€¦  · web viewcalculations shall include appropriate spans and be calculated at 50°c. ......

27

Click here to load reader

Upload: donhan

Post on 03-Apr-2018

213 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: €¦  · Web viewCalculations shall include appropriate spans and be calculated at 50°C. ... Permissible Short Circuit: 20 kA / 0.2 secs. ... DC Circuit Breaker Status;

Edition: February 2013 Specification: Part 930 Overhead Catenary

PART 930

OVERHEAD CATENARY

CONTENTS

1. General2. Design Specification3. Components and Assembly4. Side Feeder5. Acceptance, Inspection and Testing6. Hold Points

1. GENERAL

This Part specifies the requirements for tram overhead wiring suitable for pantograph operation. If the Principal has not provided a complete design for any element of the Works, the Contractor shall complete the design in accordance with the requirements of this Part.

The work under the Contract shall comply with:

Electricity Act 1996 (SA)

Electricity (General) Regulations 1997 (SA)

SA Power Networks Service & Installation Rules

AS 1163 Structural Steel Hollow Sections

AS 2648 Underground Marking Tape

AS 3008.1 Electrical Installations, Selection of Cables

AS 4792 Hot-Dip Galvanised (Zinc) Coatings on Ferrous Hollow Sections

AS 61000 Electromagnetic Compatibility (EMC)

BS 23 Specification for Copper – Aluminium – Nickel – Iron Alloy Rods, Sections, Forging Stock and Forgings

B 157 High Strength Steel Bolts with Associated Nuts and Washers for Structural Engineering (Inch Series)

IEC 60850 Ed. 2.0 B Supply Voltages of Traction Systems (2000)

IEC 520 Electrical Cables

Additional requirements may be specified in the Contract Specific Requirements.

2. MECHANICAL SPECIFICATION

2.1 Safety factors

A safety factor of 3 to 1 over the allowable loading shall apply.

Any fitting inserted in line with the strained conductors or support spans shall be stronger than the conductor or the span to which it is attached.

Fittings that are under tension and that are subject to wear (e.g. splice ears and trolley wire tensioner) shall not, during their projected life, fail at a strain that is 2/3 of the Ultimate Tensile Strength of the new conductor or span material used.

DPTI XXCxxx Page 1

Page 2: €¦  · Web viewCalculations shall include appropriate spans and be calculated at 50°C. ... Permissible Short Circuit: 20 kA / 0.2 secs. ... DC Circuit Breaker Status;

Edition: February 2013 Specification: Part 930 Overhead Catenary

2.2 Corrosion Protection

Adequate long-term corrosion protection shall be provided as follows:

(a) with the exception of corrosion-resistant steels such as stainless, all ferrous parts shall be hot dipped galvanised upon completion of all fabrication processes;

(b) unless a corrosion-resistant material is supplied, all bolts nuts and washers which are over M10 size shall be hot dipped galvanised;

(c) all bolts nuts and washers, which are less than M10 size shall be made of a corrosion resistant material such as stainless steel or other approved material; and

(d) dissimilar metals which would promote galvanic corrosion shall not be used in close proximity.

2.3 Wear Resistance

The fittings shall be constructed from such materials and in such a manner to provide projected life delivery in service with minimum maintenance requirements.

2.4 Composite Materials

Composite Materials shall:

(a) be stabilised against ultra-violet radiation;

(b) be resistant to chemicals that might be encountered in their operating environment;

(c) provide adequate insulation levels;

(d) not sustain combustion;

(e) have good wear characteristics if subjected to wear;

(f) be capable of withstanding electric arcing without deterioration;

(g) have low moisture absorption characteristic; and

(h) have high impact resistance.

2.5 Design Life

The overhead fittings and systems shall be designed for a minimum design life of 30 years.

3. ELECTRICAL SPECIFICATION

3.1 General

The nominal voltage of the tram system is 600 V DC.

From IEC 60850 Ed. 2.0 B (200), the characteristics of the supply voltage are as follows:

lowest permanent voltage: 420 V

highest permanent voltage: 720 V

highest non permanent voltage: 800 V.

3.2 Conductor Details

Conductor sizes shall comply with Table 3.2: Cables and Conductors.

DPTI XXCxxx Page 2

Page 3: €¦  · Web viewCalculations shall include appropriate spans and be calculated at 50°C. ... Permissible Short Circuit: 20 kA / 0.2 secs. ... DC Circuit Breaker Status;

Edition: February 2013 Specification: Part 930 Overhead Catenary

TABLE 3.2: CABLES AND CONDUCTORS

Description Nom. Cross Section Area

Conductor Material

Construction Strands/Size

Nom. O.D.

Remarks

Trolley Wire 107 mm2 Copper Solid 12.34 To Drawing E190

Feeder Tap To Trolley

185 mm2 Annealed Copper

5510/0.2 mm 31.6 UV Resist. Rubber 0.6/1 kv Insulated

Pole Bond and Surge Diverter Cable

70 Eqv. Annealed Copper

19/2.14 mm 13.5 PVC/Red/PVC/0.6/1 kV Insulated

Underground Screened Feeder Cable

400 Eqv. Annealed Copper

61/2.85 mm 39 1 Core, XLPE Insul 37 Wire Screen, PVC Sheath

3.3 Insulation Levels

All insulators shall be rated for operation at 900 V DC as a minimum.

All attachment to the poles or other structures shall be at least double insulated from live parts.

All support spans shall be insulated in such a manner that, should they break, live parts will be maintained at a height no less than 3 m above ground level.

3.4 Electrical Clearances and Separations

All electrical clearances from any conductor or part energised at 600 V DC shall be in accordance with the Electricity (General) Regulations and SA Power Networks Service & Installation Rules

3.5 Current Carrying Capacity

The current carrying capacity of switches or isolators shall not be less than that of the largest cross sectional area of conductor/s connected to each of its terminals.

Fittings used to join conductors or to provide electrical connection or tapping shall have a resistance less than the equivalent length of conductor.

3.6 Cleaning and Greasing of Current Carrying Connections

All joint assemblies, which are designed to permit the transfer of current from one conductor to another, shall be prepared as follows.

The conductors, clamps and fittings shall be thoroughly dried then cleaned with a suitable scratch brush to remove all dirt and surface oxide from the conducting surfaces of the joint.

Before the clamps are tightened, a liberal film of ‘Shell Ensis CB compound’ (or similar approved) shall be applied to the conducting surfaces to seal the joint against moisture ingress.

4. INTERFACING WITH EXISTING EQUIPMENT

The Contractor shall exercise due care and take the necessary steps to ensure the integrity of those items that are not to be replaced but are worked upon or handled in the process of installing / replacing mating parts or assemblies are preserved when installing a new system or rehabilitating an existing system.

During the process of trolley wire tensioning, the relative position of components and wire stagger at other locations shall not be affected adversely. Prior to terminating any fittings, the trolley wire tension shall be checked by the Contractor.

Verification of the trolley wire tension shall constitute a HOLD POINT.

DPTI XXCxxx Page 3

Page 4: €¦  · Web viewCalculations shall include appropriate spans and be calculated at 50°C. ... Permissible Short Circuit: 20 kA / 0.2 secs. ... DC Circuit Breaker Status;

Edition: February 2013 Specification: Part 930 Overhead Catenary

The Contractor is responsible for the design of cable connections and supports, including component fixtures and fittings between new and existing cable.

Submission of junction details shall constitute a HOLD POINT.

5. OVERHEAD LINE GEOMETRY

5.1 Structure Gauge

The structure gauge shall be in accordance the Contract Specific Requirements.

5.2 Operating Temperature Range

The system described in this Specification is designed for an operating temperature range of 0 to 50˚C and the positioning of all fittings, pendulums and wires shall be installed with the neutral optimum operating temperature of 20˚C.

5.3 Trolley Wire Heights

All trolley wire heights shall be referred to rail level.

5.3.1 Trolley Wire Height on Straight Track

Where there are no restrictions such as bridges, civil engineering works or electrical separations the height of the trolley wire will be 6.0 m at support points @ 20˚C.

The tolerance on the trolley wire height is + 0, -75 mm under these conditions.

Where the trolley wire is suspended under bridges or inside buildings and the 6.0 m cannot be met then the trolley must be within 170 mm of the bridge and the minimum height shall be approved by the Superintendent.

Approval shall constitute a HOLD POINT.

At road intersections, the trolley wire height shall a minimum of 5.64 m at 50˚C, with a tolerance of be +0,-25 mm.

5.3.2 Trolley Wire Sag

The sag of the trolley wire shall be calculated by the Contractor. Calculations shall include the temperature range 0°C to 50°C. The maximum allowable tension shall be 11 kN. The tolerance of the sag shall be ±25 mm.

Submission of calculations and table shall constitute a HOLD POINT.

5.3.3 Change in Trolley Wire Levels

The desired maximum trolley wire gradient shall be determined by the following formula:

Desired maximum Gradient = 1 in (5 x Running Speed in km/h)

The absolute maximum gradient shall be 1 in 75.

Loss of contact defined as separation between the current collection pantograph and the trolley wire and fittings shall not exceed 1% at normal service speeds.

5.4 Trolley Wire Offset and Stagger

The Contractor shall use appropriate equipment (e.g. a mirror gauge or similar approved) to set the trolley wire offset with respect to the centreline of the track.

Submission of the proposed equipment shall constitute a HOLD POINT.

DPTI XXCxxx Page 4

Page 5: €¦  · Web viewCalculations shall include appropriate spans and be calculated at 50°C. ... Permissible Short Circuit: 20 kA / 0.2 secs. ... DC Circuit Breaker Status;

Edition: February 2013 Specification: Part 930 Overhead Catenary

5.4.1 Tangent Track (Straight Track)

The stagger shall alternate either side of the track centreline in a “zig-zag” pattern with a maximum offset of 230 mm.

5.4.2 Curved Track

The stagger shall be to the outside of the curve up to a maximum of 350 mm with due consideration of mid-span offset remaining within limits.

The blowout of the trolley wire shall be calculated by the Contractor. Calculations shall include appropriate spans and be calculated at 50°C. The tolerance of the blowout shall be 25 mm.

Submission of calculations and the blowout table shall constitute a HOLD POINT.

5.5 Assembly Methods

The Contractor shall assemble all components in a manner which ensures that fasteners and fittings are tightened to the correct torque and will not become loose during operation due to vibration or other factors.

Assembly shall be undertaken so as to allow fasteners and fittings to be dismantled for adjustment, maintenance or replacement without difficulty.

The Contractor shall comply with the manufacturer's installation procedure and Specifications for proprietary items. Details shall be provided to the Superintendent; vide Specification, Clause 110.8 “Manufacturer’s Instructions”.

Thread locking compounds shall not be permitted.

6. COMPONENTS AND ASSEMBLY

6.1 Poles

6.1.1 Pole Type

Steel poles shall be used to support the overhead wiring system as described on the drawings. The poles shall be central to the tracks and their alignment shall be parallel to the track alignment. The use of ‘span wires’ is prohibited.

Tolerances shall comply with the following:

lateral tolerance of each pole from its designed location: ± 10 mm.

vertical tolerance to the top of pole from its design location: ± 50 mm.

tolerance for the height of the boom tube from its design height: ±10 mm.

Steel poles and associated fittings shall be in accordance with:

Part 430 “Fabrication and Erection of Structural Steelwork”

Part 435 “Protective Treatment of Structural Steelwork”

Part 437 “Galvanising”

No assets shall be attached for a minimum period of 7 days after pole or pole foundation installation.

Pole capacities for lateral loading shall be as indicated on the Drawings or the Contract Specific Requirements. .

Pole numbering shall be designed, supplied and installed by the Contractor in accordance with PTSOM requirements.

DPTI XXCxxx Page 5

Page 6: €¦  · Web viewCalculations shall include appropriate spans and be calculated at 50°C. ... Permissible Short Circuit: 20 kA / 0.2 secs. ... DC Circuit Breaker Status;

Edition: February 2013 Specification: Part 930 Overhead Catenary

6.1.2 Pole Footing

The minimum distance between two adjacent poles shall be such that the structural integrity of either pole and/or its footing is not adversely affected.

Concrete footings shall be in accordance with:

Part 305 Steel Reinforcement

Part 310 Formwork

Part 320 Concrete

Direct Plant

The pole footing shall be a bored hole 200 mm deeper than the embedment depth of the pole, unless otherwise shown on the drawings. Unless specified otherwise, the diameter of the hole shall be at least 100 mm greater than the diameter of the pole.

Base Mount

Base mounted poles shall be installed in accordance with DPTI Standard Drawing No. E121, unless otherwise specified. The pole shall be mounted on the base with depth mark and spark gap stud facing the road.

6.1.3 Pole Rake

Poles shall be raked opposite to the direction of strain application. Where loads are applied in more than one direction the pole shall rake opposite to the direction of the resultant strain.

Steel poles shall be set to the following rakes:

Anchor 1 in 40

Span 1 in 60

6.2 Lighting Arms

Light mounted poles are not permitted.

6.3 Trolley Wire Support via Straight Cross Span

Reference shall be made to DPTI Standard Drawings No. E112 and E182 for trolley wire support by straight steel cross spans.

Straight steel support spans shall be constructed using Elektroline components; 8.25 square millimetre steel wire, comprising 7 strands 2.75 mm.

Trolley wire suspensions shall be selected depending on the curvature of the track and/or the complexity of the wiring.

Pendulum fittings shall be used where the intersect angle of the trolley wire at the suspension is 4˚ or less. Between 4.50˚ and 10˚ the suspension is via an Elektroline steady arm, or similar approved. For angles of incidences between 10˚ and 20˚, 2 steady arms shall be used. Steady arms shall be subjected to a maximum load of 2 kN.

In complex areas where multiple tracks are present (i.e. greater than 2 tracks) and converging wires do not allow the use of pendulums and steady arms, fixed connections shall be used. The Contractor shall design, manufacture and install these fixed connections to the satisfaction of the Superintendent.

Submission of details for fixed connections shall constitute a HOLD POINT.

The Contractor shall ensure that an insulator is placed between the trolley wire and the span wire in all cases.

DPTI XXCxxx Page 6

Page 7: €¦  · Web viewCalculations shall include appropriate spans and be calculated at 50°C. ... Permissible Short Circuit: 20 kA / 0.2 secs. ... DC Circuit Breaker Status;

Edition: February 2013 Specification: Part 930 Overhead Catenary

6.4 Trolley Wire Support via Cantilever Supports

Reference shall be made to DPTI Standard Drawings No. E110 and E111 for trolley wire support for centre pole and single track assemblies.

The cantilever support shall be constructed with a ‘Parafil’ wire (or similar approved) and insulator between the mast and the cantilever providing the first level of insulation. Pendulum fittings shall be used where the intersect angle of the trolley wire at the suspension is 4˚ or less. Between 4.50˚ and 10˚ the suspension is via an Elektroline steady arm, or similar approved. For angles of incidences between 10˚ and 20˚, 2 steady arms shall be used. Steady arms shall be subjected to a maximum load of 2 kN.

Both the pendulum and steady arms shall be supported off an insulator connected to the cantilever tube providing the second level of insulation.

6.4.1 Boom Tube

The Contractor shall use fully insulated GRP boom tubes (or similar approved).

For metal boom tubes, the material shall be welded mild steel tube, 60.3 mm outside diameter, 5.4 mm wall thickness to AS 1163 or similar approved.

The external finish shall be smooth and free of "run off".

6.4.2 Boom Tube Insulator

For boom tubes not made of insulated material, the boom tube shall be connected to and insulated from the pole by a polymeric strut type insulator in accordance with DPTI Standard Drawing No. E184.

The insulator shall have the following characteristics:

Mechanical:

Minimum Tensile Breaking Load 40 kN

Minimum Compression Failing Load 40 kN

Minimum Bending Breaking Load 270 kN

Electrical:

Minimum Creepage distance 370 mm

Power Wet Withstand Voltage 370 mm

Impulse Withstand Voltage (12/50 us wave) 125 kV

6.4.3 Boom Tube Tie

The boom tube tie shall be constructed of ‘Parafil Rope’ with a 2 tonne minimum breaking load in accordance with DPTI Standard Drawing No. E189.

The boom tube tie shall be attached to the boom tube via a boom connector bracket, and two U bolts in accordance with DPTI Standard Drawing No. E188.

6.4.4 Boom Tube Attachment to Pole

Two pole band assemblies shall be attached to each pole to enable attachment of the boom tube and the boom tube tie.

For a centre pole with back-to-back cantilevers, the band shall be in accordance with DPTI Standard Drawing No. E180, Type 2.

For a single track cantilever, the band shall be in accordance with DPTI Standard Drawing No. E180, Type 3.

DPTI XXCxxx Page 7

Page 8: €¦  · Web viewCalculations shall include appropriate spans and be calculated at 50°C. ... Permissible Short Circuit: 20 kA / 0.2 secs. ... DC Circuit Breaker Status;

Edition: February 2013 Specification: Part 930 Overhead Catenary

The pole band shall be sized to suit the pole.

6.4.5 Suspensions for Boom Tube Support

Elektroline single pendulum components suitable for pantograph only operation shall be used in accordance with the manufacturer's installation and adjustment instructions. Reference shall be made to DPTI Standard Drawing No. E183.

6.4.6 Pull Off Arm Fittings

Elektroline pull off arm components suitable for pantograph only operation shall be used in accordance with the manufacturer's installation and adjustment instructions. Reference shall be made to DPTI Standard Drawing No. E183.

The assembly consists of a primary insulator attached to the boom to electrically insulate the trolley wire from the boom. This insulator shall have a minimum wet flashover voltage of 8 kV.

The Contractor shall ensure that the trolley wire seats horizontally without twists or kinks.

6.4.7 Crossovers and Turnouts

A suitable crossover system shall be used to enable trams to move from one track to another. Two options are permitted:

Fixed Suspension on Span Wires

For multiple track junctions (e.g. 3 track junctions), the trolley wire shall be supported at or immediately adjacent to the pantograph strike point to allow for increased sag at high temperatures.

Crossed Contact Bars

Crossed contact bars shall be used to ensure smooth pantograph transition, such as locations where two tracks merge into one.

The straight and intersecting trolley wires shall be connected electrically using a jumper assembly at both intersections.

A crossed contact bar shall be used where the trolley wire is crossed within 3 to 4 m of the pantograph strike point, to allow for increased sag at high temperatures.

The Contractor shall make all necessary adjustments to the intersecting trolley wires to ensure smooth pick up of the incoming trolley wire by the tram pantograph.

6.5 Trolley Wire

Trolley wire shall be straight, free of kinks, twists and other defects and the cross section profile shall not be deformed along its entire length.

The trolley wire shall be 107 square millimetres hard drawn copper and conform to BS 23. Cadmium Copper is not permitted. The profile of the wire shall be in accordance with DPTI Standard Drawing No. E190.

Termination of trolley wire shall be a forked collar socket suitable for 107 square millimetre trolley wire available from Elektroline and Arthur Flury. Reference shall be made to DPTI Standard Drawing No. E113 for details.

Splices are not permitted in new trolley wire lengths, unless otherwise approved. If approved, the trolley wire splice shall be a six bolt clamp suitable for 107 square millimetres trolley wire available from Elektroline and Arthur Flury.

The transition of the trolley wire shall be smooth in both directions. The surface where the pantographs run shall be smooth and flat.

DPTI XXCxxx Page 8

Page 9: €¦  · Web viewCalculations shall include appropriate spans and be calculated at 50°C. ... Permissible Short Circuit: 20 kA / 0.2 secs. ... DC Circuit Breaker Status;

Edition: February 2013 Specification: Part 930 Overhead Catenary

To enable bridging of the up and down trolley wires, electrical jumper connections between the trolleys called "trolley wire equalisers" shall be installed at every fifth pole. The jumper (equaliser) shall comprise a feeder ear (clamp) attached to each trolley wire and connected via a length of 185 square millimetres double insulated flexible cable. On cross spans this cable shall be supported on an independent Parafil span above the standard cross span. The flexible cable shall be supported on the Parafil cross span by wrapping, in a spiral form, 1.5 square millimetres, 7/0.05 mm insulated copper building wire over the entire supported length.

On back-to-back cantilever poles, the cable shall be supported on insulators attached horizontally on the boom tubes and one on the mast, in accordance with DPTI Standard Drawing No. E109.

6.6 Trolley Wire Boom Tube Anchoring

6.6.1 Fixed Tension Pendulum System

Pendulum installations shall have the trolley wire and boom tubes anchored to adjacent poles at 400 m intervals so as to minimise adverse effects of possible trolley wire breaks.

6.6.2 Weight Tension System

Weight tension systems shall have the trolley wire fixed at the mid point of the tension length to avoid trolley wire creepage to one end and to control the amount of trolley wire movement at the balance weight assemblies.

6.7 Section Insulator Assembly

6.7.1 General

The Contractor shall use Section Insulators to enable electric isolation of sections of the overhead wiring system from adjoining sections. The runner for the Section Insulator shall be made from Ertalon material.

All signage for section insulators shall be designed, supplied and installed by the Contractor.

6.7.2 Attachment to Cross Span Wire

The Section Insulator shall be attached via a hanger to a standard cross span and the Section Insulator in a manner that would enable it to ‘float’ in accordance with the manufacturers’ instructions.

6.7.3 Attachment to Cantilever

Attachment to a cantilever shall be in accordance with DPTI Standard Drawing No. E191.

6.8 Aerial Switch (Isolator)

6.8.1 General

Aerial switches shall be used to form or sever the contact between two electrical sections of wiring or cable. The aerial switch can be used to enable:

(a) the bridging between underground feeder cables and overhead cables;

(b) the bridging and isolation between two sides of a section insulator;

(c) the bridging and isolation between two feeder cable termination points; and

(d) a bypass feed around an Automatic Sectioning Switch in case of a failure of the Automatic Switch.

All poles which have an aerial switch mounted shall be bonded to the tracks.

6.8.2 Aerial Switch Details

The standard aerial switch shall be a 1 500 Ampere 1 000 V DC Panel Mounted Isolator Switch (Elektroline or Arthur Flury part No. is Multicontact P552-A3-001).

Aerial Switch operating gear shall comprise of:

DPTI XXCxxx Page 9

Page 10: €¦  · Web viewCalculations shall include appropriate spans and be calculated at 50°C. ... Permissible Short Circuit: 20 kA / 0.2 secs. ... DC Circuit Breaker Status;

Edition: February 2013 Specification: Part 930 Overhead Catenary

(a) An operating handle, including a length of ½ inch pipe to suit the height of the mounting switch box at each location.

(b) Locking band, diameter to suit pole.

(c) Guide band, diameter to suit pole.

(d) Fibreglass upper operating rod which shall be sealed with a suitable adhesive at the interface of the fibreglass tube to the steel tongue at the ends to prevent water ingress.

(e) Locking clamp, suitable for the application of a padlock.

Assembly of the aerial switch operating gear and the aerial switch box onto the pole shall be in accordance with DPTI Standard Drawing No. E108. The aerial switch is usually mounted at a height that is as near as possible to the span or aerial component that the switch is servicing. In most cases the switch is mounted near a cross span attachment point or above the cantilever on back-to-back cantilever poles and single track cantilever poles.

The Contractor shall ensure that the switching linkage system does not fail, and all mechanical linkages must have split pins, or other suitable devices installed to the satisfaction of the Railway Authority.

All fittings shall be coated (or painted) to match the pole finish.

6.9 Surge Diverter

6.9.1 Surge Diverter Characteristics

The surge diverter shall have the following characteristics:

Rated Voltage: 1 kV / 2 kV DC

Nominal Discharge Current: 10 kA

Permissible Short Circuit: 20 kA / 0.2 secs

Pressure Relief: Class 4

Manufacturers Part No.: Bowthorpe HE60MCC07 or equivalent approved.

Three no. 13 mm diameter mounting holes on a 162 mm PCD and fitted with pig tail indicator lead.

6.9.2 Mounting and Connecting Details

The diverter shall be installed to a level of 10 kV from the pole or structure to which it is attached. The installation of the surge diverter on a timber cross arm (or a non-conductive alternative) is shown on DPTI Standard Drawing No. E108.

The earth terminal of the diverter shall be connected to a rail bond by a continuous length of single core annealed stranded copper cable. This cable shall have a cross sectional area of 70 square millimetres with no less than 19 strands. The level of insulation shall be 0.6 / 1 kV and the outer sheath shall be heavy duty, resistant to all chemicals and petrochemicals, not sustain combustion, and shall be stabilised against Ultra-Violet Radiation.

The cable shall comply with AS 3008 and its outer sheath shall be black or grey in colour.

One end of the cable shall be connected to the earth terminal of the surge diverter via a crimped type terminal lug having a stud hole to accept a 10 mm screw. The other end shall be connected by Cadweld to the 91/2, 14 bare conductor of a standard track bond.

Where the cable emerges from the ground onto the pole it shall be enclosed in a 25 mm hot dipped galvanised steel conduit for protection. The conduit shall be extended to a minimum height of 3 m above the ground level. The conduit shall be attached to the pole by a 19 mm stainless steel strap in at least 3 equally spaced positions. The cable extending above the conduit shall also be supported on the pole using 19 mm stainless steel strap at intervals not exceeding 2 m. To prevent the stainless steel band cutting into the cable sheathing and insulation at the point of attachment, a rubber or PVC cover with a minimum thickness of 5 mm shall be placed and secured between the band and the cable sheath. The cover shall extend for a minimum of 30 mm from the edge of the band.

DPTI XXCxxx Page 10

Page 11: €¦  · Web viewCalculations shall include appropriate spans and be calculated at 50°C. ... Permissible Short Circuit: 20 kA / 0.2 secs. ... DC Circuit Breaker Status;

Edition: February 2013 Specification: Part 930 Overhead Catenary

The positive terminal of the surge diverter shall be connected via a single core, annealed, tinned, finely stranded copper cable to the item being protected e.g. feeder cable, trolley wire etc. The cable shall have a cross section of 16 square millimetres and shall have no fewer than 224 strands.

The level of insulation shall be 1.8/3 kV and the outer sheath shall be heavy duty, resistant to chemicals and petrochemicals, not sustain combustion, and shall be stabilised against Ultra-Violet Radiation. The cable shall comply with Standard IEC 520 and its outer sheath shall be black or grey in colour.

If the Bowthorpe diverter is used, its disconnector device shall be used for the positive connection and shall indicate, by tail lead blow off, when there has been a lightning strike and that the diverter has functioned. The diverter shall be suitably mounted to ensure that this tail lead cannot come into contact with other metallic components or conductors.

Arresters shall be installed in accordance with the manufacturer's installation instructions.

All poles on which surge diverters are mounted shall be bonded to the track.

6.10 Section Insulator Bridging via an Aerial Switch

6.10.1 Cantilever Mast

The aerial switch shall be mounted on the single track or back-to-back cantilevered poles supporting the Section Insulator/s in accordance with DPTI Standard Drawing No. E181. Flexible 185 square millimetre feeder tap to trolley wire cable shall be used to make the suitable connections.

A flexible cable shall be mounted on insulators attached to the boom tube and run form one side of the switch to the end of the Section Insulator. The flexible cables shall be supported on the insulators with tie wire, 1.5 square millimetres, 7/0.5 mm insulated copper building wire.

6.10.2 Span Wire

An aerial switch shall be mounted on at least one pole that supports the Span Wire. Flexible 185 square millimetre feeder tap to trolley wire cable shall be used to make the suitable connections.

For cross spans, the flexible cable shall be supported on an independent Parafil cross span by wrapping, in a spiral form, 1.5 square millimetre, 7/0.05 mm insulated copper building wire over the entire supported length above the standard cross span.

6.11 Feeder Taps

6.11.1 General

Feeder taps shall be utilised to connect 600 V power feeder cables to the trolley wire at predetermined locations.

The distance between successive feeder taps is dependent on the type and number of trams likely to be in the section at the same time. The distance shall be specified for each location on the drawings.

The maximum distance between feeder taps shall not exceed 500 m.

Feeder tap points shall be located in line with a pole.

6.11.2 Feeder Tap to Trolley Wire on Cantilever Mast

The aerial switch shall be mounted on the single track or back-to-back cantilever poles where the feeder tap connection to the trolley is to be made. Reference shall be made to DPTI Standard Drawing No. E108.

Two underground 400 square millimetre feeder cables shall be fed from a pit on either side of the pole up the inside of the pole and terminate on the same side of the switch using a crimp lug.

Two flexible 185 square millimetre cables shall be connected to other side of the switch and provide the feeder tap to trolley wire connections. The flexible 185 square millimetre cables shall be supported on insulators

DPTI XXCxxx Page 11

Page 12: €¦  · Web viewCalculations shall include appropriate spans and be calculated at 50°C. ... Permissible Short Circuit: 20 kA / 0.2 secs. ... DC Circuit Breaker Status;

Edition: February 2013 Specification: Part 930 Overhead Catenary

mounted horizontally on the boom tubes and connected to the up and down trolley wires with crimp lugs and suitable feeder clamps.

6.11.3 Feeder Tap to Trolley Wire on Span Wires

The aerial switch shall be mounted on at least one of the poles supporting the Span Wire.

Two underground 400 square millimetre feeder cables shall be fed from a suitable pit either side of the pole up the inside of the pole and terminate on the same side of the switch using a crimp lug. Two flexible 185 square millimetre cables are connected to other side of the switch and provide the up and down feeder tap to trolley wire connections.

For cross spans, the flexible cable shall be supported on an independent Parafil cross span by wrapping, in a spiral form, 1.5 square millimetre, 7/0.05 mm insulated copper building wire over the entire supported length above the standard cross span.

7. SIDE FEEDER

7.1 Overview

This clause applies when side feeders are to be installed.

A 400 square millimetre copper feeder cable running the length of the tramline shall be provided.

For underground installation using, double insulated and screened cable 0.6/1 kV XLPE helical copper screened, PVC sheathed shall be used. Above ground installation shall be in accordance with the Drawings or Contract Specific Requirements.

The new side feeder shall be connected to the existing side feeder cable. Each section of side feeder between Converter Stations or Converter Station to stub end shall connect to the trolley wire in regular intervals. The connections between side feeder and trolley wire shall be via a new pole switch. The distance between connections shall not be greater than 500 m and distributed evenly across each section.

The interval shall be determined by the following formula:

where:

SD = Section distance in metres

Int = Integer result of

SI = Section interval (distance between connections for a nominated section).The final connection shall be to the nearest pole that can accommodate the pole switch and side feeder connection.

The side feeder shall not cause or create unwanted interference with adjacent utilities or with any devices or equipment in the vicinity, whether transient or permanent.

The Contractor shall comply with the relevant AS 61000 series of standards for electromagnetic compatibility.

7.2 Installation of Underground Side Feeder

The Contractor shall install the side feeder cable in 100 mm diameter, heavy duty, rigid uPVC, light orange colour conduits in accordance with Part 253 “Supply and Installation of Conduits and Pits”.

Where not encased in concrete, the conduits shall have a minimum cover of 900 mm and be identified with orange electrical tape suitable for the purpose (complying with AS 2648.1) over the entire length of the conduits located not more than 200 mm directly above the conduits and 300mm below the existing ground surface.

DPTI XXCxxx Page 12

Page 13: €¦  · Web viewCalculations shall include appropriate spans and be calculated at 50°C. ... Permissible Short Circuit: 20 kA / 0.2 secs. ... DC Circuit Breaker Status;

Edition: February 2013 Specification: Part 930 Overhead Catenary

Reference shall be made to DPTI Standard Drawing No. 691-A3-92-227. The trench shall be compacted to 95% dry density.

All conduit entries shall be via the wall of the pits and allow sufficient space for support and strength to bend, guide, and install cable without exceeding the cable manufacturer's specifications. Pits shall have permanent access steps suitable for personnel to safely access the pit. The internal floor of the pit shall be a minimum 100 mm beneath the bottom of the lowest cable entry, and have a suitable sized sump section built into the base.

All cables shall be installed internally within the pole, unless otherwise specified on the Drawings or in the Contract specific Requirements.

7.3 Installation of Above Ground Side Feeder

The Contractor shall design, supply and install a suitable system for the above ground side feeder cables.

Submission of design documentation and installation methodologies shall constitute a HOLD POINT.

7.4 Feeder Cable to Trolley Wire Connections

The Contractor shall design, supply and install the side feeder to trolley wire connections, including (but not limited to) the feeder tap to trolley wire points, lugs proposed, switch mounting, switch type, tap to trolley wire support. Submission of design documentation and installation methodologies shall constitute a HOLD POINT.

At a minimum, the connection between the feeder cable and the trolley wire shall be via a 185 square millimetre copper flexible conductor.

7.5 Cable Markers

Each underground and above ground cable route shall be marked over its entire length with cable markers in accordance with DPTI Standard Drawings No. 691-A3-92-228 and 691-A3-92-229.

All angular deviations, points spurs from the main run cable joints and other pertinent information shall be indicated on a marker. Markers shall be located directly above all such points and shall not be more than 50 m apart.

Joints in the main cables shall be numbered from the Adelaide end of the run and the marker shall be painted yellow.

8. ACCEPTANCE, INSPECTION AND TESTING

8.1 General

The Contractor shall arrange a number of acceptance tests and inspections to be performed in the presence of the Superintendent and PTSOM to observe the inspection and/or tests as outlined in this Specification. The Contractor and subcontractor who performed the work shall be present at all of the inspections and tests.

All components of the system shall be inspected to confirm that they have been installed in accordance with this Specification and the drawings,.

Inspection of system components shall constitute a HOLD POINT.

8.2 Static Inspection and Measuring

8.2.1 Pendulum and Steady Arm Trolley Wire Support Assemblies

The stagger and height of pendulum shall be checked against the cross section temperature height and stagger tables.

8.2.2 Trolley Wire Height Sag and Offset

The trolley wire parameters, together with the temperature at the time of measurement, shall be checked in accordance with the following:

DPTI XXCxxx Page 13

Page 14: €¦  · Web viewCalculations shall include appropriate spans and be calculated at 50°C. ... Permissible Short Circuit: 20 kA / 0.2 secs. ... DC Circuit Breaker Status;

Edition: February 2013 Specification: Part 930 Overhead Catenary

(e) the trolley wire height with respect to the track shall be measured at each support.

(a) the trolley wire sag shall be measured at the middle of each trolley wire span. The ambient temperature shall be recorded at regular intervals during this test.

(b) the trolley wire stagger shall be measured with a mirror gauge at each cross span.

(c) the trolley wire offset shall be measured with a mirror gauge at each support point.

8.2.3 Section Insulators, Crossings and Splices

After installation, Section Insulators, Crossings and Splices shall be adjusted such that:

(a) their running surface under static conditions is at the same height above the rails as the trolley wire at that point.

(b) their running surfaces are parallel to the track and there is a smooth transition from trolley wire to fitting

(c) they will allow pantographs to transverse these fittings without impact.

Tests shall be performed utilising trams with pantographs exhibiting different levels of pantograph carbon wear.

8.2.4 Electrical Clearances and Separations

The clearances and separations of the electrical conductors and fittings shall be checked.

The installation shall be “Mega Tested” with a minimum resistance of 1 meg ohm per kilometre. The Mega Tester shall have a current calibration certificate.

The new system shall not be energised or connected to the existing electrical system and a test tram shall not be run without written approval of the Superintendent.

8.3 Electrical Testing

8.3.1 General

Power shall not be restored to the trolley wire until all tests have been completed and reported, and approval is obtained to proceed. Approval shall constitute a HOLD POINT.

At a minimum, testing and commissioning shall be undertaken in the following stages:

(a) inspections and tests at the manufacturer’s works;

(b) inspections and tests during installation;

(c) software validation; and

(d) commissioning tests.

8.4 Commissioning

8.4.1 General

The commissioning, isolation and energisation of electrical equipment shall be included in the Testing and Commissioning Plan.

All software functions of the control software and all hardware functions shall be demonstrated as being compliant and functional.

At a minimum, the following tests shall be undertaken during system commissioning:

(a) equipment which is configured in Duty/Standby configuration shall be switched during operations to confirm transient free operation of the change over system;

(b) equipment which is designed to be removed from service whilst the system is in operation, shall be tested to confirm the removal performs as designed; and

(c) system equipment shall be calibrated and adjusted to provide optimum performance under nominated operating conditions.

DPTI XXCxxx Page 14

Page 15: €¦  · Web viewCalculations shall include appropriate spans and be calculated at 50°C. ... Permissible Short Circuit: 20 kA / 0.2 secs. ... DC Circuit Breaker Status;

Edition: February 2013 Specification: Part 930 Overhead Catenary

Each element shall be tested to establish that the Works are completed to the satisfaction of the Superintendent and conform to the Specification. At a minimum, the following shall be tested:

(a) the operation and function of all safety and protection systems shall be tested;

(b) operating sequences and interlocks shall be tested; and

(c) applicability and appropriateness of the operation and maintenance procedures.

The commissioning tests shall be conducted under operating conditions likely to be experienced during the life of the system.

8.4.2 Protection Tests

The Converter Station High Voltage and DC Traction Supply protection shall be tested to ensure correct operation of all active features of the protection system.

The tests shall be done as part of the commissioning process. The injection equipment used for testing shall be calibrated and all results documented.

8.4.3 DC Traction Supply

The DC Traction Supply protection system shall be subject to a full secondary injection test sequence that demonstrates the complete functionality of all settings.

8.4.4 Dynamic Testing – Test Tram

The Contractor shall undertake a maximum load test on the system which utilises a number trams at normal operating speeds. The number of trams required for this test shall be agreed with the Superintendent. The test shall be carried out when the ambient temperature is in the range 10 to 30˚C.

Loss of Contact (Arcing)

Loss of contact shall not exceed 1% measured at normal service speed.

Stagger Offset and Height

Measurements recorded and or observed shall be in accordance with this Specification.

Carbon Pantograph Operation

Carbon pantograph pans shall pass through the installation in both directions without impact damage or pantograph blow off.

Section Insulators Crossings and Splices

All fittings and the incoming trolley wires shall be ‘picked up’ (come into running) without undue impact.

8.5 Acceptance

5.5.1 General

The following performance criteria shall apply when trams are commissioned and in full service.

8.5.2 Mean Time Between Failures

For an operating period of 2 full weeks, the performance criteria shall be as follows:

(a) No faults or defects on the traction supply system; and

(b) All trams shall have all traction drives functional and operate without fault that can be attributed to the traction supply system.

8.5.3 Traction Supply System Load Test

DPTI XXCxxx Page 15

Page 16: €¦  · Web viewCalculations shall include appropriate spans and be calculated at 50°C. ... Permissible Short Circuit: 20 kA / 0.2 secs. ... DC Circuit Breaker Status;

Edition: February 2013 Specification: Part 930 Overhead Catenary

This clause applies to the Bombardier Flexity Classic Trams.

The required trams loaded to the equivalent of AW2 with all traction drives functional, current limiting not selected and maximum achievable auxiliary load shall satisfy the following:

(a) For normal operating conditions where all Converter Stations are fully functional, two trams operating at maximum acceleration at locations determined by the Superintendent; and

(b) For abnormal operation when one Converter Station is out of service, three trams operating at maximum acceleration at locations determined by the Superintendent.

Each test shall be repeated 5 times in consecutive 8.5 minute intervals. The Converter Stations shall not trip or fault under these conditions.

Each of the test trams shall provide test results in both an electronic and real time print format as follows:

(a) Real time and date;

(b) Sample time 10 msec;

(c) Pantograph Voltage scaled to engineering units;

(d) Total Tram current scaled to engineering units;

(e) Each test to be linked to a step number; and

(f) All configuration, connection and calibration details of the test equipment and tram number.

The Converter Station under test shall provide test results in both an electronic and real time print format as follows:

(a) Real time and date;(b) Sample time 10 msec;(c) Feeder Voltage scaled to engineering units;(d) Feeder current scaled to engineering units;(e) DC Circuit Breaker Status;(f) Room Temperature scaled to engineering units;(g) Each test to be linked to a step number;(h) All configuration, connection and calibration details of the test equipment and Converter Station name.

9. HOLD POINTS

The following is a summary of Hold Points; vide Part 140 "Quality System Requirements", referenced in this Part:

CLAUSE REF. HOLD POINT RESPONSE TIME4. Submission of junction information 7 working days

5.3.1 Approval of trolley wire minimum height 7 working days

5.3.2 Submission of calculations and trolley wire sag table 14 working days

5.4 Approval of trolley wire setting equipment 3 working days

5.4.2 Submission of calculations and blowout table 14 working days

6.3 Submission of fixing detail information for complex track locations 14 working days

7.3 Submission of information for installation of above ground side feeder cable 14 working days

7.4 Submission of information for side feed to trolley wire connections 14 working days

8.1 Inspection of system components 5 working days

DPTI XXCxxx Page 16

Page 17: €¦  · Web viewCalculations shall include appropriate spans and be calculated at 50°C. ... Permissible Short Circuit: 20 kA / 0.2 secs. ... DC Circuit Breaker Status;

Edition: February 2013 Specification: Part 930 Overhead Catenary

8.3.1 Approval to restore power 2 working days

___________

DPTI XXCxxx Page 17

Page 18: €¦  · Web viewCalculations shall include appropriate spans and be calculated at 50°C. ... Permissible Short Circuit: 20 kA / 0.2 secs. ... DC Circuit Breaker Status;

DPTI XXCxxx Page 18