical Engineers use their knowledge of physics, chemistry, and biology to discover and manufacture better plastics, paints, fuels, fibers, medicines, fertilizers, semiconductors, paper, and all other kinds of chemicals, by carrying out chemical reactions and purifications.

Civil Engineering The design and construction of buildings, dams, water treatment and carrying systems, air pollution controls, and transportation systems are the responsibilities of civil engineers.  Subheadings of civil engineering include:  geotechnical, environmental, structural, transportation, materials, and project management.

Computer Science and Engineering Computer scientists and engineers are involved in the development of both hardware and software for computers. They work on computer-related systems like CD-ROMs, modems and monitors, as well as cutting-edge projects including robotics and virtual reality systems.

Environmental Engineering Keeping the water, air and soil healthy are the responsibilities of environmental engineers. To accomplish this goal they deal with issues including waste management, pollution control and irrigation.

Electrical Engineering Electrical engineering deals with electricity, magnetism, and light and how it is used. Electrical engineers are found in a variety of companies including the computer, communications, and automotive industries.

Mechanical Engineering Engineers within this discipline tend to focus on one of three aspects of mechanical engineering; design, manufacturing, or energy/power. Cars, airplanes and toys are just a few of the areas in which mechanical engineers work. 

Petroleum Engineering Petroleum engineers study the earth to find oil and gas reservoirs. They design oil wells, storage tanks, and transportation systems. They supervise the construction and operation of oil and gas fields. Petroleum engineers are researching new technologies to allow more oil and gas to be extracted from each well. They help supply the world's need for energy and chemical raw materials.

Now let’s take a look at some real life engineers and what they’re working on right now!

Separating Oil from WaterSeparating Oil from Water

Di Gao, a chemical engineer at the University of Pittsburg, invented a plastic-coated cotton material that could clean up the Gulf.

Designing Better CarsDesigning Better Cars

Marcus Ashford, a mechanical engineer at the University of Alabama, has invented a car engine with 80% less exhaust emissions.

Cleaning Up the Ocean

Alexandria Boehm is an environmental engineer who works on ways to clean up oceans near where people live.

Designing Space Colonies

Kimberly Jones is a civil engineer working on purifying water so that we can one day go to Mars!!!

Controlling Computers with Thoughts

Daniel Moran, a biomedical engineer at Washington University, has invented a way to play video games using only the human mind!

Listening for Cancer

• John Viator, a biological engineer, has invented a way to hear cancer cells.

2015 Average Starting Salaries as reported by payscale.com and US Division of Labor

IndustryAverage Entry-Level Salary

Average Annual Salary

Top 10 Percent Salary

Biomedical Engineering $60,698 $91,760 $139,350

Civil Engineering $55,220 $87,130 $128,110

Computer Engineering•Computer Hardware Engineers Software Developers, Systems Software

$66,945

$67,779

$110,650

$106,050

$160,610

$154,800

Chemical Engineering $66,281 $103,590 $156,980

Electrical Engineering $64,138 $95,780 $143,200

Environmental Engineering $54,751 $86,340 $125,380

Geological and Mining Engineering and Sciences Data Not Provided $100,970 $159,010

Materials Science and Engineering $65,979 $91,150 $138,450

Mechanical Engineering $61,523 $87,140 $126,430

How long do engineers have to go to school?  

Engineers need a minimum of a college Bachelor's degree. That means they must finish high school and typically four years of college. A few engineering programs take five years. A college degree could take longer if you only attend college part time or perhaps attend during evenings.

How can I become an engineer?

First you will need a college degree. After that, many engineers seek a Professional Engineer (P.E.) license. It helps to begin preparations for all this at the middle school levels. Where possible, choose a well-rounded mix of classes with emphasis on math and science. Taken from discoverengineering.org

Why study engineering?

Job satisfaction The No. 1 cause of unhappiness is job

dissatisfaction. Important to find a career you enjoy.

Variety of career opportunitiesNeil Armstrong, Jimmy Carter, and Alfred

Hitchcock all started with an engineering education.

Why study engineering?

Challenging workProblems will be open-endedNo single answerNo answer in the back of the bookNo teacher to tell you that you are right or wrongYou find a solution and persuade others that yours

is the best one

Why study engineering?

Intellectual developmentAn engineering education will develop your ability to

think logically and to solve problems

Benefit societyYou can choose projects that benefit societyCleaning the environmentDeveloping prosthetic aids for disabled personsFinding new sources of energy

Why study engineering?

Financial securityThis should not be your only reason for choosing

a career in engineering However, you will be well paid Engineering graduates receive the highest

starting salary of any discipline

Why study engineering?

PrestigeEngineers greatly help

○ sustain our nation's international competitiveness○ maintain our standard of living○ ensure a strong national security ○ protect public safety

People know that engineering requires hard work and strong technical skills. As a member of this profession, you will receive a high amount of prestige.

Why study engineering?

Professional environmentYou will work in a professional environment in

which you will be treated with respect and have some freedom in choosing your work.

Creative thinkingWe are in a time of rapid social and technological

changes, therefore, the need for engineers to think creatively is greater than ever before.

Why study engineering?

Technological and scientific discoveryDo you know why golf balls have dimples? When you drive on a mountain road, do you look at the

guard rails and understand why they were designed the way they are?

Do you know why split-level houses experience more damage in earthquakes?

An engineering education can help you understand how many things in the world work.

The Engineering Design Process Loop

43

Identify theProblem

Research theProblem

Find PossibleSolutionsSelect

One Solution

Construct anInitial Design

Test and ModifyDesign

Present YourDesign

Redesign

You will be an Engineer! Throughout this year, you will answer:

1. What is a problem that we have?2. What can you find out about the problem?3. What ideas are there already out there that could help us

solve the problem?4. How can you use those ideas to determine a solution?5. What would your design look like?6. Build and test it. Does your design work?7. Show others!8. Make it better!