waste treatment and utilization technologies

Upload: anilkumarv123

Post on 14-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Waste treatment and utilization technologies

    1/35

    Phase 1, Task 2:

    Combustion Technologies

    An assessment of applicable waste combustion technologies, processes, and reference

    facilities capable of processing the waste streams identified in Phase 1, Task 1.

    INSUPPORTOF:

    SouthernAlbertaEnergyFromWasteAlliance

    VulcanInnovationProject

    VulcanCounty

    102Center

    Street,

    Box

    180

    Vulcan,AlbertaT0L2B0

    PREPAREDBY:

    4838RichardRoadSW,Suite140

    WestMountCorporateCampus

    Calgary,AB T3E6L1

    Approved by SAEWA Board: J anuary 27, 2012

  • 7/30/2019 Waste treatment and utilization technologies

    2/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    i

    Contents

    1.0 INTRODUCTION.....................................................................................................................................1

    2.0 DESCRIPTIONOFTECHNOLOGIESTOBEEVALUATED..............................................................................3

    2.1ANAEROBICDIGESTION..............................................................................................................................................4

    2.2MECHANICALBIOLOGICALTREATMENT(MBT)..............................................................................................................4

    2.3RDFPROCESSING.....................................................................................................................................................5

    2.1RDFWITHSTOKERFIRING..........................................................................................................................................6

    2.2RDFW/FLUIDIZEDBEDCOMBUSTION.........................................................................................................................6

    2.3MASSBURNCOMBUSTION.........................................................................................................................................7

    2.4CATALYTICDEPOLYMERIZATION...................................................................................................................................8

    2.5HYDROLYSIS............................................................................................................................................................8

    2.6PYROLYSIS...............................................................................................................................................................9

    2.7GASIFICATION..........................................................................................................................................................9

    2.8PLASMAARCGASIFICATION......................................................................................................................................10

    2.9COMBINEDTECHNOLOGIES.......................................................................................................................................11

    3.0 EVALUATIONANDIDENTIFICATIONOFSHORTLISTOFTECHNOLOGIES.................................................12

    3.1ANAEROBICDIGESTION............................................................................................................................................14

    3.2REFUSEDERIVEDFUELPROCESSINGANDCOMBUSTION.................................................................................................15

    3.3MASSBURNCOMBUSTION......................................................................................................................................17

    3.4CATALYTICDEPOLYMERIZATION.................................................................................................................................17

    3.5HYDROLYSIS..........................................................................................................................................................18

    3.6PYROLYSIS.............................................................................................................................................................18

    3.7GASIFICATION........................................................................................................................................................19

    3.8PLASMAARCGASIFICATION......................................................................................................................................21

    3.9SUMMARYOFPHASEITECHNOLOGIESSCREENING........................................................................................................22

    4.0 SHORTLISTOFTECHNOLOGIES.............................................................................................................23

    5.0 NEXTSTEPS...........................................................................................................................................24

    FiguresFigure 1 SAEWA Membership ................................................................................................................... 2

    Figure 2 - Anaerobic Digestion Facility, Spain .............................................................................................. 4

    Figure 3 - RDF Processing Facility, Virginia ................................................................................................. 5

    Figure 4 - Spreader Stoker Unit .................................................................................................................... 6

    Figure 5 - Fluidized Bed RDF Combustion, Wisconsin ................................................................................. 6

    Figure 6 - Mass Burn Facility, Florida ........................................................................................................... 7

    Figure 7 - Gasification Facility, Tokyo ......................................................................................................... 10

    Figure 8 - Plasma Arc Gasification, Ottawa ................................................................................................ 11

    Figure 9 - Gasification and Catalytic Synthesis, Alberta ............................................................................. 12

    Figure 10 - Anaerobic Digestion Block Diagram ......................................................................................... 14

  • 7/30/2019 Waste treatment and utilization technologies

    3/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    ii

    Figure 11 - Stockpiled RDF in Rennerod, Germany ................................................................................... 16

    Figure 12 - Pyrolysis Block Diagram ........................................................................................................... 19

    Figure 13- Gasification Block Diagram ....................................................................................................... 20

    TablesTable 1: Waste Steams Identified in Task 1 .............................................................................................. 13

    Table 2: Summary of Technology Screening ............................................................................................. 22

    Appendices

    AppendixAProcessFlowDiagrams

  • 7/30/2019 Waste treatment and utilization technologies

    4/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    1

    1.0 Introduction

    TheSouthernAlbertaEnergyfromWasteAlliance(SAEWA)isacoalitionofwastemanagement

    jurisdictionscommittedtoresearchingandrecommendingforimplementation,technological

    applicationsforrecoveringenergyfromwastematerials,andreducingrelianceonlandfills.

    ThemembershipofSAEWAconsistsof16wasteauthoritieslistedbelowandincludedinFigure1:

    BowValleyWasteManagementCommission

    FoothillsRegionalServicesCommission

    MDofRanchlandsNo.66

    Crowsnest/PincherCreekLandfillAssociation

    WillowCreekRegionalWasteManagementServicesCommission

    WheatlandCounty

    VulcanDistrictWasteCommission

    LethbridgeRegionalWasteMgmtServicesCommission

    Townof

    Coalhurst

    TownofCoaldale

    ChiefMountainRegionalSolidWasteAuthority

    NewellRegionalSolidWasteMgmtAuthority

    Taber&districtRegionalWasteManagementAuthority

    NorthFortyMileRegionalWasteMgmtCommission

    SouthFortyWasteServicesCommission

    SpecialAreasBoard(BigCountry)

    InJuly2010,withtheassistanceofagrantfromRuralAlbertaDevelopmentFund,theteamofHDRand

    AECOMwereretainedtoassistSAEWAinfurtherexploringtheopportunitiestodevelopanEnergy

    fromWaste(EFW)facilityinSouthernAlberta. Thisresearchprojectconsistsoffour(4)phases,each

    withaseries

    of

    tasks

    as

    follows:

    Phase1(CurrentPhase) ProjectInitiation

    TASK1: WASTEGENERATIONRATESANDFACILITYSIZING

    TASK2: COMBUSTIONTECHNOLOGIES

    ThecompletionofPhase1activitieswillresultintheidentificationofwastequantitiespotentially

    availabletobemanaged,thesizeofthefacilityrequiredtomanagethesematerials;andthe

    applicabletechnologiescapableofmanagingthequantityandcompositionofavailablewaste

    streams.

    Phase2ThecompletionofPhase2activitieswillresultintheidentificationofwastecollection,

    transportationandhandlingimplicationswithassociatedsitingopportunities;heatrecoveryand

    cogenerationoptions,includingpotentialmarket/sitingopportunities;anadditionallevelofdetail

    withrespecttotheenvironmentalimplications(nowincludingtransportationimpactsfromTask3),

    andthefacilitypermittingandsitingrequirements. Thisphasealsoincludesthedevelopmentofa

  • 7/30/2019 Waste treatment and utilization technologies

    5/35

    Phase 1, Task 2: C

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    Figure 1 SAEWA Membership

  • 7/30/2019 Waste treatment and utilization technologies

    6/35

  • 7/30/2019 Waste treatment and utilization technologies

    7/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    4

    2.1Anaerobic digestionAnaerobicdigestion(AD)istheprocessofdecomposingtheorganicportionofMSWinacontrolled

    oxygendeficientenvironment.Itiswidelyusedtodigestsewagesludgeandanimalmanures.Bacteria

    produceabiogas

    that

    consists

    mainly

    of

    methane,

    water

    vapor,

    and

    CO2

    through

    aprocess

    called

    methanogenesis. Thisisthesameprocessthatgeneratesmethanenaturallyinlandfillsandwetlands.

    Usuallytheprocessisappliedtofoodandgreenwaste,agriculturalwaste,sludge,orothersimilarly

    limitedsegmentsofthewastestream.Theavailabilityofsuitablefeedstockcanbealimitingfactorin

    developmentofthistechnology.Thegasproducedcanbeusedasafuelforboilers,directlyinan

    internalcombustionengineor,insufficientquantities,inagasturbinetoproduceelectricity. The

    remainingresidueorsludge(digestate),whichcanbemorethan50%oftheinput,mayhavepotential

    use.AprocessflowdiagramisprovidedinFigureA.1inAppendixA.

    OdourisacharacteristicofAD. Sitelocationandodourcontrolwouldbeamajorfactorinthe

    implementationofthistechnology.

    ADiswidelyusedonacommercialscalebasis

    forindustrial

    and

    agricultural

    wastes,

    as

    well

    as

    wastewatersludge. ADtechnologyhasbeen

    appliedonalargerscaleinEuropeonmixed

    MSWandsourceseparatedorganics(SSO),but

    thereisonlylimitedcommercialscale

    applicationinNorthAmerica. TheGreater

    TorontoAreaishometotwooftheonly

    commercialscaleplantsinNorthAmericathat

    aredesignedspecificallyforprocessingSSO;

    theDufferinOrganicProcessingFacilityin

    TorontoandtheCCIEnergyFacilityin

    Newmarket.There

    are

    anumber

    of

    smaller

    facilitiesintheU.S.operatingoneithermixed

    MSW,SSO,orinsomecasescodigestedwith

    biosolids.

    VendorsincludeArrowEcology,Urbaser(ValorgaInternational),MustangRenewablePowerVentures,

    Ecocorp,OrganicWasteSystems,andGreenfinch.

    2.2Mechanical Biological Treatment (MBT)Mechanicalbiologicaltreatment(MBT)isavariationoncompostingandmaterialsrecovery.This

    technologyisgenerallydesignedtoprocessafullycommingledMSWstream.Processedmaterials

    includemarketablemetals,glass,otherrecyclables,andarefusederivedfuel(RDF)thatcanbeusedfor

    combustion.LimitedcompostingisusedtobreaktheMSWdownanddrythefuel.Theorderof

    mechanicalseparating,shredding,andcompostingcanvary.

    ThistechnologyhasbeenusedextensivelyinEurope,butnotinNorthAmerica. Itisaneffectivewaste

    managementmethodandcanbebuiltinvarioussizes.TheRDFproducedbyanMBTprocessmustbe

    handledinsomeway:fireddirectlyinaboiler;convertedtoenergyviasomethermalprocess(e.g.,

    combustion,gasification,etc.);orsellingittoathirdparty(e.g.CementKiln). Owingtoitssimilarityto

    Figure 2 - Anaerobic Digestion Facility, Spain

  • 7/30/2019 Waste treatment and utilization technologies

    8/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    5

    RDFprocessinganditsuseofcompostingratherthananenergyrecoverytechnology,thisoptionwillnot

    beincludedforfurtheranalysis.

    ThistechnologyhasbeenusedinEurope,includingHerhofGmbHfacilitiesinGermany. Therehasnot

    beenwidespreadcommercialapplicationofthistechnologyonmixedMSWstreamsinNorthAmerica.

    Themajority

    of

    the

    applications

    for

    this

    technology

    are

    in

    the

    agricultural

    and

    meat

    processing

    industries. TheBedminsterBioconversioninvessel,mechanical,rotatingdrumtechnology(also

    referredtoasrotarydigesters)usedattheEdmontonCompostingFacilityisanexampleofa

    commerciallyavailableMBTtechnologythathasexperienceprocessingresidentialwaste. TheCityof

    TorontoisalsoconsideringdevelopingacommercialscaleMBTfacilityatitsGreenLaneLandfillSite

    locatedsouthwestofLondon.

    2.3RDF ProcessingAnRDFprocessingsystempreparesMSWbyusingshredding,screening,airclassifyingandother

    equipmenttoproduceafuelproductforeitheronsitecombustion,offsitecombustion,orusein

    anotherconversiontechnologythatrequiresapreparedfeedstock.Aswithmechanicalbiological

    treatment(MBT),

    the

    goal

    of

    this

    technology

    is

    to

    derive

    abetter

    fuel

    (limited

    variations

    in

    size

    and

    composition)thatcanbeusedinamoreconventionalsolidfuelboilerascomparedtoamassburn

    boiler.Thetheoryisthatthesmallerboilerand

    associatedequipmentwouldoffsetthecostof

    theprocessingequipment.Thefuelgoesby

    variousnamesbutgenerallyiscategorizedasa

    refusederivedfuel(RDF).

    Allofthepostrecyclingmunicipalwaste

    streamcanbeprocessedbythistechnology

    withlimitedpresorting.

    Thissame

    technology,

    perhaps

    with

    some

    differencessuchasfinershredding,isrequired

    toprepareMSWasafeedstockforother

    conversiontechnologies(discussedinlater

    sections).

    RDFtechnologyisaproventechnologythatis

    usedatanumberofplantsintheU.S.,Europe

    andAsia(generallylargerplantswithcapacities

    greaterthan1,500tonnesperday). Therearealsoanumberofcommercialreadytechnologiesthat

    convertthewastestreamintoastabilizedRDFpelletthatcanbefiredinanexistingcoalboileror

    cementkiln. TheDongarafacilitylocatedinYorkRegionisanexampleofsuchaRDFtechnology. Some

    otherRDF

    plants

    are

    Ames,

    IA;

    Southeastern

    Public

    Service

    Authority,

    VA;

    French

    Island,

    WI;

    Mid

    Connecticut;Honolulu,HI;andWestPalmBeach,FL. ThereislimiteduseofthistechnologyinEuropeor

    Asia.

    AprocessflowdiagramisprovidedinFigureA.2inAppendixA.

    Vendors/SystemDesigners:EnergyAnswers;RRT;Dongara;WestrocEnergy;AmbientEcoGroup;and,

    CobbCreations

    Figure 3 - RDF Processing Facility, Virginia

  • 7/30/2019 Waste treatment and utilization technologies

    9/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    6

    2.1RDF with Stoker FiringThistechnologyusesaspreaderstokertypeboilertocombustRDF.A

    frontendprocessingsystemisrequiredtoproduceaconsistently

    sizedfeedstock. (See2.3RDFProcessing.) TheRDFistypicallyblown

    ormechanically

    injected

    into

    aboiler

    for

    semi

    suspension

    firing.

    Combustioniscompletedonatravelinggrate.Thermalrecovery

    occursinanintegralwaterwallboiler.Airpollutioncontrol(APC)

    equipmentonexistingunitsincludesgoodcombustionpractices,dry

    scrubbersforacidgasneutralization,carboninjectionforcontrolof

    mercuryandcomplexorganics(e.g.,dioxins),andfabricfiltersfor

    particulateremoval. Thesefacilitiesarecapableofmeetingstringent

    airemissionrequirements.Newunitswouldlikelyrequireadditional

    NOxcontrolsuchasselectivenoncatalyticreduction(SNCR),

    selectivecatalyticreduction(SCR)orfluegasrecirculation.

    Thistechnologyisusedatthefollowingfacilitiesmentionedabove:

    SoutheasternPublicServiceAuthority,VA;MidConnecticut;Honolulu,HI;andWestPalmBeach,FL.

    BoilerVendors: Alstom;BabcockandWilcox;BabcockPower

    2.2RDF w/ Fluidized Bed CombustionThistechnologyusesabubblingorcirculatingfluidizedbedofsandtocombustRDF.Afrontend

    processingsystemisrequiredtoproduceaconsistentlysizedfeedstock. (See2.3RDFProcessing.) Heat

    isrecoveredintheformofsteamfrom

    waterwallsofthefluidizedbedunitaswellasin

    downstreamboilerconvectionsections. The

    requiredAPC

    equipment

    is

    generally

    similar

    to

    thatdescribedaboveforspreaderstokerunits.

    Limecanbeaddeddirectlytothefluidizedbedto

    helpcontrolacidgasessuchassulfurdioxide

    (SO2). RDFmaybecofiredwithcoal,wood(asin

    thecaseoftheFrenchIslandfacilityshown),or

    othermaterials.

    Thistechnologyisinlimitedcommercialusein

    NorthAmericaforwasteapplicationswithone

    operatingfacilityinWisconsin.Fluidizedbed

    combustionismorecommonlyusedtodayfor

    combustionof

    certain

    other

    biomass

    materials

    and

    coal

    than

    it

    was

    at

    the

    time

    most

    of

    the

    existing

    RDF

    facilitiesweredeveloped. ThistechnologywouldbesuitableforcombustionofRDFaloneortogether

    withbiomassandothercombustiblematerialsthatareeithersuitablysized(nominally8cm)orcanbe

    processedtoasuitablesize.

    FluidizedBedBoilerVendors:EnvironmentalProductsofIdaho(EPI),VonRollInova,FosterWheeler,

    andEbara.

    Figure 4 - Spreader Stoker Unit

    Figure 5 - Fluidized Bed RDF Combustion, Wisconsin

  • 7/30/2019 Waste treatment and utilization technologies

    10/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    7

    2.3Mass-burn combustionMassBurncombustiontechnologycan

    bedividedintotwomaintypes:(a)

    gratebased,waterwallboiler

    installations;and

    (b)

    modular,

    shop

    erectedcombustionunitswithshop

    fabricatedwasteheatrecoveryboilers.

    Themodularunitsaretypicallylimited

    tolessthan200tonnesperdayandare

    historicallyusedinfacilitieswherethe

    totalthroughputisunder500tpd. The

    largerMassBurnCombustionprocess

    withwaterwallboilersfeedMSW

    directlyintoaboilersystemwithno

    preprocessingotherthantheremoval

    oflarge

    bulky

    items

    such

    as

    furniture

    andwhitegoods. TheMSWistypically

    pushedontoagratebyaramconnectedtohydrauliccylinders. Airisadmittedunderthegrates,into

    thebedofmaterial,andadditionalairissuppliedabovethegrates. Theresultingfluegasespass

    throughtheboilerandthesensibleheatenergyisrecoveredintheboilertubestogeneratesteam. This

    createsthreestreamsofmaterial:Steam,FlueGasesandAsh. Thesteamcanbesolddirectlytoanend

    usersuchasamanufacturingfacilityordistrictheatingloop,orsenttoaturbinegeneratorand

    convertedintoelectricalpower,oracombinationoftheseuses. Inthesmallermodularmassburn

    systems,MSWisfedintoarefractorylinedcombustorwherethewasteiscombustedonrefractorylined

    hearths,orwithinarefractorylinedoscillatingcombustor(e.g.LaurentBouillet). Typicallythereisno

    heatrecoveryintherefractorycombustors,butrather,thefluegasesexitthecombustorsandentera

    heat

    recovery

    steam

    generator,

    or

    waste

    heat

    boiler,

    where

    steam

    is

    generated

    by

    the

    sensible

    heat

    in

    thefluegas,resultinginthesamethreestreams:steam,fluegas,andash. Thebottomashfrommass

    burncombustionmayalsobeusedasaconstructionbasematerial,whichisacommonenduseforthis

    byproductinEurope. Theflyashfromtheboilerandfluegastreatmentequipmentiscollected

    separatelyandcaneitherbetreatedordisposedofdirectlyasahazardousmaterialinCanada.

    Massburntechnologiesutilizeanextensivesetofairpollutioncontrol(APC)devicesforfluegasclean

    up.ThetypicalAPCequipmentusedinclude:eitherselectivecatalyticreduction(SCR)ornoncatalytic

    reduction(SNCR)forNOxemissionsreduction;spraydryerabsorbers(SDA)orscrubbersforacidgas

    reduction;activatedcarboninjection(CI)formercuryanddioxinsreduction;andafabricfilterbaghouse

    (FF)forparticulateandheavymetalsremoval.

    Largescaleandmodularmassburncombustiontechnologyisusedincommercialoperationsatmore

    than80

    facilities

    in

    the

    U.S.,

    two

    in

    Canada,

    and

    more

    than

    500

    in

    Europe,

    as

    well

    as

    anumber

    in

    Asia.

    Examplesoflargerscalegratesystemtechnologyvendors(someoffermorethanonedesign)include:

    MartinGmbH,VonRollInova,KeppelSeghers,Steinmuller,FisiaBabcock,Volund,Takuma,andDetroit

    Stoker. Someexamplesofsmallerscaleandmodularmassburncombustionvendorsinclude:Enercon,

    LaurentBouillet,Consutech,andPioneerPlus. AprocessflowdiagramisprovidedinFigureA.3in

    AppendixA.

    Figure 6 - Mass Burn Facil ity, Florida

  • 7/30/2019 Waste treatment and utilization technologies

    11/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    8

    2.4Catalytic DepolymerizationInacatalyticdepolymerizationprocess,theplastics,syntheticfibrecomponentsandwaterintheMSW

    feedstockreactwithacatalystundernonatmosphericpressureandtemperaturestoproduceacrude

    oil.Thiscrudeoilcanthenbedistilledtoproduceasyntheticgasolineorfuelgradediesel.Thereare

    fourmajor

    steps

    in

    acatalytic

    depolymerization

    process:

    Pre

    processing,

    Process

    Fluid

    Upgrading,

    CatalyticReaction,andSeparationandDistillation.ThePreprocessingstepisverysimilartotheRDF

    processwheretheMSWfeedstockisseparatedintoprocessresidue,metalsandRDF. Thisprocess

    typicallyrequiresadditionalprocessingtoproduceamuchsmallerparticlesizewithlesscontamination.

    ThenextstepintheprocessispreparingthisRDF.TheRDFismixedwithwaterandacarrieroil

    (hydraulicoil)tocreateRDFsludge.ThisRDFsludgeissentthroughacatalyticturbinewherethe

    reactionunderhightemperatureandpressureproducesalightoil.Thelightoilisthendistilledto

    separatethesyntheticgasolineordieseloil.

    Thiscatalyticdepolymerizationprocessissomewhatsimilartothatusedatanoilrefinerytoconvert

    crudeoilintousableproducts. Thistechnologyismosteffectivewithprocessingawastestreamwitha

    highplasticscontentandmaynotbesuitableforamixedMSWstream. Theneedforahighplastics

    contentfeedstockalsolimitsthesizeofthefacility.

    TherearenolargescalecommercialcatalyticdepolymerizationfacilitiesoperatinginNorthAmericathat

    useapurelymixedMSWstreamasafeedstock. TherearesomefacilitiesinEuropethatutilizethisora

    similarprocesstoconvertwasteplastics,wasteoils,andotherselectfeedstocks. Onevendorclaimsto

    haveacommercialscalefacilityinSpainthathasbeeninoperationsincethesecondhalfof2009.

    However,operatingdataoranupdateonthestatusofthisfacilitycouldnotbeobtained.

    Therearealsotechnologyvendorsthatutilizeaprocessthatisthermalinnature(e.g.,gasification,

    pyrolysis)toconverttheMSWstreamtoasyngasthatisfurthertreatedbyachemicalprocess,suchas

    depolymerizationoranassociatedrefiningprocess(e.g.,FischerTropschsynthesis),togeneratea

    syntheticgasolineordieselfuel. TheCityofEdmontonprojectinAlberta,CanadathatusestheEnerkem

    technologyis

    an

    example

    of

    acommercial

    scale

    facility

    that

    will

    use

    such

    aprocess.

    The

    City

    of

    Edmontonhasconductedsomepilottesting,andthecommercialscaleprojectiscurrentlyin

    construction(scheduledtobeoperationalby2012).

    AprocessflowdiagramisprovidedinFigureA.4inAppendixA.

    Someexamplesofvendorsthatprovidecatalyticdepolymerizationtypetechnologiesinclude:ConFuel

    K2,AlphaKat/KDV,Enerkem,ChangingWorldTechnologies,andGreenPowerInc.

    2.5HydrolysisThereismuchinterestanddevelopmentintheareaofcellulosicethanoltechnologytomovefromcorn

    basedethanolproductiontotheuseofmoreabundantcellulosicmaterials. Applyingthesetechnologies

    towaste

    materials

    using

    hydrolysis

    is

    part

    of

    that

    development.

    ThehydrolysisprocessinvolvesthereactionofthewaterandcellulosefractionsintheMSWfeedstock

    (e.g.,paper,foodwaste,yardwaste,etc.)withastrongacid(e.g.,sulfuricacid)toproducesugars.Inthe

    nextprocessstep,thesesugarsarefermentedtoproduceanorganicalcohol.Thisalcoholisthen

    distilledtoproduceafuelgradeethanolsolution.Hydrolysisisamultistepprocessthatincludesfour

    majorsteps:Pretreatment;Hydrolysis;Fermentation;andDistillation.SeparationoftheMSWstreamis

    necessarytoremovetheinorganic/inertmaterials(glass,plastic,metal,etc.)fromtheorganicmaterials

  • 7/30/2019 Waste treatment and utilization technologies

    12/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    9

    (foodwaste,yardwaste,paper,etc.).Theorganicmaterialisshreddedtoreducethesizeandtomake

    thefeedstockmorehomogenous.Theshreddedorganicmaterialisplacedintoareactorwhereitis

    introducedtotheacidcatalyst. Thecelluloseintheorganicmaterialisconvertedintosimplesugars.

    Thesesugarscanthenbefermentedandconvertedintoanalcoholwhichisdistilledintofuelgrade

    ethanol.The

    byproducts

    from

    this

    process

    are

    carbon

    dioxide

    (from

    the

    fermentation

    step),

    gypsum

    (fromthehydrolysisstep)andlignin(noncellulosematerialfromthehydrolysisstep). Sincetheacid

    actsonlyasacatalyst,itcanbeextractedandrecycledbackintotheprocess.

    Therehavebeensomedemonstrationandpilotscalehydrolysisapplicationscompletedusingmixed

    MSWandotherselectwastestreams. However,therehasbeennowidespreadcommercialapplication

    ofthistechnologyinNorthAmericaorabroad. Acommercialscalehydrolysisfacilityhasbeen

    permittedforconstructioninMonroe,NewYorkintheU.S.,butthisprojectiscurrentlyonhold.

    Someexamplesofvendorsthatoffersomeformofthehydrolysistechnologyinclude:MasadaOxyNol;

    Biofine;and,ArkenolFuels.AprocessflowdiagramisprovidedinFigureA.5inAppendixA.

    2.6PyrolysisPyrolysisisgenerallydefinedastheprocessofheatingMSWinanoxygendeficientenvironmentto

    produceacombustiblegaseousorliquidproductandacarbonrichsolidresidue.Thisissimilartowhat

    isdonetoproducecokefromcoalorcharcoalfromwood.Thefeedstockcanbetheentiremunicipal

    wastestream,but,insomecases,presortingorprocessingisusedtoobtainarefusederivedfuel. (See

    2.3RDFProcessing.) Somemodularcombustorsuseatwostagecombustionprocessinwhichthefirst

    chamberoperatesinalowoxygenenvironmentandthecombustioniscompletedinthesecond

    chamber.Similartogasification,oncecontaminantshavebeenremoved,thegasorliquidderivedfrom

    theprocesscanbeusedinaninternalcombustionengineorgasturbineorasafeedstockforchemical

    production.Generally,pyrolysisoccursatalowertemperaturethangasification,althoughthebasic

    processesaresimilar.

    Pyrolysissystems

    have

    had

    some

    success

    with

    wood

    waste

    feedstocks.

    Several

    attempts

    to

    commercializelargescaleMSWprocessingsystemsintheU.S.inthe1980sfailed,butthereareseveral

    pilotprojectsatvariousstagesofdevelopment.Therehavebeensomecommercialscalepyrolysis

    facilitiesinoperationinEurope(e.g.Germany)onselectwastestreams. Vendorsclaimthatthe

    activatedcarbonbyproductfromthepyrolysisismarketable,butthishasnotbeendemonstrated.

    Someexamplesofvendorsthatofferthepyrolysistechnologyinclude:BrightstarEnvironmental,Mitsui,

    CompactPower,PKA,ThideEnvironmental,WasteGenUK,InternationalEnvironmentalSolutions(IES),

    SMUDATechnologies(plasticsonly),andUtahValleyEnergy. Aprocessflowdiagramisprovidedin

    FigureA.6inAppendixA.

    2.7GasificationGasification

    converts

    carbonaceous

    material

    into

    asynthesis

    gas

    or

    syngas

    composed

    primarily

    of

    carbonmonoxideandhydrogen.Followingacleaningprocesstoremovecontaminantsthissyngascan

    beusedasafueltogenerateelectricitydirectlyinacombustionturbine,orfiredinaHRSGtocreate

    steamthatcanbeusedtogenerateelectricityviasteamcondensingturbine. Thesyngasgeneratedcan

    alsobeusedasachemicalbuildingblockinthesynthesisofgasolineordieselfuel. Thefeedstockfor

    mostgasificationtechnologiesmustbepreparedintoRDFdevelopedfromtheincomingMSW,orthe

    technologymayonlyprocessaspecificsubsetofwastematerialssuchaswoodwaste,tires,carpet,

  • 7/30/2019 Waste treatment and utilization technologies

    13/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    10

    scrapplastic,orotherwastestreams. SimilartoFluidizedBedCombustion,theseprocessestypically

    requiremorefrontendseparationandmoresizereduction,andresultinlowerfuelyields(lessfuelper

    tonneofMSWinput). Thereexistsonetechnology,Thermoselect,whichdoesnotrequire

    preprocessingoftheincomingMSWsimilartoamassburncombustionsystem.

    Thefeedstock

    reacts

    in

    the

    gasifier

    with

    steam

    and

    sometimes

    air

    or

    oxygen

    at

    high

    temperatures

    and

    pressuresinareducing(oxygenstarved)environment. Inadditiontocarbonmonoxideandhydrogen,

    thesyngasconsistsofwater,smallerquantitiesofCO2,andsomemethane. Processingofthesyngas

    canbecompletedinanoxygendeficientenvironment,orthegasgeneratedcanbepartiallyorfully

    combustedinthesamechamber.Thelow tomidMegajoulesyngascanbecombustedinaboiler,or

    followingacleanupprocessagasturbine,orengineorusedinchemicalrefining.Ofthesealternatives,

    boilercombustionisthemostcommon,butthecycleefficiencycanbeimprovedifthegascanbe

    processedinanengineorgasturbine,particularlyifthewasteheatisthenusedtogeneratesteamand

    additionalelectricityinacombinedcyclefacility.

    Airpollutioncontrolequipmentsimilartothatofamass

    burnunitwillberequiredifthesyngasisuseddirectlyin

    aboiler.

    If

    the

    syngas

    is

    conditioned

    for

    use

    elsewhere,

    theconditioningequipmentwillneedtoaddressacid

    gases,mercury,tarsandparticulates.

    Gasificationhasbeenproventoworkonselectwaste

    streams,particularlywoodwastes. However,the

    technologydoesnothavealotofcommercialscale

    successusingmixedMSWwhenattemptedintheU.S.

    andEurope. Japanhasseveraloperatingcommercial

    scalegasificationfacilitiesthatclaimtoprocessatleast

    someMSW.InJapan,onegoaloftheprocessisto

    generateavitrifiedashproducttolimittheamountofmaterialhavingtobedivertedtoscarcelandfills.

    Inaddition,

    many

    university

    size

    research

    and

    development

    units

    have

    been

    built

    and

    operated

    on

    an

    experimentalbasisinNorthAmericaandabroad. AprocessflowdiagramisprovidedinFigureA.7in

    AppendixA.

    Examplesofanumberofpotentialgasificationvendorsinclude:Thermoselect,Ebara,Primenergy,

    BrightstarEnvironmental,Erergos,TaylorBiomassEnergy,SilvaGas,Technip,CompactPower,PKA,and

    NewPlanetEnergy.

    2.8Plasma Arc GasificationPlasmaarctechnologyusescarbonelectrodestoproduceaveryhightemperaturearcrangingbetween

    3,000to7,000degreesCelsiusthatvaporizesthefeedstock. Thehighenergyelectricarcthatisstruck

    betweenthe

    two

    carbon

    electrodes

    creates

    ahigh

    temperature

    ionized

    gas

    (or

    plasma).

    The

    intense

    heatoftheplasmabreakstheMSWandtheotherorganicmaterialsfedtothereactionchamberinto

    basicelementalcompounds. Theinorganicfractions(glass,metals,etc.)oftheMSWstreamaremelted

    toformaliquidslagmaterialwhichwhencooledandhardenedencapsulatestoxicmetals. Theash

    materialformsaninertglasslikeslagmaterialthatmaybemarketableasaconstructionaggregate.

    Metalscanberecoveredfrombothfeedstockpreprocessingandfromthepostprocessingslag

    material.

    Figure 7 - Gasification Facility, Tokyo

  • 7/30/2019 Waste treatment and utilization technologies

    14/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    11

    Similartogasificationandpyrolysisprocesses,theMSWfeedstockispreprocessedtoremovebulky

    wasteandotherundesirablematerials,aswellasforsizereduction.Plasmatechnologyalsoproducesa

    syngas;thisfuelcanbecombustedandtheheatrecoveredinaHRSG,orthesyngascanbecleanedand

    combusteddirectlyinaninternalcombustionengineor

    gasturbine.

    Electricity

    and/or

    thermal

    energy

    (i.e.

    steam,hotwater)canbeproducedbythistechnology.

    Vendorsofthistechnologyclaimefficienciesthatare

    comparabletoconventionalmassburntechnologies

    (600700+kWh/tonne(net)).Somevendorsare

    claimingevenhigherefficiencies(9001,200

    kWh/tonne(net)).Thesehigherefficienciesmaybe

    feasibleifacombinedcyclepowersystemisproposed.

    However,theelectricityrequiredtogeneratethe

    plasmaarc,aswellastheotherauxiliarysystems

    required,bringsintoquestionwhethermoreelectrical

    powerorotherenergyproductscanbeproducedthan

    whatisconsumedintheprocess.

    Thistechnologyclaimstoachievelowerharmfulemissionsthanmoreconventionaltechnologies,like

    massburnandRDFprocesses. However,APCequipmentsimilartoothertechnologieswouldstillbe

    requiredforthecleanupofthesyngasorotheroffgases.

    Plasmatechnologyhasreceivedconsiderableattentionrecently,andthereareseverallargescale

    projectsbeingplannedinNorthAmerica(e.g.SaintLucieCounty,Florida;AtlanticCounty,NewJersey).

    Inaddition,thereareanumberofcommercialscaledemonstrationfacilitiesinNorthAmerica,including

    thePlascoEnergyFacilityinOttawa,OntarioandtheAlterNRGdemonstrationfacilityinMadison,

    PennsylvaniaintheU.S. PyroGenesisCanada,Inc.,basedoutofMontreal,Quebec,alsohasa

    demonstrationunit(approximately10tpd)locatedonHulburtAirForceBaseinFloridathathasbeenin

    variousstages

    of

    start

    up

    since

    2010.

    ThereareanumberofPlasmaArctechnologyvendors,includingStartech,Geoplasma,PyroGenesis

    Canada,Inc.,Westinghouse,AlterNRG,PlascoEnergy,IntegratedEnvironmentalTechnologiesand

    Coronal.

    2.9Combined TechnologiesGasificationsystemshavebeenproposedtobecombinedwithothertechnologiestoattemptto

    producealiquidfuel. TheEnerkemAlbertaBiofuelsprojectinCalgaryproposestousegasification

    followedbycatalyticsynthesisofthesyngastoproduceethanol. Agasificationfacilityproposedby

    InterstateWasteTechnologies(IWT)inTaunton,Massachusettsthatranintoapprovaldifficultiesowing

    toastatewideincinerationbanhadalsoproposedconvertingthesyngastoethanol.

    Thesearefacilitiesthatwouldbeconsidereddemonstrationfacilitiesbecausethetechnologyhasnot

    previouslybeenprovencommerciallyonamunicipalsolidwastefeedstock.

    Vendors: Enerkem,IWT

    Figure 8 - Plasma Arc Gasification, Ottawa

  • 7/30/2019 Waste treatment and utilization technologies

    15/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    12

    Source: www.enerkem.com

    Figure 9 - Gasification and Catalytic Synthesis, Alberta

    3.0 Evaluation and Identification of Short-List of Technologies

    ThetechnologiesdiscussedinSection2.0coverawidespectrumofwasteprocessingapproaches. The

    screeninginthissectionidentifiesthetechnologiesapplicabletothewastestreamidentifiedinTask1of

    thisprojectthatareproven,orthathaveshownarealpotentialtoworkefficientlyandreliablyinNorth

    Americaandabroad,fromthosethathavenotbeeneffectivelyimplemented. Effectivelyimplementedhasseveralcomponentsincludingareliableprocessandeconomicviabilitycomparedtoother

    technologieswiththesamegoal(wastereductionorenergygeneration)togetherwithalackof

    environmentaleffectsthataredifficulttomanageorpermit.

    Thecriteria

    included

    in

    the

    screening

    process

    are

    as

    follows:

    StateofDevelopment;

    EnvironmentalConsiderations;

    Risk;and,

    ApplicabilitytothewastestreamidentifiedinTask1.

    Thestateofdevelopmentoftechnologiesbeingconsideredinthisevaluationvarieswidely. One

    technologyisincommercialoperationusingMSWasafeedstockinnumerousfacilitiesworldwide.

    AnotherisinlimitedcommercialoperationusingsupplementedMSWasafeedstockinJapan. Athirdis

    inoperationusingaselectedportionoftheMSWwastestreamatafewcommercialinstallationsin

    Europe. Othershavedemonstrationand/orpilotfacilitiesinoperationordevelopmentusingMSWasa

    feedstock. Somehaveprototypefacilitiesunderconstruction. Someareyettobedeveloped

    commercially.Thesedifferenceswillbetabulatedforcomparison.

    Eachofthetechnologieswillposeenvironmentalconsiderations. Thedifferences,ifany,intheabilityof

    thetechnologiestocomplywithpermitrequirementswillbetabulatedforcomparison. These

    environmentalconsiderationswillbeassessedingreaterdetailinlatertasksofthisstudyandwill

    includethepotentialairemissions,waterconsumptionand/ordischarge,andlandrequirements.

  • 7/30/2019 Waste treatment and utilization technologies

    16/35

  • 7/30/2019 Waste treatment and utilization technologies

    17/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    14

    WasteStream

    PotentiallyAvailable

    WasteforSAEWA

    (Tonnes/year)

    OtherWaste

    Sources:

    ICISectorWaste 0

    AgriculturalWaste 0

    Biosolids 1,232

    ContaminatedSoils 0

    CombustibleOilfieldWaste 2,500

    RailwayTies 124,650

    SpecifiedRiskMaterials MBM 27,500

    TOTAL 366,032

    Atablehasalsobeenpreparedshowingtheadvantagesanddisadvantagesofthevarioustechnologies

    andashortlistofreasonabletechnologiesidentified.

    3.1Anaerobic DigestionAnaerobicdigestionisusedextensivelyfor

    processingwastewater

    treatment

    sludge,

    butithasnotbeenusedextensivelyfor

    treatingMSW. Thereareseveralplantsin

    EuropetreatingaportionoftheMSW

    stream. InNorthAmericaanaerobic

    digestionwithenergyrecoveryiscommonin

    wastewatertreatmentapplications,buthas

    yettobeemployedcommerciallyusing

    MSWasafeedstock.

    Figure10showsablockdiagramofan

    anaerobicdigestionprocess. Thedigestion

    processis

    similar

    to

    what

    occurs

    in

    alandfill

    andcanbequitemalodourous.Most

    systemsaresmallerissizeduetothelimited

    feedstock.AlowBtugasmightbecollected

    forenergyrecoveryinaboiler,engine,or

    otherdevice,orinsmallquantitiesitcould

    beflared.Theremainingresidueorsludge,whichcanbemorethan50%oftheinput,couldbescreened

    andusedasasoilamendment.Anaerobicdigestioncouldreducethetotalwastestreambylessthan

    Figure 10 - Anaerobic Digestion Block Diagram

  • 7/30/2019 Waste treatment and utilization technologies

    18/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    15

    10%to20%,dependingonthelevelofsourceseparatedcollectionandthetypesofmaterials

    processed.

    Theenvironmentalrisksincludepotentialemissionsofmethaneandothergreenhousegases.Minor

    hydrocarbonemissionscanoccurandresultinodourcomplaintsfromneighbors.Somewatermightbe

    used;however,

    in

    many

    cases,

    excess

    water

    would

    be

    discharged

    from

    the

    facility.

    Depending

    on

    the

    feedstock,thesoilamendmentproductcouldhavetracemetalsorothercontaminants. Upon

    combustionofthemethaneNOxemissionsmayrequirecontrol.

    Theprimaryriskassociatedwiththistechnologywouldbethepotentialforodours. Iffeedstockother

    thansourceseparatedorganicmaterialsisutilized,therewouldberiskofdifficultieswithprocessing

    materialsaswellasperformanceissuesassociatedwithdeleteriousmaterialsinthewastestream.

    Thistechnologywouldbeabletohandlefoodwasteorothersourceseparatedorganicmaterials,butit

    wouldnotbeapplicabletotheentirewastestream. Itmaybeaviabledisposaloptionforthe25,000to

    30,000tonnesperyearofmeatandbonemealfromSRMidentifiedinTask1aswellasaportionofthe

    MSWstreamidentified. UsingADtomanageSRMmustbeapprovedbytheCFIA.

    Conclusion

    Forselect

    portions

    of

    the

    waste

    stream

    identified

    in

    Task

    1this

    would

    be

    considered

    a

    proventechnologypresentinglimitedrisk. Theenvironmentalconcernscouldbeaddressed.This

    technologywillbeincludedontheshortlist,however,willnotbeabletomanagetheentirewaste

    streamidentifiedaspotentiallyavailable.

    3.2Refuse-Derived Fuel Processing and CombustionRDFfacilitiescanbeusedtoaddressnearlytheentirewastestreamidentifiedinTask1. Useofthe

    railroadtieswouldrequirepreshredding. Facilitiescanrangeinsizefromseveralhundredtonnesper

    daytomorethan3,000tonnesperday. Historically,RDFfacilitieswerelargetotakeeconomic

    advantageofthereducedsizeofthecombustionequipment. Recyclingprocessescanalsobebuiltinto

    anRDFfacility;however,thesedirtyMRFs(whichsortmixedMSWandrecyclables)usuallyarelimited

    intheir

    productivity.

    Metals

    can

    usually

    be

    sorted

    by

    magnets

    and

    eddy

    current

    separators.

    An

    RDF

    facilitystrivestodevelopaconsistentlysizedfuelwitharelativelyconstantheatingvalue.These

    facilitiescanemploymultipleshreddingstages,largetrommelscreensorothertypesofscreensfor

    sizing,severalstagesofmagnets,andpossiblyairseparationandeddycurrentmagnets.Theproduct

    wouldtypicallyhaveanominalparticlesizeof9to10cm,havethegritandmetalslargelyremoved,and

    bereadytofeedintoaboiler.

    ThecomplexityofanRDFfacilitycanbequitehigh,sincetheplantattemptstoproduceafuelwitha

    consistentsize,moistureandashcontent.Thefuelusermightbededicatedand/orlocatedonsiteor

    nearby.Itisalsopossiblethatthefuelproducedcouldbesuppliedtoanexistingoffsiteboilerthatcan

    handletheRDFasasupplementalfeedstock.Someexistingwoodorcoalfiredboilerscouldbeableto

    processtheRDFandsaveonfuelcosts.However,corrosionisaconcernforboilersthatarenotdesigned

    forRDF.

    OtherRDFfacilitiescanbeclassifiedasashredandburnstyle,whichshredthematerialand

    magneticallyremoveferrousmetalswithoutremovingfines. SomeRDFfacilitieshaveconvertedto

    shredandburnthroughblankingthesmallholesintrommels. Thepurposeforthisistoreducethe

    overallamountofresidue(fines)landfilled.

  • 7/30/2019 Waste treatment and utilization technologies

    19/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    16

    ThereareseveralexamplesofRDFplantsintheU.S.thatusevaryingdegreesofpreprocessingandRDF

    production.RDFfrontendprocessingcancreatechallengesforthefacility.Explosionscanoccurinthe

    shredders,thusrequiring,ataminimum,theprimaryshredderstobeplacedinexplosionresistant

    bunkers.MSWisveryabrasive,whichcauseswearandtearonallcomponents.Allsystemsaresubject

    tohigh

    maintenance

    costs

    and

    require

    extensive

    repairs

    and

    frequent

    cleaning

    to

    keep

    the

    facility

    online.Normally,processingoccursononeortwoshiftswithashiftreservedeachdayforcleaningand

    maintenance.Therefore,processingsystemsneedtobesizedlargerthantheassociatedboilers,and

    storagecapacitymustbeprovidedbothforincomingwasteandforRDFtokeepthefacilityrunning

    smoothly.

    FullscalecommercialfacilitiesexistintheU.S.,soitisconsideredademonstratedtechnology.

    WhenthecombustionandpowergenerationfacilitiesarenotcolocatedwiththeRDFprocessing,

    arrangementscanbehardtoestablishandmaintainwhichincreasestheoperatingrisktotheRDF

    facilityifthepowerplantdecidestostopacceptingthesupplementalfuel. Asanexample,duringsite

    visitstoGermanyinMarch2007,studyteammembersobservedsignificantRDFstockpilesduetoaloss

    intheavailablemarkettotakethematerial.

    Figure 11 - Stockpiled RDF in Rennerod, Germany

    RDFfacilitieswillhavesomeairemissionsdirectlyfromtheprocessingaswellasfromtheboiler.

    Fugitive

    particulates

    from

    the

    process

    must

    be

    controlled.

    Odours

    could

    be

    an

    issue

    from

    the

    processingfacility.ThecombustionsystemwillhavesimilarairemissionconsiderationsandsimilarAPC

    equipmentasmassburnfacilities. Theresiduefromtheprocessingcouldbelandfilledandcouldbe

    usedaslandfillcovermaterialinsomecases. Ashfromtheboilerfacilitywouldalsoneedtobe

    landfilled. Waterwillberequiredforthefacility,anddesignfeaturescouldbeprovidedtoeliminate

    discharges. Allofthesefactorscanbeaddressedthroughproperdesignengineering.

  • 7/30/2019 Waste treatment and utilization technologies

    20/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    17

    Conclusion FortheentirewastestreamidentifiedinTask1thiswouldbeconsideredaproven

    technologypresentinglimitedrisk. Useoftherailroadtieswouldrequireashredderinadditiontothe

    typicalRDFprocessingequipment. Theenvironmentalconcernscouldbeaddressed.Thistechnology

    willbeincludedontheshortlist.

    3.3Mass-Burn CombustionMassburntechnologyisthemostdemonstratedandcommerciallyviableofthetechnologiesavailable.

    Iftherailroadtiesareshredded,thetechnologyissuitabletohandletheentirewastestreamidentified

    inTask1.ProjectsofvarioussizesexistintheU.S.andthroughouttheworld.Wasteisadifficultand

    variablematerialtodealwith,andthemassburnapproachminimizesthehandlingandprocessingof

    thismaterial.

    APCequipmentisrequiredtoaddressmercuryandcomplexorganics(activatedcarboninjection),NOx

    (selectivenoncatalyticreduction,SNCRorselectivecatalyticreduction,SCR),acidgases(dryscrubber),

    andparticulatematter(fabricfiltersorbaghouse). APCequipmentisavailabletomeetstringent

    emissionrequirements.

    Ashresiduegeneratedwillbeabout30%oftheincomingweightandabout10%ofthevolume.Ferrous

    andnonferrousmetalscanberecoveredfromtheash.Ithasbeendemonstratedthatthecombinedash

    canachievetherequirementstobeclassifiedasnonhazardousandcanbedisposedinalandfill.Often

    thematerialisusedasdailycoverandforotherlandfilluses.Somedemonstrationprojectshaveshown

    thatatleastthebottomashcanbescreenedforuseasanaggregateandusedasroadbedsubgrade

    material,formedintoartificialreefs,usedforminecapping,oremployedforotheruses.However,large

    scalecommercialendusesfortheashhavenotoccurredinNorthAmerica. InEurope,bottomashis

    keptseparatefromflyash,andallthebottomashistypicallyusedasaggregate.

    Waterwillberequiredforthefacilityandazerodischargedesigncouldbedevelopedsimilartowhatis

    proposedforthenewDurhamYorkEnergyCentreinOntario.

    Conclusion

    Forthe

    entire

    waste

    stream

    identified

    in

    Task

    1this

    would

    be

    considered

    aproven

    technologypresentinglimitedrisk. Useoftherailroadtieswouldrequireshreddingpriortodelivery

    ofthematerialtotherefusepit. Theenvironmentalconcernscouldbeaddressed.Thistechnology

    willbeincludedontheshortlist.

    3.4Catalytic DepolymerizationCatalyticdepolymerizationhasbeenproposedinsomelocationsforselectportionsofthewastestream

    withconcentratedplasticscontent.Itmightbemosteffectivelyappliedataverylargeplastics

    manufacturingfacilityorsimilarindustrythatcanbecomethesourceofthefeedstock.Becausesuch

    arrangementsareveryrare,limitedinterestinthistechnologyhasdeveloped.Somevendorsclaimthat

    oilproductscouldbeproduced.Thisprocesswouldbeabletoaddressasmallpercentageofthewaste

    stream

    the

    plastics,

    which

    would

    have

    to

    be

    segregated.

    No

    such

    waste

    streams

    were

    identified

    in

    Task1.

    Few,ifany,demonstrationprojectsandtestshavemovedbeyondthelaboratorystageofdevelopment.

    NoknowncommercialfacilitiesareinoperationusingMSWasafeedstock.

    Similarly,theenvironmentalrisksarenotwelldefined.Inadditiontotheenvironmentalrisksofany

    similartechnology,catalyticcrackingcouldemitsomehydrocarbonsfromtheprocess.Therecouldalso

  • 7/30/2019 Waste treatment and utilization technologies

    21/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    18

    besomeotherrisksresultingfromthehandlingofthecatalystsorsolventsandrelatedcompoundsthat

    mightberequiredfortheprocess.Waterconsumptionrequirementsandwastewaterdischargeisnot

    known.

    Conclusion Thiswouldnotbeconsideredaproventechnologyforanyofthewastestreams

    identifiedin

    Task

    1.

    The

    technology

    would

    present

    substantial

    performance

    risks.

    This

    technology

    will

    notbeincludedontheshortlist.

    3.5HydrolysisLikecatalyticcracking,hydrolysiswilladdressonlyaportionofthetotalwastestream.Thisprocess

    wouldusethecelluloserichportionofthewaste. Somevendorsclaimthatmarketableethanol,

    methane,orotherproductscouldbeproduced.Thisprocesswouldbeabletoaddressonlyuptoabout

    20%ofthepaper/celluloserelatedfractionofthewastestream. Nopracticalfeedstockforthisprocess

    wasidentifiedinTask1.

    Fewdemonstrationprojectsandtestshavebeencompleted,andthosethathavewerefocusedonthe

    useof

    corn

    stover

    and

    other

    biomass

    materials

    for

    ethanol

    production.

    Tests

    with

    mixed

    waste

    or

    even

    paperfeedstockhavebeenlimited,andthereforecostinformationislimited.Noknowncommercial

    facilitiesareinoperationwithmixedwasteasafeedstock.

    Similarly,theenvironmentalrisksarenotwelldefined.Inadditiontotheenvironmentalrisksofany

    associatedtechnology,therewouldbesomeemissionsrisksrelatedtomethaneemissionsorissues

    dealingwithpotentialchemicalspills.Itisexpectedthatsignificantquantitiesofwaterwouldbe

    consumedandwastewaterdischargewouldberequired.

    Conclusion Thiswouldnotbeconsideredaproventechnologyforanyofthewastestreamidentified

    inTask1.Thetechnologywouldpresentsubstantialperformancerisks. Thistechnologywillnotbe

    includedontheshortlist.

    3.6PyrolysisPyrolysishasbeenattemptedinalimitednumberofMSWcombustionfacilitiesintheU.S.andisin

    operationinatleastonefacilityinEurope.Thecombustionprocessandphysicaldesignoftheunits

    wouldlikelyrequireapreparedfuelthatisadequatelysized.Thetechnologycanprocessnearlyallthe

    postrecycledwastestream.Ifpreprocessingisconducted,theremovalofmetals,glass,andotherinert

    materialswouldbebeneficialfortheoperationofthepyrolysisunit.

    Pyrolysishasbeenattemptedtoprocessspecificwastecomponentssuchasshreddedwoodorused

    tires.Ahighcarboncontentcharandalowenergygasoraliquidfuelareproduced.Formationof

    charcoalfromwoodorcokefromcoalisapyrolyticprocess.Normally,theprocessiscompletedinan

    oxygendeficientenvironmenttolimitthecombustionofthefeedstockandmaximizethefuel

    generation.A

    larger

    quantity

    of

    residue

    remains

    for

    pyrolysis

    than

    for

    other

    thermal

    processes.

    The

    char

    couldconceivablyberecoveredandcombustedorusedforotherpurposes.

  • 7/30/2019 Waste treatment and utilization technologies

    22/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    19

    Figure 12 - Pyrolysis Block Diagram

    Historically,afewlargescalefacilitieswerebuiltintheU.S.andhadmechanicalandotherproblems

    whenprocessingmixedwaste.OfparticularnotewerelargescalepyrolysisplantsbuiltnearBaltimore

    andSanDiego.Theywerescaledupfrompilotprojectsandwereneverabletofunctionatacommercial

    scale.Several

    other

    projects

    were

    also

    completed

    but

    none

    have

    proved

    to

    be

    economically

    viable.

    In

    Germany,atleastonepyrolysisfacilityisoperating.Itwasbuiltinthemid1980sandappearstostillbe

    operatingtoday.Itisarelativelylowcapacityfacilityandhasnotbeenreplicatedonalargerscale.At

    leastoneotherlargerscaleprojectwasattemptedinthemid1990sinGermanyusinganother

    technology,butoperationalproblemsforceditsclosureafterashorttime.

    Facilitiesusingthepyrolyticoilandotherproductsasfuelcouldhavesomeofthesameairemissions

    considerationsasmassburnfacilities.LessSO2mightbegeneratedinthegasoroil,becausemostof

    thesulfurisexpectedtostaywiththechar.However,ifthechariscombusted,thesulfurcouldbe

    released.UnitsthatheatthefeedstockinanoxygendeficientenvironmentwouldproducelessNOx.

    Mercurywouldbeexpectedtobelargelydrivenoffwiththegasandwouldhavetobedealtwithfrom

    theexhaustofthegascombustiondevice.Othermetalscouldremainwiththecharandcouldlargelybe

    separatedfrom

    the

    char

    prior

    to

    combustion

    with

    asuitable

    processing

    system.

    Somewaterwillberequiredforthefacility,andwastewatermightbedischarged.Odourscouldbean

    issuefromtheprocessingfacility.Residuewillneedtobeaddressed.Theresiduefromtheprocessing

    couldbelandfilledandcouldbeusedaslandfillcovermaterialinsomecases.Ashremainingafter

    combustingthecharfromtheboilerfacilitywouldalsoneedtobelandfilledafterdemonstrating

    nonhazardousproperties.

    Conclusion Thiswouldnotbeconsideredaproventechnologyforanyofthewastestreamidentified

    inTask1.Thetechnologywouldpresentsubstantialperformancerisks. Thistechnologywillnotbe

    includedontheshortlist.

    3.7Gasification

    Gasificationandpyrolysisaresomewhatsimilartechnologies.Gasificationtechnologygenerallyinvolves

    higheroperatingtemperatures.Gasificationtechnologyhasbeenindevelopmentinanumberof

    locationsintheU.S.andaroundtheworld.Generally,theprocessandphysicaldesignoftheunits

    requireapreparedfuelwithmuchoftheinertmaterials(glass,metals,etc.)removedandtheremaining

    materialsizedtotherequirementsoftheunit.Thetechnologycanprocessnearlytheentirepost

    recycledwastestream.

  • 7/30/2019 Waste treatment and utilization technologies

    23/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    20

    GasificationofwoodhasbeenpracticedsuccessfullyonalargescalesinceWorldWarII,andcoal

    gasificationisreceivingalotofattentionrightnow.GasificationofMSWislimitedtoafewsmallscale

    operationsinNorthAmericaandJapan,althoughseveralcompaniesareworkingaggressivelyto

    implementfullscalefacilities.

    Normally,the

    process

    is

    completed

    in

    an

    oxygen

    deficient

    environment

    to

    limit

    the

    combustion

    of

    the

    feedstockandproduceasyngascomposedprimarilyofCO.Intheory,thegascanbeprocessedinagas

    turbineorenginebutismoretypicallyburnedinaboilerspecificallydesignedforthegasification

    products.

    Figure 13- Gasification Block Diagram

    AtleasttwolargecommercialscalegasificationsystemsweredevelopedandbuiltinGermany.

    Operationalproblemshaveresultedintheshutdownandclosureofthefacilities.Noothermorerecent

    attemptsatcommercializationhavebeenmadeinEurope.

    AnumberofgasificationplantsareoperatinginJapan.Althoughthefacilitiesareoperating,

    performancehasbeenpoorwithmostoftheelectricityproducedrequiredtobeusedinternally.

    Economically,unitshavenotfaredwell.Formixedwaste,ifsignificantpreprocessingisrequired,the

    capitalandoperatingcostforthefrontendequipmentdrivesupthefacilitycost. Generallyefficiency

    andavailability

    have

    been

    lower

    than

    for

    some

    other

    technologies.

    If

    the

    facility

    is

    designed

    to

    handle

    onlylimitedwastestreamproducts,thesizeofthefacilityislimited,whichmakeseconomicsharderto

    achieve.

    Facilitieswillhavesomeofthesameairemissionsconsiderationsasmassburnfacilities. Unitsthatheat

    thefeedstockinanoxygendeficientenvironmentwouldproducelessNOx.Mercurywouldbeexpected

    tobelargelydrivenoffwiththegasandwouldhavetobedealtwithfromtheexhaustofthegas

    combustiondevice.Othermetalswouldlikelyremainwiththechar.

  • 7/30/2019 Waste treatment and utilization technologies

    24/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    21

    Somewaterwillberequiredforthefacilityanddischargedzerodischargedesigncouldbedeveloped.

    Odourscouldbeanissuefromtheprocessingfacilityandresiduewillneedtobeaddressed.Theresidue

    fromtheprocessingcouldbelandfilledandcouldbeusedaslandfillcovermaterialinsomecases.Ash

    remainingaftercombustingthecharfromtheboilerfacilitywouldalsoneedtobelandfilled.

    Conclusion

    Forthe

    entire

    waste

    stream

    identified

    in

    Task

    1this

    would

    be

    considered

    aproven

    technologybasedonthefacilitiesoperatinginJapan. Thetechnologypresentseconomicriskdotoits

    relativelylimitedpowerproduction.Dependingonthesystememployed,anRDFmayneedtobe

    producedfromtheMSW.Useoftherailroadtieswouldrequireshreddingpriortodeliveryofthe

    materialtotherefusepit. Theenvironmentalconcernscouldbeaddressed.Thistechnologywillbe

    includedontheshortlist.TheeconomicevaluationofTask7willidentifyfacilityeconomics.

    3.8Plasma Arc GasificationPlasmaarcprocessingusesgraphiteelectrodestocauseanelectricalarcthroughthefeedstock.The

    temperaturewithinthearcisoftenstatedtobehotterthanthesurfaceofthesun.Insuchan

    environment,thefeedstockgasifies.AlowBtugasisgeneratedthatcould,withsomecleanup,be

    suitablefor

    use

    in

    agas

    turbine,

    engine,

    or

    boiler

    as

    afuel

    source.

    The

    remaining

    ash

    and

    metal

    will

    liquefy,formingaslagandmetalmixture.Theslagcanthenbeseparatedfromthemetalwhenitis

    removedfromthearcvessel.

    Generallythegasificationprocessandphysicaldesignoftheunitsrequireapreparedfueltoremove

    muchofthelarger,inertmaterials(glass,metals,etc.)andtheremainingmaterialtobesizedtothe

    requirementsoftheunit.Otherunitsmightallowwastetobechargedwithoutmuchpreprocessing.The

    technologycanprocessnearlyallthepostrecycledwastestream.

    NooperatingfacilitiesexistinNorthAmerica. AprojectinOttawahasbeeninextendedstartupfor

    severalyears.

    FacilitiesoperateinJapan,mostnotablythreedevelopedbyHitachiMetals,inYoshii,Utashinai,and

    MihamaMikata.

    These

    facilities

    are

    referred

    to

    as

    plasma

    direct

    melting

    reactors.

    This

    is

    significant

    owingtothedesireinJapantovitrifyashfrommassburnwastetoenergyfacilities. Manygasification

    facilitiesinJapanacceptashfromconventionalWTEfacilitiesforvitrification. Thefacilitiesareinmany

    casesintendedasashvitrificationfacilitiesratherthanenergyrecoveryfacilities. Thebenefitofthe

    vitrifiedashistobindpotentiallyhazardouselementstherebyrenderingtheashinert.

    AccordingtoanOctober2002presentationbytheWestinghousePlasmaCorporationtotheElectric

    PowerGeneratingAssociation,theYoshiifacilityaccepts24tonsperdayofunprocessedMSWtogether

    with4%cokeandproduces100kWhofelectricitypertonofMSW. Thefacilityalsoproducessteamfor

    ahotel/resortuse. Thisfacilitystartedoperationin2000.

    Accordingtothesamepresentation,theUtashinaifacilityprocesses170tpdofMSWandautomobile

    shredderresidue

    (ASR)

    together

    with

    4%

    coke

    and

    produces

    260

    kWh/ton.

    This

    is

    less

    than

    half

    the

    energyproductionthatwouldbeexpectedofamassburnWTEfacility.

    Facilitieswillgenerallyhavesimilarairemissionsconsiderationsasothergasificationormassburn

    facilities.Mercuryandsomeothermorevolatilemetalsareexpectedbedrivenoffwiththegasand

    wouldhavetobedealtwithfromtheexhaustofthegascombustiondevice.Othermetalswillmelt,and

    theashwillbecomealiquidslagmaterial.Themetalsmightberecoverableandtheslagsolidifiedintoa

  • 7/30/2019 Waste treatment and utilization technologies

    25/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    22

    glasslikematerial.Somewaterwillberequiredforthefacilityandazerodischargedesigncouldbe

    developed.

    ThetechnologyshouldbecapableofhandlingtheentirewastestreamidentifiedinTask1withrequired

    processingdependingonthefuelfeedsystemrequirements. Railroadtieswouldrequireshredding.

    Conclusion FortheentirewastestreamidentifiedinTask1thiswouldbeconsideredaproven

    technologybasedonthefacilitiesoperatinginJapan. Thetechnologypresentseconomicriskdotoits

    relativelylimitedpowerproduction.Dependingonthesystememployed,anRDFmayneedtobe

    producedfromtheMSW.Useoftherailroadtieswouldrequireshreddingpriortodeliveryofthe

    materialtotherefusepit. Theenvironmentalconcernscouldbeaddressed.Thistechnologywillbe

    includedontheshortlist.ThefacilityeconomicswillbeevaluatedinTask7.

    3.9Summary of Phase I Technologies ScreeningBasedonthereviewcompletedabove,theresultsofthetechnologyevaluation/screeningare

    summarizedinthetablebelow.

    Table 2: Summary of Technology Screening

    TechnologyStateof

    Development

    Environmental

    ConsiderationsRisk

    Applicabilityto

    thewaste

    streamand

    quantities

    Shortlist

    Anaerobic

    digestion

    Provenforselect

    WasteStream

    Odourisprimary

    concern. Canbe

    addressed

    Limited Maybeviable

    forSRManda

    portionofthe

    MSWidentified

    Yes

    RDFprocessing

    andcombustion

    Commercially

    proven

    Emissions

    primaryconcern.

    APCequipment

    canmeet

    standards.

    Limitedif

    combustion

    islocated

    with

    processing

    Entirewaste

    stream

    identifiedin

    Task1ifRRties

    areshredded

    Yes

    Massburn

    combustion

    Commercially

    proven

    Emissionsare

    primaryconcern.

    APCequipment

    canmeet

    standards.

    Limited Entirewaste

    stream

    identifiedin

    Task1ifRRties

    areshredded

    Yes

    Catalytic

    Depolymerization

    Laboratoryscale

    using

    select

    materials

    Notwelldefined High Notapplicable

    to

    identified

    wastestreams

    No

    Hydrolysis Noknown

    commercialfacilities

    areinoperation

    usingmixedwaste

    Notwelldefined High Notapplicable

    toidentified

    wastestreams

    No

  • 7/30/2019 Waste treatment and utilization technologies

    26/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    23

    TechnologyStateof

    Development

    Environmental

    ConsiderationsRisk

    Applicabilityto

    thewaste

    streamand

    quantities

    Shortlist

    Pyrolysis Limitedcommercial

    development

    Emissionsare

    primaryconcern.

    APCequipment

    canmeet

    standards.

    High Couldbe

    appliedtothe

    wastestream

    identifiedin

    Task1.

    No

    Gasification Limitedcommercial

    operationinJapan

    Emissionsare

    primaryconcern.

    APCequipment

    canmeet

    standards.

    Some

    economic

    risk

    Entirewaste

    stream

    identifiedin

    Task1ifRRties

    areshredded

    Yes

    PlasmaArc

    GasificationLimited

    commercial

    operationinJapanEmissions

    are

    primaryconcern.

    APCequipment

    canmeet

    standards.

    Some

    economic

    risk

    Entirewaste

    stream

    identifiedin

    Task1ifRRties

    areshredded

    Yes

    4.0 Short-List of Technologies

    Thefollowingtechnologiesshouldbeconsideredforfurtheranalysis

    Anaerobicdigestion

    (limited

    feedstock)

    RDFprocessingandcombustion

    MassBurnCombustion

    Gasification

    PlasmaArcGasification

    Priortorequestinganyproposalsorexpressionsofinterestfrompotentialvendors,theanalysisand

    evaluationshouldcontinue. Furtherstudyisneededtodeterminetheinfrastructurechangesthat

    wouldberequiredtocollectthenecessarytonnageanddeliverthematerialstoafacilityandfurther

    evaluationofenvironmentalrequirementsoftheshortlistedtechnologiesshouldbeundertaken.

    Additionaleconomicevaluationcouldbeusedtoidentifythetechnologiesmostlikelytobeviablegiven

    currentwastedisposalmarketconditionsinSouthernAlberta.

    Astheresearchprojectcontinues,thisshortlistoftechnologieswillbefurtherrefinedbasedonthe

    outcomeofsubsequenttasks.Thisshortlisthasbeendevelopedbasedoncurrentlyavailable

    informationforeachclassoftechnology. Shouldinthefuture,newinformationbecomeavailablewith

    respectaparticulartechnologythatwouldchangetheresultofthisevaluation(e.g.additional

    commercialoperationofatechnologythatclearlydemonstratesabilityoftechnologytomanageMSW),

    thesubjectclassoftechnologycouldbereevaluatedandpotentiallyincludedbackintotheproject.

  • 7/30/2019 Waste treatment and utilization technologies

    27/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    24

    5.0 Next Steps

    Thenext

    step

    in

    the

    research

    project

    is

    the

    completion

    of

    Phase

    2activities.

    Phase

    2activities

    will

    result

    intheidentificationofwastecollection,transportationandhandlingimplicationswithassociatedsiting

    opportunities;heatrecoveryandcogenerationoptions,includingpotentialmarket/sitingopportunities;

    anadditionallevelofdetailwithrespecttotheenvironmentalimplications(nowincluding

    transportationimpactsfromTask3),andthefacilitypermittingandsitingrequirements. Thisphasealso

    includesthedevelopmentofafutureprojectdevelopmentschedule. Eachofthetaskscompletedinthis

    phasewillthenbeutilizedinPhase3toassesstheeconomicandfinancialimplications.

  • 7/30/2019 Waste treatment and utilization technologies

    28/35

    Appendix A Process Flow Diagrams

  • 7/30/2019 Waste treatment and utilization technologies

    29/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    A-1

    CCIBioEnergy,Inc.Ecocorp

    Greenfinch

    MustangRenewablePowerVentures

    OrganicWasteSystems

    Urbaser(ValorgaInternational)

    Description:

    Anaerobicdigestion

    (or

    AD)

    is

    the

    process

    of

    decomposing

    the

    solid

    organic

    fraction

    of

    the

    MSW

    stream

    in

    an

    oxygen

    deficient

    environment. Ithasbeenextensivelyusedtodigestandstabilizesewage sludge andanimalmanures,andhashadrecentapplication

    treatingSanitarySewerOverflow(orSSO).TheADprocessmayeitherbeawetordryprocessdependingonthetotalsolidscontentbeing

    treatedinthereactionvessel. BothtypesofADprocessesinvolvetheinjectionoftheorganicmaterialintoanenclosedvesselwhere

    microbesareusedtodecomposethewastetoproducealiquid,asoliddigestate material,andabiogasthatconsistsmainlyofmethane,

    water,andcarbondioxide(CO2). Theresultinglow tomidenergycontentbiogascanbeutilizedinareciprocatingengineorgasturbine

    toproduceelectricity,orcanbecompressedintoavehiclefuel. Theremainingdigestate material,whichcanbeupto50%oftheinput

    dependingonthetypeofADprocessused,canbetreatedfurther(e.g.curedaerobically) toproduceacompostthatcanbemarketedasa

    soilamendment. TheincomingmixedMSWorSSOwillrequire apretreatmentprocessthatinvolvesshredding,pulpingandseparationof

    thenondigestiblefractionofthewastestream. Inmanycases,thistechnologycanbeusedinconjunctionwithcomposting,mechanical

    biological treatment(MBT),orarefusederivedfuel(RDF)process.

    FigureA.1

    ProcessMaterial

    AnaerobicDigestion

    AnaerobicDigestion

    Legend

    Input

    Equipment

    Conversions

    RevenueGeneration

    Residual

    ExamplesofVendors

    BioGas

    Processing

    Technology

    (seeA.6)

    Receiving

    MSW

    MSW

    Feedstock

    PreProcessing

    Separator

    Digester

    Solid

    Liquid

    4050% ofFeedstock

    13%ofMSWIn 1015% ofMSWIn

    Aerobic

    Composting

    1525% ofFeedstock

    Compost

  • 7/30/2019 Waste treatment and utilization technologies

    30/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    A-2

    EnergyAnswers(EA)

    DongaraWestrocEnergy

    AmbientEcoGroup

    CobbCreations Conversions

    Legend

    RefuseDerivedFuel(RDF)Combustion

    ExamplesofVendors

    Residual

    RevenueGenerationProcess

    Material

    Equipment

    Input

    RefuseDerived

    Fuel

    (RDF)

    FigureA.2

    Description:

    This technology prepares MSW by shredding, screening, and removing noncombustible materials prior to additional processing.

    The goal of this technology is to derive a better, more homogenous, Refuse Derived Fuel (or RDF) that can be used in a more

    conventional solidfuel boiler as compared to a massburn combustion waterwall boiler. The RDF process typically results in a

    fuel yie ld in the 80% to 90% range (i.e., 80 to 90 percent of the incoming MSW is converted to RDF). The remaining 10% to 20% of

    the incoming waste that is not converted to RDF is composed of either recovered fe rrous metals (15%) which can be sold to

    market, or process residue (15% to 19%) that must be disposed of in a landfill. In most cases, the fuel is used at the same facility

    where it is processed, although this does not have to be the case. The RDF is blown or fed into a boiler for semi suspension

    firing. Combustion is completed on a traveling grate. Thermal recovery occurs in an integral boiler. The APC equipment

    arrangementforanRDFfacilitywouldbesimilartothatofamassburncombustionsystem.

    Receiving

    Turbine

    Electricity

    MSW

    MSW

    Steam

    Recycle

    RDF

    PreProcessing

    Thermal

    Conversion

    Steam

    1520% ofMSWIn

    1015%ofMSWIn13%ofMSWIn

    7580%ofRDFtoFlueGasas

    ProductsofCombustion

    510%ofMSWIn

    Stack

    Exhaust

    TreatedFlueGas

    AirPollution

    Control

    Boiler

  • 7/30/2019 Waste treatment and utilization technologies

    31/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    A-3

    FisiaBabcock

    Keppel

    SeghersLaurentBouillet

    Martin(Covanta)

    Steinmueller

    Takuma

    Volund(withBabcock&Wilcox)

    VonRoll(Wheelabrator)

    Consutech

    EnerconSystems,Inc.

    LaurentBouillet

    PioneerPlus

    TraditionalMassBurnCombustion

    Residual

    RevenueGenerationProcess

    Material

    Equipment

    Input

    Legend

    LargeUnitTechnologies

    Description:

    Mass Burn combustion technology can be divided into two main types: (a) grate based, waterwall boile r installations; and (b)

    modular, shop erected combustion units with shop fabricated waste heat recovery boilers. The modular units are typically

    limited to less than 200 tonnes per day and are historically used in facilities where the total throughput is under 500 tpd. In Mass

    Burn combustors, MSW is fed directly into a boiler system with no preprocessing other than the removal of large bulky itemssuch as furniture and white goods. In the larger Mass Burn Combustion units, the MSW is typically pushed onto a grate by a ram

    connected to hydraulic cylinders. Air is admitted under the grates, into the bed of material, and additional air is supplied above

    the grates. The resulting flue gases pass through the boiler and the sensible heat energy is recovered in the boiler tubes to

    generate steam. In the smaller modular mass burn systems, MSW is fed into a refractory lined combustor where the waste is

    combusted on refractory lined hearths, or within a refractory lined oscillating combustor. The flue gases exit the combustors

    and enter a heat recovery steam generator, or waste heat boiler, where steam is generated by the sensibl e heat in the flue gas.

    In Mass Burn Combustion, four main streams are generated; steam, flue gas, bottom ash and fly ash. The steam is either sent to a

    steam turbine to generate electricity or it can be piped directly to an e nd user as process or district heating steam, or a

    combination of these uses. Mass burn technologies utilize an extensive set of air pollution control (APC) devices for flue gas

    cleanup. The typical APC equipment used include: either selective catalytic reduction (SCR) or non catalytic reduction (SNCR)

    for NOx emissions reduction; spray dryer absorbers (SDA) or scrubbers for acid gas reduction; activated carbon injection (CI) for

    mercuryanddioxinsreduction;andafabricfilterbaghouse (FF)forparticulateandheavymetalsremoval.

    MassBurnCombustion

    ExamplesofVendors

    Conversions

    FigureA.3

    Small/ModularUnitTechnologies

    510%ofMSWIn

    Receiving

    Turbine

    Stack

    Electricity

    Ex

    haust

    MSW

    MSW

    Steam

    Recycle

    Residue

    Handling

    Meta

    ls

    Bottom

    Ash

    Thermal

    Conversion

    Steam

    7080%ofMSWtoFlue Gasas

    Products ofCombustion

    2025%ofMSWIn

    13%ofMSWIn

    9799%ofMSWIn

    Treate

    dFlue

    Gas

    AirPollution

    Control

    Boiler

  • 7/30/2019 Waste treatment and utilization technologies

    32/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    A-4

    AlphaKat/KDV Covanta

    ChangingWorld

    Technologies

    ConFuelK2

    Enerkem

    GreenPowerInc

    Description:

    Inacatalyticdepolymerization process,theplastics,syntheticfibrecomponentsandwaterintheMSWfeedstockreactwithacatalyst

    undernonatmosphericpressureandtemperaturestoproduce acrudeoil.Thiscrudeoilcanthenbedistilledtoproduceasynthetic

    gasolineorfuelgradediesel.Therearefourmajorstepsinacatalyticdepolymerization process:Preprocessing,ProcessFluidUpgrading,

    CatalyticReaction,andSeparationandDistillation.ThePreprocessingstepisverysimilartotheRDFprocesswheretheMSWfeedstockis

    separatedintoprocessresidue,metalsandRDF. Thisprocesstypicallyrequiresadditionalprocessingtoproduceamuchsmallerparticle

    sizewithlesscontamination.ThenextstepintheprocessispreparingthisRDF.TheRDFismixedwithwaterandacarrieroil(hydraulicoil)

    tocreateRDFsludge.ThisRDFsludgeissentthroughacatalyticturbinewherethereactionunderhightemperatureandpressureproduces

    alightoil.Thelightoilisthendistilledtoseparatethesyntheticgasolineordieseloil.Thiscatalyticdepolymerization processissomewhat

    similartothatusedatanoilrefinerytoconvertcrudeoilintousableproducts. Thistechnologyismosteffectivewithprocessingawaste

    streamwithahighplasticscontentandmaynotbesuitable foramixedMSWstream. Theneedforahighplasticscontentfeedstockmay

    alsolimitthesizeofthefacility.

    FigureA.4

    CatalyticDepolymerization

    RevenueGeneration

    Residual

    Conversions

    ProcessMaterial

    CatalyticDepolymerization

    ExamplesofVendors Legend

    Input

    Equipment

    Receiving

    Reaction

    Turbine

    MSW

    MSW

    Fluid

    Processing

    Fluid

    Fluid

    Catalyst

    Hydraulic Fluid

    Desulphurization

    Distillation

    DieselFuel

    Feedstock

    NonProcessablePreProcessing

    2040%ofMSW In

    13%ofMSW In

    2030%Feedstock

  • 7/30/2019 Waste treatment and utilization technologies

    33/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    A-5

    ArkenolFuels

    BioFine/KAME

    MasadaOxyNol

    Description:

    Thehydrolysis

    process

    involves

    the

    reaction

    of

    the

    water

    and

    cellulose

    fractions

    in

    the

    MSW

    feedstock

    (e.g.,

    paper,

    food

    waste,

    yard

    waste,etc.)withastrongacid(e.g.,sulfuricacid)toproducesugars.Inthenextprocessstep,thesesugarsarefermentedtoproducean

    organicalcohol.Thisalcoholisthendistilledtoproduceafuelgradeethanolsolution.Hydrolysis isamultistepprocessthatincludesfour

    majorsteps:Pretreatment;Hydrolysis;Fermentation;andDistillation.SeparationoftheMSWstreamisnecessarytoremove the

    inorganic/inert materials(glass,plastic,metal,etc.)fromtheorganicmaterials(foodwaste,yardwaste,paper,etc.).Theorganicmaterial

    isshreddedtoreducethesizeandtomakethefeedstockmore homogenous.Theshreddedorganicmaterialisplacedintoareactorwhere

    itisintroducedtotheacidcatalyst. Thecelluloseintheorganicmaterialisconvertedintosimplesugars.These sugarscanthenbe

    fermentedandconvertedintoanalcoholwhichisdistilledintofuelgradeethanol.Thebyproductsfromthisprocessarecarbondioxide

    (fromthefermentationstep),gypsum(fromthehydrolysis step)andlignin(noncellulosematerialfromthehydrolysisstep). Sincethe

    acidactsonlyasacatalyst,itcanbeextractedandrecycledbackintotheprocess.

    FigureA.5

    Hydrolysis

    RevenueGeneration

    Residual

    Conversions

    Hydrolysis

    ExamplesofVendors Legend

    Input

    Equipment

    ProcessMaterial

    Gypsum

    Receiving

    MSW

    MSW

    Feedstock

    PreProcessing

    Drying

    Energy

    Recovery

    Distillation

    Fermentation

    Hydrolysis

    Stillage

    Ethanol

    Acid

    13%ofMSWIn 1015%ofMSWIn

    Non Processable 1530%ofMSWIn

  • 7/30/2019 Waste treatment and utilization technologies

    34/35

    Phase 1, Task 2: Combustion Technologies

    Southern Alberta Energy-from-Waste Alliance

    Energy-from-Waste Research Project

    February 1, 2012

    A-6

    CompactPower

    InternationalEnvironmentalSolutions

    Mitsui

    PKA

    SMUDATechnologies

    ThideEnvironmental

    UtahValleyEnergy

    WasteGenUK

    Description:

    PyrolysisisgenerallydefinedastheprocessofheatingMSWinanoxygendeficientenvironmenttoproduceacombustible gaseousorliquidproduct

    andacarbonrichsolidresidue.Thisissimilartowhatisdonetoproducecokefromcoalorcharcoalfromwood.Thefeedstockcanbetheentire

    municipalwastestream,but,insomecases,presortingorprocessingisusedtoobtainarefusederivedfuel.Somemodularcombustorsuseatwo

    stagecombustionprocessinwhichthefirstchamberoperatesinalowoxygenenvironmentandthecombustioniscompletedinthesecondchamber.

    Similartogasification,oncecontaminantshavebeenremovedthegasorliquidderivedfromtheprocesscanbeusedinaninternalcombustion

    engineorgasturbineorasafeedstockforchemicalproduction.Generally,pyrolysisoccursatalowertemperaturethangasification,althoughthe

    basicprocessesaresimilar.

    ExamplesofVendors

    Pyrolysis

    Pyrolysis

    FigureA.6

    Legend

    Input

    Equipment

    ProcessMaterial

    RevenueGeneration

    Residual

    Conversions

    Non Processable

    Receiving

    SynGas

    GasCleaning

    MSW

    MSW

    PreProcessing

    Residue

    Handling

    Metals

    Ch

    ar

    SynGas

    Processing

    Technology

    (seeFigureA.5)

    ChemicalByproducts

    Pyrolysis

    Oil

    SynthesisEngine

    Electricity

    Exhaust

    Chemicals

    8090%ofFeedstockConverted

    toSynGasandOil13%ofMSWIn

    01%ofFeedstock

    1020%ofFeedstock

    1020%ofMSWIn

    Residue

  • 7/30/2019 Waste treatment and utilization technologies

    35/35

    Phase 1, Task 2: Combustion Technologies

    AdaptiveArc*

    Alter

    NRG

    *CompactPower

    Ebara

    Enerkem

    Geoplasma*

    IntegratedEnvironmentalTechnologies*

    New PlanetEnergy

    PKA

    PlascoEnergyGroup*

    Primenery

    PyroGenesisCanada,Inc.*

    SilvaGas

    Startech*

    TaylorBiomassEnergy

    Technip

    Thermoselect

    FixedBed

    FluidizedBed

    MovingBed

    PlasmaArc(indicatedbya*)

    Gasification

    FigureA.7

    Description:

    Gasificationconvertscarbonaceousmaterialintoasynthesisgasorsyngascomposedprimarilyofcarbonmonoxideandhydrogen.

    Followingacleaningprocesstoremovecontaminantsthissyngascanbe usedasafueltogenerateelectricitydirectlyinacombustion

    turbineor

    engine,

    or

    the

    gas

    can

    be

    fired

    in

    aboiler

    to

    generate

    steam

    that

    can

    be

    used

    to

    generate

    electricity,

    for

    process

    uses

    or

    districtheating,oracombinationofboth. Thesyngasgeneratedcanalsobeusedasachemicalbuildingblockinthe synthesisof

    gasolineordieselfuel. ThefeedstockformostgasificationtechnologiesmustbepreparedintoRDFdevelopedfromthe incoming

    MSW,orthe technologymayonlyprocessaspecificsubsetofwastematerialssuchaswoodwaste,tires,carpet,scrapplastic,or

    otherwastestreams. SimilartoFluidizedBedCombustion,these processestypicallyrequiremorefrontend separationandsize

    reduction,andresultinlowerfuelyields(lessfuelpertonneofMSWinput). Thefeedstockreactsinthe gasifierwithsteamand

    sometimesairoroxygenathightemperaturesandpressuresinareducing(oxygenstarved)environment. Thelow tomid

    Megajoulesyngascanbecombustedinaboiler,orfollowingacleanupprocessagasturbine,orengineorusedinchemicalrefining.

    Ofthesealternatives,boilercombustionisthe mostcommon,butthe cycleefficiencycanbeimprovedifthegascanbeprocessedin

    anengineorgasturbine,particularlyifthe wasteheatisthenusedtogeneratesteamandadditionalelectricityinacombinedcycle

    f ilit I d t t ll t th t th fl ill b l i id b ti i d t l b t

    TypesofGasification

    Conversions

    RevenueGeneration

    Residual

    Process

    Material

    Gasification

    ExamplesofVendors Legend

    Input

    Equipment

    Receiving

    Syn

    Gas

    GasCleaning

    MSW

    MSW

    Feedstock

    PreProcessing

    Residue

    Handling

    Metals

    Ash

    SynGasProcessing

    Technology

    (seeFigureA.5)

    C

    hemicalByproducts

    13% ofMSWIn

    1015%ofMSWIn

    1020%ofFeedstock

    7080%ofFeedstock

    convertedtoSyn Gas

    1025%ofMSWIn

    01% ofFeedstock

    Gasification