what are the health effects from exposure to carbon monoxide?

30
CO Lesson 2 1 CARBON MONOXIDE: LESSON TWO What are the Health Effects from Exposure to Carbon Monoxide? LESSON SUMMARY Carbon monoxide (CO) is an odorless, tasteless, colorless and nonirritating gas that is impossible to detect by an exposed person. CO is produced by the incomplete combustion of carbonbased fuels, including gas, wood, oil and coal. Exposure to CO is the leading cause of fatal poisonings in the United States and many other countries. When inhaled, CO is readily absorbed from the lungs into the bloodstream, where it binds tightly to hemoglobin in the place of oxygen. CORE UNDERSTANDING/OBJECTIVES By the end of this lesson, students will have a basic understanding of the physiological mechanisms underlying CO toxicity. For specific learning and standards addressed, please see pages 30 and 31. MATERIALS INCORPORATION OF TECHNOLOGY Computer and/or projector with video capabilities INDIAN EDUCATION FOR ALL Fires utilizing carbonbased fuels, such as wood, produce carbon monoxide as a dangerous byproduct when the combustion is incomplete. Fire was important for the survival of early Native American tribes. The traditional teepees were well designed with sophisticated airflow patterns, enabling fires to be contained within the shelter while minimizing carbon monoxide exposure. However, fire was used for purposes other than just heat and cooking. According to the historian Henry Lewis, Native Americans used fire to aid in hunting, crop management, insect collection, warfare and many other activities. Today, fire is used to heat rocks used in sweat lodges. Use of fire in these enclosed spaces can pose a risk of CO poisoning. 1 ENGAGE Grade Level: 9 – 12 Subject(s) Addressed: Science, Biology Class Time: 1 Period Inquiry Category: Guided Project an image of the human circulatory system (An example image is shown in the page 2 sidebar). Distribute 3 x 5 index cards or have students take out a half sheet of paper. Have students number 1 through 6 on one side of the card or paper. Ask students the following questions and instruct them to record their answers: 1) What color is oxygenated blood? 2) What makes oxygenated blood this color? 3) What color is deoxygenated blood? 4) What makes deoxygenated blood this color? 5) What is the color of blood in arteries? 6) What is the color of blood in veins? When students are finished recording their answers, the teacher may collect the cards/paper and tally the responses on the board. Discuss responses to gauge student ideas and misconceptions but do not give value to their answers at this point. Let students know that you will revisit these questions at the end of the lesson.

Upload: others

Post on 22-Dec-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

CO  Lesson  2  

 1  

 

CARBON MONOXIDE: LESSON TWO    

What are the Health Effects from Exposure to Carbon Monoxide?

LESSON  SUMMARY  

Carbon  monoxide  (CO)  is  an  odorless,  tasteless,  colorless  and  nonirritating  gas  that  is  impossible  to  detect  by  an  exposed  person.    CO  is  produced  by  the  incomplete  combustion  of  carbon-­‐based  fuels,  including  gas,  wood,  oil  and  coal.    Exposure  to  CO  is  the  leading  cause  of  fatal  poisonings  in  the  United  States  and  many  other  countries.    When  inhaled,  CO  is  readily  absorbed  from  the  lungs  into  the  bloodstream,  where  it  binds  tightly  to  hemoglobin  in  the  place  of  oxygen.  

CORE  UNDERSTANDING/OBJECTIVES  

By  the  end  of  this  lesson,  students  will  have  a  basic  understanding  of  the  physiological  mechanisms  underlying  CO  toxicity.    For  specific  learning  and  standards  addressed,  please  see  pages  30  and  31.  

MATERIALS  INCORPORATION  OF  TECHNOLOGY  

Computer  and/or  projector  with  video  capabilities  

INDIAN  EDUCATION  FOR  ALL  

Fires  utilizing  carbon-­‐based  fuels,  such  as  wood,  produce  carbon  monoxide  as  a  dangerous  byproduct  when  the  combustion  is  incomplete.    Fire  was  important  for  the  survival  of  early  Native  American  tribes.      The  traditional  teepees  were  well  designed  with  sophisticated  airflow  patterns,  enabling  fires  to  be  contained  within  the  shelter  while  minimizing  carbon  monoxide  exposure.  However,  fire  was  used  for  purposes  other  than  just  heat  and  cooking.    According  to  the  historian  Henry  Lewis,  Native  Americans  used  fire  to  aid  in  hunting,  crop  management,  insect  collection,  warfare  and  many  other  activities.    Today,  fire  is  used  to  heat  rocks  used  in  sweat  lodges.    Use  of  fire  in  these  enclosed  spaces  can  pose  a  risk  of  CO  poisoning.1    

ENGAGE  

                   

Grade  Level:  9  –  12    

Subject(s)  Addressed:  Science,  Biology      Class  Time:  1  Period  

Inquiry  Category:  Guided  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Project  an  image  of  the  human  circulatory  system  (An  example  image  is  shown  in  the  page  2  sidebar).  Distribute  3  x  5  index  cards  or  have  students  take  out  a  half  sheet  of  paper.  Have  students  number  1  through  6  on  one  side  of  the  card  or  paper.  Ask  students  the  following  questions  and  instruct  them  to  record  their  answers:  1)  What  color  is  oxygenated  blood?  2)  What  makes  oxygenated  blood  this  color?  3)  What  color  is  deoxygenated  blood?  4)  What  makes  deoxygenated  blood  this  color?  5)  What  is  the  color  of  blood  in  arteries?  6)  What  is  the  color  of  blood  in  veins?  When  students  are  finished  recording  their  answers,  the  teacher  may  collect  the  cards/paper  and  tally  the  responses  on  the  board.  Discuss  responses  to  gauge  student  ideas  and  misconceptions  but  do  not  give  value  to  their  answers  at  this  point.    Let  students  know  that  you  will  revisit  these  questions  at  the  end  of  the  lesson.  

 

CO  Lesson  2  

2    

VOCABULARY  

Copies  of  blank  student  vocabulary  banks  (see  page  5)  can  be  distributed  for  completion  as  either  a  classroom  or  homework  assignment.  

EXPLORE  

Carbon  monoxide  exposure  is  one  of  the  leading  causes  of  accidental  death  due  to  poisoning  in  the  U.S.    The  toxic  effects  of  carbon  monoxide  are  primarily  caused  by  the  formation  of  carboxyhemoglobin  within  the  red  blood  cells.    When  CO  and  hemoglobin  bind  to  form  carboxyhemoglobin,  the  oxygen-­‐carrying  capacity  of  the  blood  is  reduced  resulting  in  hypoxia  of  the  tissues.    In  the  presence  of  carbon  monoxide,  the  affinity  of  hemoglobin  for  oxygen  is  reduced—compounding  the  effects  of  carboxyhemoglobin  formation.      Additionally,  carbon  monoxide  exposure  causes  immunological  and  inflammatory  changes  increasing  the  adverse  effects  observed  in  the  victim.      

Have  students  watch  the  short  video  (http://bit.ly/1Z7Zv2J)  showing  the  effects  carbon  dioxide,  oxygen,  and  carbon  monoxide  have  on  the  blood.  The  teacher  can  distribute  “Lab  1:  What  Are  the  Effects  of  Different  Gases  on  the  Color  of  Blood?”    (see  pages  7-­‐10)  for  students  to  complete  during  the  video.    

*Note:  There  will  be  prompts  throughout  the  video  for  the  teacher  to  pause  the  video,  allowing  time  for  students  to  record  their  observations  and  answers.    

EXPLAIN  

Subsequent  to  watching  the  video,  have  students  break  into  small  groups  and  discuss  possible  explanations  for  their  observations  during  the  video.    Then  come  back  together  for  a  whole  group  discussion  on  possible  explanations  from  each  group  accounting  for  the  differences  in  the  color  changes  of  the  blood.    

ELABORATE  

After  completing  the  other  activities,  revisit  the  six  engage  questions  from  the  beginning  of  the  lesson  and  discuss  the  differences  between  oxygenated  and  deoxygenated  blood  and  how  the  normal  respiratory  cycle  of  the  body  is  disrupted  by  exposure  to  carbon  monoxide.        

1)  What  color  is  oxygenated  blood?  Oxygenated  blood  is  bright  red.  

2)  What  makes  oxygenated  blood  this  color?  Red  blood  cells  contain  an  iron-­‐containing  protein  (metalloprotein)  called  hemoglobin  that  is  primarily  responsible  for  the  color  of  blood.  Each  hemoglobin  molecules  has  four  heme  groups  and  the  interaction  of  these  groups  with  compounds,  such  as  oxygen,  determine  the  color  of  the  blood.  When  the  heme  groups  combine  with  oxygen  (i.e.,  blood  is  oxygenated),  a  bright  red  color  is  exhibited.  

3)  What  color  is  deoxygenated  blood?  Deoxygenated  blood  is  dark  red.  

 

"Blutkreislauf".  Licensed  under  Creative  Commons  Attribution-­‐Share  Alike  2.5  via  Wikimedia  Commons  -­‐  http://commons.wikimedia.org/wiki/File:Blutkreislauf.png#mediaviewer/File:Blutkreislauf.png  

 

 

 

 

 

 

 

 

 

 

 

CO  Lesson  2  

 3  

 

4)  What  makes  deoxygenated  blood  this  color?  The  teacher  may  guide  students  to  think  about  where  a  phlebotomist  draws  blood  from  (i.e.,  veins)  and  have  them  explain  the  color  of  the  blood  when  it  is  drawn.    Similar  to  oxygen,  carbon  dioxide  is  responsible  for  the  dark  red  color  exhibited  by  the  heme  groups  contained  in  the  hemoglobin  molecules.  Carbaminohemoglobin  has  a  blue  hue  to  it,  resulting  in  a  darker  red  color  of  venous  blood  compared  to  arterial  blood.      

5)  What  is  the  color  of  blood  in  arteries?  Arterial  blood,  or  oxygenated  blood,  is  bright  red  in  color  (see  #3  above).    6)  What  is  the  color  of  blood  in  veins?  Venous  blood,  or  deoxygenated  blood  is  dark  red  in  color.  Veins  close  to  the  surface  of  the  skin  appear  blue  because  of  the  light  scattering  properties  of  the  skin,  not  the  color  of  venous  blood.    End  the  discussion  by  addressing  the  differences  in  the  binding  of  carbon  monoxide  versus  oxygen  to  hemoglobin  and  why  this  is  an  important  human  health  subject.    Note  that  while  hemoglobin  easily  exchanges  oxygen  for  carbon  dioxide—as  observed  by  the  changes  in  the  color  of  blood—carbon  monoxide  binds  much  tighter  and  prevents  the  hemoglobin  molecule  from  subsequently  binding  to  oxygen.    Additionally,  the  follow  discussion  topics  may  be  used  to  deepen  learning:    • What  are  the  similarities  and/or  differences  between  carbon  monoxide  

exposure  and  sickle-­‐cell  anemia?  • What  are  the  pros/cons  of  the  meat  packing  industry’s  current  use  of  carbon  

monoxide  to  preserve  the  bright  red  color  of  meat?  • Are  some  individuals  more  or  less  susceptible  to  the  effects  of  carbon  

monoxide  poisoning    (i.e.  smokers  versus  nonsmokers,  elderly,  children,  etc.)?  

• Why  do  you  think  it  is  important  for  health  professionals  to  understand  chemistry?  

• Why  do  sketches  of  the  circulatory  system  often  depict  blood  as  either  red  or  blue?  

• How  might  an  individual  be  exposed  to  carbon  monoxide  around  their  home  and  how  can  these  exposures  be  prevented?  

EVALUATE  

Use  the  discussions  as  an  opportunity  for  informal  assessment.    The  lab  worksheet  provides  opportunity  for  formal  assessment.    For  additional  formal  assessment,  distribute  “Comprehension  1:  What  are  the  Health  Effects  of  Carbon  Monoxide?”  and  the  accompanying  guiding  questions  (pages  15-­‐21).    Have  students  complete  this  as  homework.    

   

 

 

For  further  explanation  of  O2/CO2  transport  in  the  blood,  show  students  the  following  video  (“Hemoglobin  moves  O2  and  CO2”)  from  Khan  Academy:  http://bit.ly/1nJxmha  

 

 

 

 

 

 

 

 

 

 

 

Notes:                                          

CO  Lesson  2  

4    

Carbon  Monoxide  Health  Effects  –  Vocabulary      

Ligand:                                                              Cooperative  Binding:                                                                

 

Hemoglobin:                                                                                  Oxygen:                                                            

 

Carbon  Dioxide:                                                          Oxyhemoglobin:                                                        

 

Carboxyhemoglobin:                                                            

 

Pulmonary  Respiration:                                                      

Hypoxia:                                                              

Chemical  Affinity:                                                          

Sickle-­‐cell  Anemia:                                                            

Mendelian  Genetics:                                                        

CO  Lesson  2  

 5  

 

Carbon  Monoxide  Health  Effects  –  Vocabulary      

Ligand:    A  ligand  is  an  ion  or  molecule  that  binds  to  a  central  metal  atom  to  form  a  coordination  complex.    In  biology,  ligands  include  substrates,  inhibitors,  activators,  and  neurotransmitters.      Cooperative  Binding:    (biochemistry)  A  type  of  chemical  binding  in  which  a  macromolecule’s  affinity  for  its  ligand  changes  with  the  amount  of  ligand  already  bound.                  

 

Hemoglobin:    An  iron  containing  protein  in  red  blood  cells  that  transports  oxygen.        Oxygen:  A  colorless,  odorless,  combustible  gas  that  is  the  life-­‐supporting  component  of  air.      

 

Carbon  Dioxide:  A  naturally  occurring  chemical  compound  composed  of  two  oxygen  atoms  each  covalently  double  bonded  to  a  single  carbon  atom.    It  is  a  colorless,  odorless,  incombustible  gas  that  is  present  in  the  atmosphere  and  formed  during  respiration.                    Oxyhemoglobin:  A  compound  formed  when  oxygen  binds  with  the  heme  groups  of  a      hemoglobin  molecule.                            

 

Carboxyhemoglobin:  A  stable  complex  that  forms  from  carbon  monoxide  and  the  hemoglobin  in  red  blood  cells  when  carbon  monoxide  is  inhaled  or  produced  in  normal  metabolism.    Formation  of  large  quantities  can  hinder  delivery  of  oxygen  to  the  body.                

 

Pulmonary  Respiration:  The  transport  of  oxygen  from  the  outside  air  to  the  cells  within    tissues  and  the  transport  of  carbon  dioxide  in  the  opposite  direction.              

Hypoxia:    A  condition  in  which  the  oxygen  supply  to  a  tissue  falls  below  physiologically  necessary  levels  despite  adequate  perfusion  of  the  tissue  by  blood.                  

Chemical  Affinity:    An  attractive  force  between  two  substances  that  causes  them  to  chemically  combine.                              

Sickle-­‐cell  Anemia:    A  genetic  disorder  in  which  the  body  makes  abnormal  hemoglobin  causing  the  red  blood  cells  to  form  a  sickle-­‐shape  rather  than  the  normal  disk-­‐like  shape.            

Mendelian  Genetics:    The  basic  laws  of  inheritance  as  described  by  Gregor  Mendel,  a      nineteenth-­‐century  Austrian  monk  who  conducted  hybridization  experiments  using  garden  peas.    

CO  Lesson  2  

6    

LAB  1:  WHAT  ARE  THE  EFFECTS  OF  DIFFERENT  GASES  ON  THE  COLOR  OF  BLOOD?  

Question:      What  is  the  importance  of  an  experimental  control?  

       

Make  some  observations:      Describe  any  differences  between  the  control  sample  and  the  sample  treated  with  O2  (tube  #1).            

 Describe  any  differences  between  the  control  sample  and  the  sample  treated  with  CO2  (tube  #2).        

 Describe  any  differences  between  the  sample  treated  with  O2  (tube  #1)  and  the  sample  treated  with  CO2  (tube  #2).    

   

Question:      Why  do  you  think  the  blood  treated  with  O2  looks  different  from  the  blood  treated  with  CO2?  

         

Make  some  predictions  (CO2  +  O2):    Do  you  think  there  will  be  a  difference  in  the  color  of  the  blood  first  treated  with  CO2  and  then  with  O2  when  compared  to  the  control  blood  or  the  samples  treated  with  CO2  or  O2  alone?    Why  or  why  not?    Here  are  all  the  options:  Blood  +  CO2  +  O2:                            Blood  +  CO2  only:                            Blood  +  O2  only:                          

     

CO  Lesson  2  

 7  

 

Make  an  Observation:      Describe  any  differences  between  the  samples  treated  with  CO2  and  O2  alone  compared  to  the  sample  treated  first  with  CO2  followed  by  O2.    Did  your  predictions  match  these  results?  Can  you  explain  what  is  happening  to  cause  the  change  to  the  color  of  the  blood?    

   

Make  a  prediction  about  CO  Exposure:    We’re  going  to  compare  the  blood  we  previously  examined  to  blood  treated  with  CO.    Do  you  expect  any  differences?  Why  or  why  not?  Here  are  all  the  options:  Blood  +  CO2  only:                            Blood  +  O2  only:                            Blood  +  CO  only:                            

   

Make  an  observation:  Describe  any  differences  between  the  previous  samples  and  the  blood  treated  with  CO.          

Question:      Did  your  predictions  match  the  actual  results?    Can  you  explain  what  is  happening  to  cause  the  change  in  the  color  of  the  blood?  

   

Make  another  prediction  about  CO  exposure:      We’re  going  to  compare  CO  treated  blood  with  blood  that  has  also  been  treated  with  CO2  or  O2.  Based  on  what  you  have  already  observed,  do  you  think  you  will  see  any  differences  in  the  blood  that  has  been  first  treated  with  CO  compared  to  blood  treated  with  CO  and  then  with  CO2?    What  about  blood  first  treated  with  CO  and  then  O2?  Why  or  why  not?    Here  are  all  the  options:  Blood  +  CO  +  CO2:    Blood  +  CO  +  O2:    

     

 

CO  Lesson  2  

8    

Make  an  observation:  Describe  the  differences  observed  between  samples  treated  with  CO,  CO  +  CO2,  and  CO  +  O2.        

Questions:      Did  your  prediction  match  the  actual  results?      Can  you  explain  what  is  happening  to  cause  the  change  in  the  color  of  blood?    

       

Can  you  predict  what  the  possible  consequences  might  be  to  your  cells’  energy-­‐producing  abilities  if  you  are  exposed  to  carbon  monoxide?    

   

Make  some  observations:  Describe  the  overall  differences  in  color  between  all  of  the  blood  samples.    Here  are  the  options:  Control:                              Control  +  O2  only:                            Control  +  CO2  only:                            Control  +  CO2  +  O2:                            Control  +  O2  +  CO2:                            Control  +  CO  only:                            Control  +  CO  +  CO2:                          Control  +  CO  +  O2:                            

     

CO  Lesson  2  

 9  

 

Question:      Why  does  the  color  change  when  the  blood  has  been  exposed  to  both  CO2  and  O2,  but  remains  the  same  after  exposure  to  CO?  Can  you  explain  what  is  happening?  

 

       

Question:    

Based  on  the  observations  made  in  this  video,  can  you  draw  any  conclusions  about  the  binding  strength  between  hemoglobin  and  O2  compared  to  hemoglobin  and  CO?  Explain.  

         

Bonus  Questions:    Can  you  explain  why  a  person  suffering  from  carbon  monoxide  exposure  often  has  cherry-­‐colored  skin?            What  do  you  think  exposure  to  carbon  monoxide  does  to  your  ability  to  generate  energy  from  the  food  you  eat?          This  experiment  is  missing  an  example  of  blood  that  has  been  treated  with  CO2,  followed  by  CO.  Can  you  predict  the  color  of  blood  that  has  been  treated  in  that  way?    

         

CO  Lesson  2  

10    

LAB  1:  WHAT  ARE  THE  EFFECTS  OF  DIFFERENT  GASES  ON  THE  COLOR  OF  BLOOD?    TEACHER  KEY  

Question:      What  is  the  importance  of  an  experimental  control?  

 The  control  provides  a  standard  for  comparison  for  the  experimental  results.  In  the  case  of  this  experiment,  how  would  we  be  able  to  recognize  changes  in  blood  color  if  we  did  not  know  what  standard  blood  looks  like?  

 

Make  some  observations:      Describe  any  differences  between  the  control  sample  and  the  sample  treated  with  O2  (tube  #1).           The  sample  treated  with  O2  is  brighter  red  than  the  control  sample.  

 Describe  any  differences  between  the  control  sample  and  the  sample  treated  with  CO2  (tube  #2).       The  sample  treated  with  CO2  is  darker  red  than  the  control  sample.  

 Describe  any  differences  between  the  sample  treated  with  O2  (tube  #1)  and  the  sample  treated  with  CO2  (tube  #2).    

The  sample  treated  with  O2  is  bright  red  while  the  sample  treated  with  CO2  is  dark  red.    

Question:      Why  do  you  think  the  blood  treated  with  O2  looks  different  from  the  blood  treated  with  CO2?  

 Student  answers  will  vary  but  they  should  be  able  to  explain  that  the  light  absorbing/reflecting  properties  of  the  blood  must  change  somehow  when  blood  is  saturated  with  oxygen  versus  carbon  dioxide.    

 

Make  some  predictions  (CO2  +  O2):    Do  you  think  there  will  be  a  difference  in  the  color  of  the  blood  first  treated  with  CO2  and  then  with  O2  when  compared  to  the  control  blood  or  the  samples  treated  with  CO2  or  O2  alone?    Why  or  why  not?    Here  are  all  the  options:  Blood  +  CO2  +  O2:                            Blood  +  CO2  only:                            Blood  +  O2  only:                          

 

CO  Lesson  2  

 11  

 

Student  answers  will  vary  as  they  are  not  yet  familiar  with  hemoglobin’s  bonding  affinity  for  different  gases.  They  may  predict  that  the  color  of  hemoglobin  treated  with  CO2  then  O2  will  be  some  intermediate  form  of  dark  and  bright  red  rather  than  the  actual  bright  red  that  will  result.  

 

Make  an  Observation:      Describe  any  differences  between  the  samples  treated  with  CO2  and  O2  alone  compared  to  the  sample  treated  first  with  CO2  followed  by  O2.    Did  your  predictions  match  these  results?  Can  you  explain  what  is  happening  to  cause  the  change  to  the  color  of  the  blood?    

The  blood  sample  treated  with  CO2  then  O2  was  bright  red  like  the  sample  that  was  treated  only  with  O2.    

Make  a  prediction  about  CO  Exposure:    We’re  going  to  compare  the  blood  we  previously  examined  to  blood  treated  with  CO.    Do  you  expect  any  differences?  Why  or  why  not?  Here  are  all  the  options:  Blood  +  CO2  only:                            Blood  +  O2  only:                            Blood  +  CO  only:                            

Students  will  likely  predict  that,  since  CO  is  a  chemically  distinct  compound,  it  will  produce  a  different  blood  color  than  the  samples  treated  with  CO2,  O2,  or  CO2  then  O2.  

 

Make  an  observation:  Describe  any  differences  between  the  previous  samples  and  the  blood  treated  with  CO.       The  blood  sample  treated  with  CO  was  bright  red  color  very  similar  to  the  sample  treated  with  O2.    

Question:      Did  your  predictions  match  the  actual  results?    Can  you  explain  what  is  happening  to  cause  the  change  in  the  color  of  the  blood?  

   

Make  another  prediction  about  CO  exposure:      We’re  going  to  compare  CO  treated  blood  with  blood  that  has  also  been  treated  with  CO2  or  O2.  Based  on  what  you  have  already  observed,  do  you  think  you  will  see  any  differences  in  the  blood  that  has  been  first  treated  with  CO  compared  to  blood  treated  with  CO  and  then  with  CO2?    What  about  blood  first  treated  with  CO  and  then  O2?  Why  or  why  not?    Here  are  all  the  options:  Blood  +  CO  +  CO2:    

CO  Lesson  2  

12    

Blood  +  CO  +  O2:    

Student  answers  will  vary.  They  may  predict  that,  since  the  CO  treated  blood  had  a  similar  color  to  the  O2  treated  blood,  the  outcome  will  be  similar  to  the  result  of  blood  treated  with  CO2  then  O2.  They  may  also  predict  that  gas  used  in  the  second  treatment  (because  O2  was  used  second  in  the  CO2  then  O2  trial  and  the  resulting  blood  color  was  the  bright  red  associated  with  O2)  in  this  case  CO2,  will  dictate  the  blood  color  causing  the  sample  to  be  dark  red.  

 

 

Make  an  observation:  Describe  the  differences  observed  between  samples  treated  with  CO,  CO  +  CO2,  and  CO  +  O2.    

There  are  no  obvious  differences  between  the  samples.    

Questions:      Did  your  prediction  match  the  actual  results?      Can  you  explain  what  is  happening  to  cause  the  change  in  the  color  of  blood?    

The  actual  blood  color  of  the  sample  treated  with  CO  then  CO2  was  bright  red  similar  to  the  color  of  the  sample  treated  with  only  CO.  This  indicates  that  the  hemoglobin  has  a  higher  chemical  affinity  for  CO  than  CO2.  The  resulting  carboxyhemoglobin  complex  is  likely  more  stable  than  the  hemoglobin  complex  formed  with  CO2.    

Can  you  predict  what  the  possible  consequences  might  be  to  your  cells’  energy-­‐producing  abilities  if  you  are  exposed  to  carbon  monoxide?    

The  cells  will  experience  oxygen  depletion,  which  will  inhibit  their  ability  to  convert  food  energy  into  cellular  energy  via  cellular  respiration.  Therefore,  the  energy-­‐producing  ability  of  the  cells  will  decrease.  

Make  some  observations:  Describe  the  overall  differences  in  color  between  all  of  the  blood  samples.    Here  are  the  options:  Control:                              Control  +  O2  only:                            Control  +  CO2  only:                            Control  +  CO2  +  O2:                            Control  +  O2  +  CO2:                          

CO  Lesson  2  

 13  

 

 Control  +  CO  only:                            Control  +  CO  +  CO2:                          Control  +  CO  +  O2:                            

Question:      Why  does  the  color  change  when  the  blood  has  been  exposed  to  both  CO2  and  O2,  but  remains  the  same  after  exposure  to  CO?  Can  you  explain  what  is  happening?  

 

The  color  change  must  be  dependent  on  the  gas  that  has  the  higher  chemical  affinity  for  bonding  to  hemoglobin.  Therefore,  hemoglobin  must  have  a  higher  chemical  affinity  for  bonding  with  O2  and  CO  than  bonding  with  CO2.    

 

Question:    

Based  on  the  observations  made  in  this  video,  can  you  draw  any  conclusions  about  the  binding  strength  between  hemoglobin  and  O2  compared  to  hemoglobin  and  CO?  Explain.  

Because  blood  treated  with  O2  or  CO  results  in  a  similar  bright  red  color,  it  is  difficult  to  form  any  conclusions  about  the  chemical  affinity  hemoglobin  has  for  O2  versus  hemoglobin’s  chemical  affinity  for  CO.  

 

Bonus  Questions:    Can  you  explain  why  a  person  suffering  from  carbon  monoxide  exposure  often  has  cherry-­‐colored  skin?    

Normally,  there  is  equilibrium  between  the  darker  colored  blood  that  is  saturated  with  CO2  and  the  bright  red  colored  blood  that  is  saturated  with  O2.    However,  because  CO  saturated  blood  is  also  bright  red  and  it  also  lowers  the  amount  of  CO2  saturated  blood  in  the  system,  overall  the  system  is  brighter  in  color.    This  change  is  reflected  in  the  cherry  red  color  observed  in  the  skin  of  victims.  

 What  do  you  think  exposure  to  carbon  monoxide  does  to  your  ability  to  generate  energy  from  the  food  you  eat?    

It  would  be  significantly  reduced  because  the  lack  of  oxygen  would  prevent  cellular  respiration  from  efficiently  converting  glucose  into  ATP.  

 This  experiment  is  missing  an  example  of  blood  that  has  been  treated  with  CO2,  followed  by  CO.  Can  you  predict  the  color  of  blood  that  has  been  treated  in  that  way?    

It  would  most  likely  be  a  bright  cherry  red  color.  

CO  Lesson  2  

14    

COMPREHENSION 1

What are the Health Effects from Exposure to Carbon Monoxide?  

WHAT  IS  CARBON  MONOXIDE?    

Carbon  monoxide  is  a  colorless,  odorless,  tasteless,  highly  poisonous  gas  that  is  slightly  less  dense  than  air  and  is  formed  from  the  incomplete  combustion  of  carbon  or  a  carbon-­‐containing  material  such  as  gasoline.    In  addition,  carbon  monoxide  is  produced  in  low  levels  through  the  metabolic  processes  of  animals.    In  the  atmosphere,  carbon  monoxide  is  short-­‐lived  and  plays  a  role  in  the  formation  of  ozone.    Chemically,  carbon  monoxide  consists  of  one  carbon  and  one  oxygen  atom  that  are  connected  by  a  triple  bond.      

WHAT  IS  HEMOGLOBIN?  

Hemogloblin  is  the  red  protein  found  in  the  blood  of  animals  that  is  responsible  for  the  delivery  of  oxygen  from  the  lungs  to  the  rest  of  the  body  and  for  returning  carbon  dioxide  to  the  lungs  to  be  exhaled.    In  adults,  hemoglobin  is  formed  by  the  connection  of  four  globulin  chains.    In  the  center  of  each  globulin  molecule  is  a  heme  complex,  which  contains  iron.    It  is  the  iron  found  in  the  heme  complex  that  enables  the  transport  of  oxygen  and  carbon  dioxide  through  the  blood.    Iron  is  also  the  component  of  hemoglobin  that  results  in  the  red  color  of  blood.    The  presence  of  hemoglobin  in  the  blood  increases  its  oxygen-­‐carrying  capacity  seventy-­‐fold  more  than  if  oxygen  was  simply  dissolved  in  the  blood.  This  is  because  each  molecule  of  hemoglobin  is  able  to  carry  4  molecules  of  oxygen.      

 

 

 

 

 

 

 

 

 

 

           

 

 

 

 

 

 

 

 

 

 

 

 

 

CO  Lesson  2  

 15  

 

 WHAT  IS  CARBOXYHEMOGLOBIN?  

Carboxyhemoglobin  is  a  stable  compound  that  is  formed  through  interaction  of  carbon  monoxide  and  hemoglobin.    Formation  of  carboxyhemoglobin  can  occur  following  the  production  of  carbon  monoxide  from  normal  metabolic  processes  or  from  exposure  through  external  sources.      Carboxyhemoglobin  formation  results  in  an  inability  of  the  hemoglobin  to  carry  oxygen  from  the  lungs  to  the  rest  of  the  body.    

WHAT  IS  THE  RELATIONSHIP  BETWEEN  CARBON  MONOXIDE  EXPOSURE  AND  HYPOXIA?  

Exposure  to  carbon  monoxide  prevents  delivery  of  oxygen  from  the  lungs  to  the  body  tissues  via  two  mechanisms.  First,  formation  of  carboxyhemoglobin  prevents  oxygen  from  binding  to  the  hemoglobin,  reducing  the  oxygen  carrying  capacity  of  the  blood.  This  is  due  to  the  high  affinity  of  hemoglobin  for  carbon  monoxide,  which  is  much  higher  than  for  oxygen  (by  a  factor  of  approximately  240:1).  Furthermore,  the  presence  of  carboxyhemoglobin  in  the  blood  shifts  the  oxygen-­‐hemoglobin  dissociation  curve  to  the  left.    A  shift  in  the  dissociation  curve  means  that  the  remaining  oxygen-­‐carrying  hemoglobin  cannot  “deliver”  the  oxygen  to  the  body  tissues  as  easily  as  before  carbon  monoxide  exposure.    So,  the  blood  cannot  carry  as  much  oxygen  and  it  is  more  difficult  to  deliver  the  oxygen  that  it  does  carry.  As  a  result,  the  tissues  are  starved  for  oxygen  and  become  hypoxic.  

WHAT  IS  THE  OXYGEN-­‐HEMOGLOBIN  DISSOCIATION  CURVE?  

The  oxygen-­‐hemoglobin  dissociation  curve  is  simply  a  graph  depicting  the  percent  saturation  of  hemoglobin  at  differing  partial  pressures  of  oxygen.    At  high  partial  pressures  of  oxygen,  such  as  that  found  in  the  lungs,  hemoglobin  binds  to  oxygen  to  form  oxyhemoglobin.    As  the  blood  travels  to  the  many  tissues  of  the  body  the  oxygen  

dissociates—leaving  hemoglobin  free  to  return  to  the  lungs.  The  oxygen-­‐hemoglobin  

                               

 

 

 

 

 

 

 

 

 

 

 

 

 

0  10  20  30  40  50  60  70  80  90  100  

0   10  

20  

30  

40  

50  

60  

70  

80  

90  

100  Oxyhemoglobin  (%

 Saturation)  

PO2  (mmHg)  

Hypothetical  Oxygen-­‐Hemoglobin  Dissocation  Curve  

Exercise  

Normal  Conditions  

Carbon  Monoxide  

CO  Lesson  2  

16    

dissociation  curve  is  a  sigmoidal  shape  due  to  the  cooperative  binding  properties  of  oxygen  to  the  four  polypeptides  of  hemoglobin.  This  means  that  hemoglobin’s  affinity  for  oxygen  increases  after  it  has  bound  its  first  oxygen  molecule.    Therefore,  hemoglobin  is  most  attracted  to  oxygen  when  three  of  its  four  polypeptide  chains  have  already  bound  to  oxygen.  Also,  there  are  various  factors  that  can  cause  the  curve  to  shift  to  the  left  or  right.    For  example,  carbon  monoxide  causes  the  curve  to  shift  to  the  left  (see  figure  above).  This  leftward  shift  indicates  that  the  hemoglobin  has  an  increased  affinity  for  oxygen,  however  the  oxygen  is  bound  more  tightly  and  cannot  dissociate  as  easily  to  be  deposited  in  the  tissues.    In  contrast,  a  shift  to  the  right  increases  the  oxygen  delivered  to  the  tissues  when  it  is  most  needed,  such  as  during  exercise.    

HOW  DOES  NORMAL  PULMONARY  RESPIRATION  WORK?  

Pulmonary  respiration  is  the  process  by  which  we  breathe  in  air  through  the  lungs,  transport  oxygen  throughout  the  body  and  finally  exhale  the  waste  products,  primarily  carbon  dioxide.    The  breathing  movement,  which  involves  both  inspiration  and  expiration,  is  an  active  process  that  primarily  uses  the  contraction  of  the  diaphragm  to  create  a  negative  pressure  in  the  upper  chest  cavity,  which  expands  the  lungs  and  draws  in  air.    Conversely,  exhalation  occurs  when  the  diaphragm  relaxes.    During  periods  of  forced  inhalation  or  exhalation  (such  as  blowing  up  a  balloon),  the  intercostal  muscles  are  used  to  augment  the  functions  of  the  diaphragm.    Once  oxygen  is  inhaled,  it  binds  to  hemoglobin  within  the  blood  and  is  carried  throughout  the  body  through  a  series  of  vessels  that  get  progressively  smaller.    The  smallest  of  these  vessels,  the  capillaries,  branch  out  into  all  areas  of  the  body,  supplying  the  organs,  glands,  and  other  tissues  with  a  constant  supply  of  oxygen.    This  oxygen  is  used  by  cells  in  the  process  of  cellular  respiration,  which  converts  larger  molecules  of  glucose  from  the  food  we  ingest  into  usable  energy  in  the  form  of  ATP.    Carbon  dioxide  is  a  by-­‐product  of  cellular  respiration  that  enters  the  blood  stream  and  is  carried  by  hemoglobin  back  to  the  lungs  where  it  is  exhaled.  The  water  created  in  cellular  respiration  leaves  the  body  via  perspiration  or  urine.    The  following  is  the  formula  for  cellular  respiration:  

C6H12O6  (glucose)  +6CO2  !  6CO2  +  6H2O  +  Energy  (ATP)  

The  exchange  of  oxygen  and  carbon  dioxide  between  the  blood  and  the  cells  of  the  body  is  due  to  differences  in  the  partial  pressure  of  arterial  (oxygen  rich)  and  venous  (carbon  dioxide  rich,  or  oxygen  poor)  blood.  

WHAT  ARE  THE  SYMPTOMS  OF  CARBON  MONOXIDE  EXPOSURE?  

According  to  the  Centers  for  Disease  Control  and  Prevention  (CDC),  the  most  common  symptoms  of  carbon  monoxide  exposure  include:  headache,  dizziness,  weakness,  nausea,  vomiting,  chest  pain,  and  confusion.      

                               

 

 

 

 

 

 

 

 

 

 

 

 

 

CO  Lesson  2  

 17  

 

High  levels  of  CO  inhalation  can  cause  loss  of  consciousness  and  death.  Furthermore,  one  can  die  from  CO  poisoning  before  ever  experiencing  symptoms.    These  symptoms  are  similar  to  those  observed  in  individuals  suffering  from  oxygen  deprivation  because  both  situations  are  caused  by  a  lack  of  oxygen  being  delivered  to  the  various  tissues  in  the  body.  

WHAT  ROLE  DOES  GENETICS  PLAY  IN  THE  FUNCTIONING  OF  HEMOGLOBIN?  

Some  people  carry  a  gene  that  encodes  for  an  abnormal  hemoglobin  molecule  that  forms  a  sickle  shape  rather  than  the  disc-­‐shape  of  normal  hemoglobin.        The  sickle-­‐cell  trait  is  recessive  so  people  with  two  copies  of  this  gene  (i.e.,  one  from  each  parent)  have  the  disease  called  sickle-­‐cell  anemia.    If  only  one  copy  of  the  gene  is  carried,  then  the  person  is  known  as  a  carrier  of  the  sickle-­‐cell  trait,  but  does  not  have  sickle-­‐cell  anemia.    The  inheritance  pattern  for  sickle-­‐cell  anemia  follows  typical  Mendelian  genetics,  which  means  that  if  only  one  parent  is  a  carrier  of  the  sickle-­‐cell  gene  then  only  half  the  of  the  offspring  will  likely  be  carriers  of  the  gene;  whereas  if  both  parents  are  carriers  of  the  sickle-­‐cell  gene  then  every  pregnancy  has  a  25%  probability  of  a  normal  child,  50%  probability  of  a  child  who  carries  the  gene  but  is  without  the  disease,  and  a  25%  probability  of  a  child  suffering  from  sickle-­‐cell  anemia.    In  addition,  children  with  sickle-­‐cell  anemia  have  been  found  to  have  higher  levels  of  carboxyhemoglobin  than  their  normal  counterparts.  The  sickle  cell  gene  has  a  higher  incidence  in  certain  segments  of  the  population.  In  the  United  States,  7-­‐9%  of  individuals  of  sub-­‐Saharan  African  descent  are  found  to  carry  the  trait  and  approximately  1  out  of  500  of  these  African  Americans  are  afflicted  with  the  disease.  

WHAT  ARE  THE  PRIMARY  SOURCES  FOR  CARBON  MONOXIDE  IN  THE  ENVIRONMENT?  

In  the  home,  the  combustion  of  fuel  for  heating  and  cooking  is  the  primary  source  of  carbon  monoxide.    An  improperly  maintained  or  blocked  chimney  or  furnace  can  allow  carbon  monoxide  to  enter  the  home.    Similarly,  carbon  monoxide  can  enter  the  home  from  the  garage  when  a  car,  lawn  mower  or  other  engine  is  in  operation.    Gas  stoves  and  ranges  can  also  be  a  significant  source  of  carbon  monoxide  if  they  are  not  operated  correctly.    

In  the  ambient  environment,  motor  vehicles  produce  about  60  percent  of  carbon  monoxide  nationwide;  in  cities,  it  may  be  as  high  as  95  percent.  Other  sources  include  industrial  processes,  non-­‐transportation  fuel  combustion,  and  wildfires.    

Tobacco  smoke  and  the  resulting  second  hand  smoke  are  also  a  significant  source  of  carbon  monoxide.  Blood  carbon  monoxide  levels  are  ten  times  higher  in  smokers  than  in  nonsmokers.  Although  smokers  do  not  generally  suffer  from  true  carbon  monoxide  poisoning,  their  hemoglobin’s  ability  to  transport  and  release  oxygen  is  still  adversely  affected  causing  the  heart  to  work  harder  in  order  to  move  adequate  oxygen  to  the  tissues.      

 

                               

 

 

 

 

 

 

 

 

 

 

 

 

 

CO  Lesson  2  

18    

WHAT  ARE  THE  BEST  PREVENTIVE  MEASURES  FOR  PREVENTING  CO  POISONING?  

The  CDC  recommends  the  following  to  prevent  CO  exposure  and  poisoning:  

• Call  a  qualified  technician  to  check  your  heating  system,  water  heater  and  any  other        gas,  oil,  or  coal  burning  appliances.    Do  this  on  a  yearly  basis.  

• Do  not  use  portable  flameless  chemical  heaters  (catalytic)  indoors.    Although  these  heaters  do  not  have  a  flame,  they  burn  gas  and  can  cause  CO  to  build  up  inside  your  home,  cabin,  or  camper  

• If  you  smell  an  odor  from  your  gas  refrigerator's  cooling  unit  have  an  expert  service  it.  An  odor  from  the  cooling  unit  of  your  gas  refrigerator  can  mean  you  have  a  defect  in  the  cooling  unit.  It  could  also  be  giving  off  CO.  

•   When  purchasing  gas  equipment,  buy  only  equipment  carrying  the  seal  of  a  national  testing  agency,  such  as  the  CSA  Group.  

• Install  a  battery-­‐operated  or  battery  back-­‐up  CO  detector  in  your  home  and  check  or  replace  the  battery  when  you  change  the  time  on  your  clocks  each  spring  and  fall.  

Additional  measures  to  prevent  CO  exposure  and  poisoning:    

• Don't  use  a  generator,  charcoal  grill,  camp  stove,  or  other  gasoline  or  charcoal-­‐burning  device  inside  your  home,  basement,  garage,  or  near  a  window.  

• Don't  run  a  car  or  truck  inside  a  garage  attached  to  your  house,  even  if  you  leave  the  door  open.  

• Don't  burn  anything  in  a  stove  or  fireplace  that  isn't  vented.  

• Don't  heat  your  house  with  a  gas  oven.  

   

Notes:                                                                                                                                              

                                           

   

                               

 

 

 

 

 

 

 

 

 

 

 

 

 

                               

 

 

 

 

 

 

 

 

 

 

 

 

 

CO  Lesson  2  

 19  

 

CO  Health  Effects  Comprehension  1  Guiding  Questions  

 

1. What  is  the  primary  biological  function  of  hemoglobin?                  2. What  is  cooperative  binding?  

             

 3. What  properties  make  carbon  monoxide  of  particular  concern  to  public  health  officials?  

 

 

 

 

 

4. What  happens  to  the  oxygen-­‐carrying  capacity  of  blood  after  carbon  monoxide  exposure?  Why?    

 

 

 

 

5. In  your  own  words,  what  is  carboxyhemoglobin  and  why  is  it  important?    

 

 

 

CO  Lesson  2  

20    

6. Examine  the  Oxyhemoglobin  Dissociation  Curve.  Explain  the  shifts  from  the  normal  conditions  curve  demonstrated  by  the  carbon  monoxide  and  exercise  curves.  

 

 

 

7. What  are  the  symptoms  of  carbon  monoxide  exposure  and  why  do  they  make  sense  given  the  mechanism  of  action  of  carbon  monoxide  poisoning?  

           8. What  is  the  relationship  between  pulmonary  and  cellular  respiration?                9. Describe  how  carbon  monoxide  exposure  interferes  with  normal  respiration,  and  how  that  in  

turn  interferes  with  cellular  respiration      

CO  Lesson  2  

 21  

 

CO  Health  Effects:  Guiding  Questions  Teacher  Key  

 

1. What  is  the  primary  biological  function  of  hemoglobin?         The  primary  function  of  hemoglobin  is  the  transport  of  oxygen  from  the  lungs  to  the  tissues  of  the  body  

and  removal  of  carbon  dioxide  via  the  lungs.          2. What  is  cooperative  binding?  

 In  biochemistry,  cooperative  binding  is  a  term  used  to  describe  the  binding  property  of  a  macromolecule  that  exhibits  a  changing  affinity  for  its  ligand  depending  on  the  amount  already  bound.  For  example,  hemoglobin’s  affinity  for  oxygen  increases  after  it  has  bound  one  or  more  oxygen  molecules.        

 3. What  properties  make  carbon  monoxide  of  particular  concern  to  public  health  officials?  

 

Carbon  monoxide  is  a  tasteless,  odorless,  colorless  gas  that  can  be  lethal  at  very  low  concentrations.    In  addition,  carbon  monoxide  is  produced  from  common  appliances  and  machines  used  in  and  around  many  households.      Because  carbon  monoxide  is  difficult  to  detect  and  the  onset  of  symptoms  occurs  rapidly,  there  is  a  high  risk  of  illness  or  even  death  before  one  has  become  aware  of  exposure  to  carbon  monoxide.  

 

4. What  happens  to  the  oxygen-­‐carrying  capacity  of  blood  after  carbon  monoxide  exposure?  Why?    

In  the  presence  of  carbon  monoxide,  the  oxygen  carrying  capacity  of  blood  is  reduced  because  of  an  inability  of  hemoglobin  to  properly  bind  with  oxygen.    Normally,  when  hemoglobin  binds  with  oxygen  it  undergoes  a  conformational  change  that  allows  it  to  bind  more  oxygen  at  an  increasing  rate.    However,  when  carbon  monoxide  binds  to  hemoglobin,  the  conformational  change  prevents  further  binding  of  oxygen  and  also  makes  it  more  difficult  for  the  hemoglobin  to  release  oxygen  to  the  tissues  for  delivery.  

 

5. In  your  own  words,  what  is  carboxyhemoglobin  and  why  is  it  important?    

Carboxyhemoglobin  is  formed  when  hemoglobin  is  exposed  to  carbon  monoxide.    When  hemoglobin  reacts  with  carbon  monoxide  to  form  carboxyhemoglobin  its  oxygen-­‐carrying  capacity  is  diminished.    As  a  consequence,  the  body  is  deprived  of  adequate  oxygen.  

CO  Lesson  2  

22    

6. Examine  the  Oxyhemoglobin  Dissociation  Curve.  Explain  the  shifts  from  the  normal  conditions  curve  demonstrated  by  the  carbon  monoxide  and  exercise  curves.  

The  cooperative  binding  between  carbon  monoxide  and  hemoglobin  increases  hemoglobin’s  affinity  for  oxygen  causing  the  hemoglobin  to  be  more  saturated  with  oxygen  while  at  the  same  time  making  it  more  difficult  for  the  oxygen  to  dissociate  from  the  hemoglobin.  The  exercise  curve  shows  that  the  oxygen  saturation  level  decreases  at  a  given  partial  pressure  compared  to  the  normal  curve  because  the  oxygen  more  readily  dissociates  from  the  hemoglobin  where  it  is  released  into  the  tissues.  This  accommodates  the  increased  oxygen  demand  associated  with  exercise.  

 

7. What  are  the  symptoms  of  carbon  monoxide  exposure  and  why  do  they  make  sense  given  the  mechanism  of  action  of  carbon  monoxide  poisoning?  

 Symptoms  of  carbon  monoxide  poisoning  include  headache,  dizziness,  weakness,  nausea,  vomiting,  chest  pain,  and  confusion.      The  symptoms  of  carbon  monoxide  poisoning  are  very  similar  to  those  experienced  during  oxygen  deprivation.  This  is  due  to  a  diminished  ability  of  hemoglobin  to  deliver  oxygen  to  the  brain  and  other  vital  organs.  

 8. What  is  the  relationship  between  pulmonary  and  cellular  respiration?       In  pulmonary  respiration,  oxygen  is  brought  into  the  lungs  and  transferred  to  the  blood  stream  where  it    

is  carried  by  hemoglobin  to  the  cells  of  the  body.    Once  oxygen  has  reached  the  cells,  it  is  then  used  for  cellular  respiration,  which  creates  usable  energy  in  the  form  of  ATP  from  glucose  molecules.  

 9. Describe  how  carbon  monoxide  exposure  interferes  with  normal  respiration,  and  how  that  in  

turn  interferes  with  cellular  respiration    

During  normal  respiration,  the  hemoglobin  component  of  blood  binds  with  oxygen  and  then  delivers  it  to  the  body,  accepting  carbon  dioxide  in  return  for  oxygen.    However,  in  the  presence  of  carbon  monoxide,  the  ability  of  hemoglobin  to  bind  with  oxygen  or  carbon  dioxide  is  diminished—preventing  the  blood  from  delivering  adequate  amounts  of  oxygen  to  the  body.    Therefore,  even  though  the  victim  may  be  breathing  in  sufficient  oxygen,  they  may  by  suffering  from  hypoxia  because  of  an  inability  of  the  blood  to  deliver  the  oxygen  throughout  the  body.      With  no  oxygen  being  delivered  to  the  cells  of  the  body,  the  process  of  cellular  respiration  is  inhibited.    

   

CO  Lesson  2  

 23  

 

CO  Health  Effects:  Evaluation  Questions    

For  questions  1-­‐5,  place  the  letter  of  the  best  answer  in  the  space  before  the  question.  

_____1.  What  is  the  name  of  the  condition  where  oxygen  levels  in  the  tissues  fall  below  physiologically  required  levels?  

  A.  asphyxiation          B.  pulmonary  embolism          C.  carboxyhemoglobin          D.  hypoxia  

_____2.  Which  of  the  following  gases  will  make  blood  a  dark  red  color?  

  A.  oxygen          B.  carbon  monoxide          C.  carbon  dioxide          D.  all  will  make  blood  dark  red  

_____3.  The  heme-­‐  in  hemoglobin  refers  to  the  presence  of  _____  metal  in  hemoglobin.  

  A.  calcium          B.  copper          C.  iron          D.  magnesium  

_____4.  Carbon  monoxide  can  only  be  reliably  detected  by  technological  instrumentation.  

  A.  true          B.  false  

_____5.  Hemoglobin  has  the  highest  bonding  affinity  for  

  A.  oxygen          B.  carbon  monoxide          C.  carbon  dioxide          D.  there  is  equal  affinity  for  each  

 

Answer  the  following  questions  completely  and  concisely  using  complete  sentences.  

As  you  recall,  the  color  of  blood  is  largely  determined  by  the  type  of  hemoglobin-­‐blood  gas  complex  and  the  manner  in  which  that  complex  absorbs  light.  Examine  the  data  in  the  table  below  relating  blood  color  to  gas  exposure  then  use  the  data  to  answer  questions  6-­‐8  below:  

 Table  1:  Blood  Color  Compared  To  Gas  Exposure    

Gas   Blood  Color  

Oxygen   Bright  red  

Carbon  monoxide   Bright  red  

Carbon  dioxide   Dark  red  

Carbon  dioxide  then  oxygen   Bright  red  

Carbon  monoxide  the  carbon  dioxide   Bright  red  

 

CO  Lesson  2  

24    

6. Based  on  the  data,  does  hemoglobin  have  a  higher  bonding  affinity  for  carbon  monoxide  or  carbon  dioxide?  Explain.    

 

 

 

7. Examine  the  data  where  blood  is  exposed  to  carbon  dioxide  then  oxygen.  Predict  the  result  if  the  situation  was  reversed;  the  blood  exposed  to  oxygen  then  carbon  dioxide.        

 

8. Predict  the  result  if  a  blood  sample  was  exposed  to  oxygen  then  carbon  monoxide.  Would  you  be  able  to  predict  which  gas  has  a  higher  bonding  affinity  to  hemoglobin  based  on  your  predicted  result?  Explain.              

Use  the  Oxygen-­‐Hemoglobin  Dissociation  Curve  to  answer  questions  9-­‐10.                                        

0  10  20  30  40  50  60  70  80  90  100  

0   10  

20  

30  

40  

50  

60  

70  

80  

90  

100  

Oxyhemoglobin  (%

 Saturation)  

PO2  (mmHg)  

Hypothetical  Oxygen-­‐Hemoglobin  Dissocation  Curve  

Exercise  

Normal  Conditions  

Carbon  Monoxide  

CO  Lesson  2  

 25  

 

   

9. Explain  the  curve  labeled  normal  conditions  as  it  relates  to  movement  of  oxygen  from  the  lungs  to  the  other  tissues  of  the  body.        

 

10. Examine  the  curve  labeled  carbon  monoxide.  It  is  clear  that  this  curve  represents  oxyhemoglobin  that  is  more  saturated  with  oxygen  at  the  same  oxygen  partial  pressure  than  the  oxyhemoglobin  under  normal  conditions.  Explain  how  the  carbon  monoxide  curve  can  lead  to  hypoxia  even  though  it  is  more  highly  saturated  with  oxygen.    

 

 

 

11. Why  does  carbon  monoxide  exposure  have  similar  symptoms  to  suffocation?              

12. Why  should  a  house  that  has  gas  appliances  or  is  heated  by  a  combustion  processes,  gas  furnace  or  wood  burning  stove/fireplace,  have  a  carbon  monoxide  detector?    

       

CO  Lesson  2  

26    

CO  Health  Effects:  Evaluation  Questions  Teacher  Key  

 

For  questions  1-­‐5,  place  the  letter  of  the  best  answer  in  the  space  before  the  question.  

_____1.  What  is  the  name  of  the  condition  where  oxygen  levels  in  the  tissues  fall  below  physiologically  required  levels?  

  A.  asphyxiation          B.  pulmonary  embolism          C.  carboxyhemoglobin          D.  hypoxia  

_____2.  Which  of  the  following  gases  will  make  blood  a  dark  red  color?  

  A.  oxygen          B.  carbon  monoxide          C.  carbon  dioxide          D.  all  will  make  blood  dark  red  

_____3.  The  heme-­‐  in  hemoglobin  refers  to  the  presence  of  _____  metal  in  hemoglobin.  

  A.  calcium          B.  copper          C.  iron          D.  magnesium  

_____4.  Carbon  monoxide  can  only  be  reliably  detected  by  technological  instrumentation.  

  A.  true          B.  false  

_____5.  Hemoglobin  has  the  highest  bonding  affinity  for  

  A.  oxygen          B.  carbon  monoxide          C.  carbon  dioxide          D.  there  is  equal  affinity  for  each  

 

Answer  the  following  questions  completely  and  concisely  using  complete  sentences.  

As  you  recall,  the  color  of  blood  is  largely  determined  by  the  type  of  hemoglobin-­‐blood  gas  complex  and  the  manner  in  which  that  complex  absorbs  light.  Examine  the  data  in  the  table  below  relating  blood  color  to  gas  exposure  then  use  the  data  to  answer  questions  6-­‐8  below:  

 Table  1:  Blood  Color  Compared  To  Gas  Exposure    

Gas   Blood  Color  

Oxygen   Bright  red  

Carbon  monoxide   Bright  red  

Carbon  dioxide   Dark  red  

Carbon  dioxide  then  oxygen   Bright  red  

Carbon  monoxide  the  carbon  dioxide   Bright  red  

 

CO  Lesson  2  

 27  

 

13. Based  on  the  data,  does  hemoglobin  have  a  higher  bonding  affinity  for  carbon  monoxide  or  carbon  dioxide?  Explain.    When  blood  is  exposed  to  carbon  monoxide  then  carbon  dioxide,  the  blood  is  bright  red  indicating  that  the  hemoglobin  is  bonding  to  the  carbon  monoxide.  If  hemoglobin  had  a  higher  bonding  affinity  for  carbon  dioxide,  then  the  carbon  dioxide  should  replace  the  carbon  monoxide  in  the  hemoglobin-­‐blood  gas  complex  resulting  in  a  dark  red  blood  color.  

 

14. Examine  the  data  where  blood  is  exposed  to  carbon  dioxide  then  oxygen.  Predict  the  result  if  the  situation  was  reversed;  the  blood  exposed  to  oxygen  then  carbon  dioxide.    The  blood  should  remain  a  bright  red  color.  The  results  from  the  carbon  monoxide  then  carbon  dioxide  exposure  demonstrate  that  the  order  of  exposure  is  unimportant.  The  gas  with  the  highest  bonding  affinity  to  the  hemoglobin  will  determine  the  blood  color.    

 

15. Predict  the  result  if  a  blood  sample  was  exposed  to  oxygen  then  carbon  monoxide.  Would  you  be  able  to  predict  which  gas  has  a  higher  bonding  affinity  to  hemoglobin  based  on  your  predicted  result?  Explain.    Both  gases  turn  blood  a  bright  red  color  making  it  impossible  to  use  blood  color  to  predict  which  gas,  oxygen  or  carbon  monoxide,  has  a  higher  bonding  affinity  to  the  hemoglobin.    

Use  the  Oxygen-­‐Hemoglobin  Dissociation  Curve  to  answer  questions  9-­‐10.                                      

0  10  20  30  40  50  60  70  80  90  100  

0   10  

20  

30  

40  

50  

60  

70  

80  

90  

100  

Oxyhemoglobin  (%

 Saturation)  

PO2  (mmHg)  

Hypothetical  Oxygen-­‐Hemoglobin  Dissocation  Curve  

Exercise  

Normal  Conditions  

Carbon  Monoxide  

CO  Lesson  2  

28    

16. Explain  the  curve  labeled  normal  conditions  as  it  relates  to  movement  of  oxygen  from  the  lungs  to  the  other  tissues  of  the  body.    The  normal  conditions  curve  shows  that  when  the  partial  pressure  of  oxygen  is  highest,  which  would  be  in  the  lungs,  the  oxygen  saturation  of  hemoglobin  is  also  at  its  peak.  As  the  blood  moves  away  from  the  lungs,  the  partial  pressure  of  the  oxygen  decreases  allowing  the  oxygen  to  dissociate  and  diffuse  into  the  tissues.  

 

17. Examine  the  curve  labeled  carbon  monoxide.  It  is  clear  that  this  curve  represents  oxyhemoglobin  that  is  more  saturated  with  oxygen  at  the  same  oxygen  partial  pressure  than  the  oxyhemoglobin  under  normal  conditions.  Explain  how  the  carbon  monoxide  curve  can  lead  to  hypoxia  even  though  it  is  more  highly  saturated  with  oxygen.    The  cooperative  binding  properties  of  carbon  monoxide  with  hemoglobin  causes  an  increased  affinity  between  the  hemoglobin  and  oxygen.  This  more  tightly  bound  oxygen  does  not  dissociate  as  easily.  Therefore,  even  though  the  hemoglobin  is  more  highly  saturated  with  oxygen,  the  oxygen  is  not  as  readily  released  into  the  tissues.  

 

18. Why  does  carbon  monoxide  exposure  have  similar  symptoms  to  suffocation?    Both  carbon  monoxide  exposure  and  suffocation  cause  hypoxia.  As  stated  in  #10  above,  carbon  monoxide  exposure  causes  hypoxia  by  not  readily  allowing  hemoglobin  to  release  oxygen  to  the  tissues.  Suffocation  causes  hypoxia  by  not  allowing  oxygen  to  enter  the  lungs.  In  both  cases,  the  oxygen  supplies  to  the  tissues  falls  below  physiological  necessary  levels.      

19. Why  should  a  house  that  has  gas  appliances  or  is  heated  by  a  combustion  processes,  gas  furnace  or  wood  burning  stove/fireplace,  have  a  carbon  monoxide  detector?    Gas  appliances  or  combustion  heating  will  produce  carbon  monoxide  as  a  result  of  incomplete  combustion.  If  the  appliances  are  not  properly  vented  and  the  house  is  closed,  carbon  monoxide  levels  will  increase  in  the  house.  Since  carbon  dioxide  is  colorless,  odorless,  and  tasteless,  it  is  impossible  to  detect  without  technological  instrumentation.  

   

CO  Lesson  2  

 29  

 

Carbon Monoxide Lesson 2: Specific Learning Objectives and Standards Specific  Learning  Objectives  Upon  completion  of  this  lesson,  students  will  be  able  to:  

• understand  the  basic  exchange  of  oxygen  and  carbon  dioxide  in  the  blood.  

• explain  how  oxygen  is  used  in  the  body  (i.e.  cellular  respiration)  and  why  it  is  critical  to  life.  

• describe  how  oxygen,  carbon  dioxide,  and  carbon  monoxide  each  bind  differently  to  the  hemoglobin  in  red  blood  cells.  

• summarize  the  symptoms  of  carbon  monoxide  poisoning  and  explain  why  ingestion  of  carbon  monoxide  is  dangerous  (i.e.  prevents  delivery  of  oxygen  to  tissues  within  the  body  for  use  in  cellular  respiration).  

• identify  sources  of  carbon  monoxide  in  the  home.  

 NEXT  GENERATION  SCIENCE  STANDARDS  Students  who  demonstrate  understanding  can:    

HS-­‐LS1-­‐2  Develop  and  use  a  model  to  illustrate  the  hierarchical  organization  of  interacting  systems  that  provide  specific  functions  within  multicellular  organisms.  

HS-­‐LS1-­‐7  Use  a  model  to  illustrate  that  cellular  respiration  is  a  chemical  process  whereby  the  bonds  of  food  molecules  and  oxygen  molecules  are  broken  and  the  bonds  in  new  compounds  are  formed  resulting  in  net  transfer  of  energy.  

 

MONTANA  STATE  SCIENCE  STANDARDS  A  proficient  student  will  (upon  graduation):  

Science  Content  Standard  1:  Students,  through  the  inquiry  process,  demonstrate  the  ability  to  design,  conduct,  evaluate,  and  communicate  the  results  and  form  reasonable  conclusions  of  scientific  investigations.  

1.2    select  and  use  appropriate  tools  including  technology  to  make  measurements  (in  metric  units),  gather,  process  and  analyze  data  from  scientific  investigations  using  appropriate  mathematical  analysis,  error  analysis  and  graphical  representation.    

1.3  review  evidence,  communicate  and  defend  results,  and  recognize  that  the  results  of  a  scientific  investigation  are  always  open  to  revision  by  further  investigations.  (e.g.  through  graphical  representation  or  charts)  

Science  Content  Standard  3:  Students,  through  the  inquiry  process,  demonstrate  knowledge  of  characteristics,  structures  and  function  of  living  things,  the  process  and  diversity  of  life,  and  how  living  organisms  interact  with  each  other  and  their  environment.  

3.2  describe  and  explain  complex  processes  involved  in  energy  use  in  cell  maintenance,  growth,  repair,  and  development.  

CO  Lesson  2  

30    

 

ALASKA  STATE  SCIENCE  STANDARDS  

SA1    Students  develop  an  understanding  of  the  processes  of  science  used  to  investigate  problems,  design  and  conduct  repeatable  scientific  investigations,  and  defend  scientific  arguments.  

[10]  SA1.1  The  student  demonstrates  an  understanding  of  the  processes  of  science  by  asking  questions,  predicting,  observing,  describing,  measuring,  classifying,  making  generalizations,  analyzing  data,  developing  models,  inferring,  and  communicating.  

[11]  SA1.1    The  student  demonstrates  an  understanding  of  the  process  of  science  by  recognizing  and  analyzing  multiple  explanations  and  models,  using  this  information  to  revise  student’s  own  explanation  or  model  if  necessary.  

SC2    Students  develop  an  understanding  of  the  structure,  function,  behavior,  development,  life  cycles,  and  diversity  of  living  organisms.  

[10]  SC2.1    The  student  demonstrates  an  understanding  of  the  structure,  function,  behavior,  development,  life  cycles,  and  diversity  of  living  organisms  by  describing  the  structure  function  relationship  (i.e.  joints,  lungs).  

[10]  SC2.3    The  student  demonstrates  an  understanding  of  the  structure,  function,  behavior,  development,  life  cycles,  and  diversity  of  living  organisms  by  describing  the  functions  of  organs  of  major  systems  (i.e.  respiratory,  digestive,  circulatory,  reproductive,  nervous,  musculoskeletal,  and  excretory).  

[10]  SC2.4    The  student  demonstrates  an  understanding  of  the  structure,  function,  behavior,  development,  life  cycles,  and  diversity  of  living  organisms  by  tracing  the  pathways  of  digestive,  circulatory,  and  excretory  systems.  

 

IDAHO  STATE  STANDARDS  Biology:  

Goal  1.2    Understand  Concepts  and  Processes  of  Evidence,  Models,  and  Explanations  

9-­‐10.B.1.2.1  Use  observations  and  data  as  evidence  on  which  to  base  scientific  explanations.  

  9-­‐10.B.1.2.3  Develop  scientific  explanations  based  on  knowledge,  logic  and  analysis.  

Goal  1.6    Understand  Scientific  Inquiry  and  Develop  Critical  Thinking  Skills  

9-­‐10.B.1.6.4  Formulate  scientific  explanations  and  models  using  logic  and  evidence.  

Goal  3.2    Understand  the  Relationship  between  Mater  and  Energy  in  Living  Systems    

9-­‐10.B.3.2.4  Describe  cellular  respiration  and  the  synthesis  of  macromolecules.  

Goal  3.3    Understand  the  Cell  is  the  Basis  of  Form  and  Function  for  All  Living  Things    

9-­‐10.B.3.3.2  Explain  cell  functions  involving  chemical  reactions.