vlt-min-esp-13520-0217 missionxiii paranal 201602 · 6/36% espressoproject% % 1.2.2...

36
Name Date Signature Name Date Signature Name Date Signature ESPRESSO Paranal Mission XIII – 2016–02 2016 1 st Coudé Train Installation Mission Report VLTMINESP135200217, Issue 1.0 February 22 nd , 2016 Prepared Alexandre Cabral 22/02/2016 Approved Denis Mégevand 29/02/2016 Released Francesco Pepe Instituto de Astrofísica e Ciências do Espaço / Universidades do Porto e Lisboa INAF, Osservatorio Astronomico di Trieste INAF, Osservatorio Astronomico di Brera Observatory of the University of Geneva Physics Institute, University of Bern Instituto de Astrofísica de Canarias European Southern Observatory

Upload: dinhduong

Post on 18-Jan-2019

227 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

Name             Date       Signature  

Name             Date       Signature  

Name             Date       Signature  

             

ESPRESSO    

Paranal  Mission  XIII  –  2016–02  

 2016  1st  Coudé  Train  Installation  Mission  Report  

 

VLT-­‐MIN-­‐ESP-­‐13520-­‐0217,  Issue  1.0  

February  22nd,  2016  

 

 

 Prepared   Alexandre  Cabral   22/02/2016            Approved   Denis  Mégevand   29/02/2016      Released   Francesco  Pepe      

Instituto de Astrofísica e Ciências do Espaço / Universidades do Porto e Lisboa

INAF, Osservatorio Astronomico di Trieste INAF, Osservatorio Astronomico di Brera

Observatory of the University of Geneva Physics Institute, University of Bern Instituto de Astrofísica de Canarias

European Southern Observatory

Page 2: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*
Page 3: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

VLT-­‐MIN-­‐ESP-­‐13520-­‐,  Issue  1.0   3/36  

Change  Record  

Issue/Rev.   Date   Section/Page  affected   Reason/Remarks  1.0   22/02/2016     First  issue                            

 Other   Authors:  Manuel   Abreu,  António   Oliveira,   Denis  Mégevand,   Gerardo   Ávila,   Gaspare   Lo  Curto,  Matteo  Aliverti,  Giorgio  Pariani    

Table  of  Contents  Chapter  1.   Introduction  ..............................................................................................................................................  5  1.1  Scope  of  the  Document  ........................................................................................................................................................  5  1.2  Documents  ................................................................................................................................................................................  5  1.2.1   Applicable  Documents  ................................................................................................................................................................  5  1.2.2   Reference  Documents  ..................................................................................................................................................................  6  

1.3  Acronyms  ...................................................................................................................................................................................  6  1.4  Participants  and  interacting  ESO  and  LPO  staff  ........................................................................................................  6  

Chapter  2.   Executive  Summary  ...............................................................................................................................  7  Chapter  3.   Report  ..........................................................................................................................................................  8  3.1  Day  1:  09.02.2016  (Tuesday)  ............................................................................................................................................  8  3.2  Day  2:  10.02.2016  (Wednesday)  .....................................................................................................................................  9  3.3  Day  3:  11.02.2016  (Thursday)  ......................................................................................................................................  10  3.4  Day  4:  12.02.2016  (Friday)  .............................................................................................................................................  11  3.5  Day  5:  13.02.2016  (Saturday)  ........................................................................................................................................  17  3.6  Day  6:  14.02.2016  (Sunday)  ...........................................................................................................................................  19  3.7  Day  7:  15.02.2016  (Monday)  .........................................................................................................................................  22  3.8  Day  8:  16.02.2016  (Tuesday)  .........................................................................................................................................  25  3.9  Day  9:  17.02.2016  (Wednesday)  ..................................................................................................................................  27  3.10  Day  10:  18.02.2016  (Thursday)  .................................................................................................................................  29  3.11  Day  11:  19.02.2016  (Friday)  .......................................................................................................................................  30  3.12  Day  12:  20.02.2016  (Saturday)  ..................................................................................................................................  33  3.13  Day  13:  21.02.2016  (Sunday)  ......................................................................................................................................  35  

Chapter  4.   Postponed  tasks  and  AI  .....................................................................................................................  36    

List  of  Figures  Figure  1  –FEU  situation  at  arrival  and  unpacked  flanges.  .................................................................................................  8  Figure  2  –Work  at  FEU.  .....................................................................................................................................................................  9  Figure  3  –  P5P6  cabinet  and  cables  at  UT4.  ..........................................................................................................................  10  Figure  4  –  CCD  Camera  at  CCL  ceiling  (with  and  without  Lens  for  Tip/Tilt  and  XY  alignment)  and  laser  

mounted  on  the  rotating  platform.  ................................................................................................................................  11  Figure  5  –  Cables  at  P5  location  and  IGUS  pipe  from  P5  location  to  inner  track,  for  conveying  of  P6  motor  

cable  (UT4).  ..............................................................................................................................................................................  12  Figure  6  –  Laser  beam  shined  into  the  4  tunnels  for  first  clock  and  height  alignment.  ....................................  13  Figure  7  –  Measurements  of  Laser  beam  position  at  CR  with  photos  taken  from  CCL.  .....................................  14  Figure  8  –  Path  of  Genie  for  the  test  on  the  Displacement  of  FEU  Laser  in  UT1  CR  incoherent  duct.  .........  15  

Page 4: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

4/36   ESPRESSO  Project  

Figure  9  –  Displacement  of  FEU  Laser  in  UT1  CR  incoherent  duct.  ............................................................................  15  Figure  10  –  Path  of  Genie  for  the  test  on  the  Displacement  of  FEU  Laser  in  UT3  CR  incoherent  duct.  ......  16  Figure  11  –  Displacement  of  FEU  Laser  in  UT3  CR  incoherent  duct.  .........................................................................  16  Figure  8  –  P7R8  tube  and  the  interference  with  M7  thread  and  adjusting  screw  (worst  case  in  UT2).  ....  17  Figure  9  –  Test  of  PRS  initialization  repeatability  .............................................................................................................  18  Figure  14  –  Above:  2  spots  (0°  and  180°)  of  one  image;  Below:  x,y  values  for  0°  and  180°.  The  value  of  

the  barycentre  is  calculated  averaging  the  50  values.  ...........................................................................................  20  Figure  15  –  Above:  2  spots  (0°  and  180°)  of  one  image  before  and  after  sigma  clipping;  Below:  x,y  values  

for  0°  and  180°.  The  value  of  the  barycentre  is  calculated  averaging  the  30  values.  ...............................  21  Figure  16  –  Prism  mounted  and  aligned  in  vertical  direction.  .....................................................................................  21  Figure  17  –  Gerardo  Ávila  calculations  on  FRD  loss  due  to  tilt  on  the  FEU  structure.  .......................................  22  Figure  18  –  Cabinets  installed  for  the  CT.  Left  P5P6  and  right  P7  and,  from  top  to  bottom,  UT1  to  UT4.  23  Figure  19  –  Mean  value  and  the  standard  deviation  obtained  from  15  second  of  continuous  acquisition.

 .......................................................................................................................................................................................................  24  Figure  20  –  Final  results  comparing  the  values  acquired  with  the  LT  and  the  ones  obtained  shining  the  

laser  in  the  4  CR  with  and  without  the  genie  near  the  FE  structure.  ..............................................................  25  Figure  21  –  Turbulence  analysis  performed  on  all  UTs  (day  time).  ...........................................................................  26  Figure  22  –  Turbulence  analysis  performed  on  UT4  during  day  time  (left)  and  night  time  (right)..  ..........  26  Figure  23  –  Manuel  and  Antonio  near  one  of  the  P5P6  cabinets  installed  in  the  Azimuth  platform.  ..........  27  Figure  24  –  LAT  alignment  on  the  VLTi  Delay  Line  Lab.  .................................................................................................  28  Figure  25  –  Spots  on  the  Camera  Sensor  for  the  LAT  alignment  (left  centre  reference  measured  at  the  

end  of  the  alignment  to  confirm  stability  and  right  the  aligned  spot  after  mirror  tip  tilt  blocking).  29  Figure  26  –  LAT  at  Nasmyth  tube  in  the  VLT  UT3  unit  centre  piece.  ........................................................................  30  Figure  27  –  Characteristics  of  the  GP  sensor  from  VLT-­‐SPE-­‐ESO-­‐11420-­‐0675.  ...................................................  30  Figure  28  –  Tip  tilt  variation  measured  with  pupil  beacon  power  during  telescope  altitude  variation.  The  

telescope  went  from  17°  to  89°  and  back.  The  large  sport  corresponds  to  the  first  measurement.  The  displacement  from  maximum  was  calculated  considering  the  decrease  in  measured  power.  ..  32  

Figure  29  –  XY  variation  on  the  GP  during  telescope  altitude  variation.  The  large  sport  corresponds  to  the  first  measurement.  The  red  cross  corresponds  to  the  central  pixel.  .......................................................  32  

Figure  30  –  Tip  tilt  variation  measured  with  pupil  beacon  power  during  telescope  altitude  variation.  Optimized  alignment  for  65°.  ...........................................................................................................................................  33  

Figure  31  –  XY  variation  on  the  GP  during  telescope  altitude  variation.  Optimized  alignment  for  65°.  ....  34  Figure  32  –  XY  distance  from  central  pixel  as  a  function  of  altitude  angle.  ............................................................  34    

Page 5: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

VLT-­‐MIN-­‐ESP-­‐13520-­‐,  Issue  1.0   5/36  

Chapter  1.     Introduction  

 

1.1    Scope  of  the  Document  This  is  the  report  of  the  ESPRESSO  first  Coudé  Train  installation  mission.  Mission  started  on  the  9th   of   February   (arriving   on   the   mountain)   and   ended   on   the   21th   of   February   (leaving   the  mountain).   The   main   purpose   of   this   mission   was   the   installation   of   the   CT   electronics   and  cabling,  modification   of   the   FEU   laser   alignment   source   and   the   testing   of   the  Nasmyth   Laser  alignment  tool  for  the  CT  future  installation.    The  consortium  team  composed  by,  A.  Cabral,  A.  Oliveira  and  M.  Abreu,  all   for  the  Coudé  Train  work,  G.  Avila  for  the  CT  alignment,  M.  Aliverti  and  G.  Pariani  for  the  FEU  related  work,  and  D.  Mégevand,   as   PM.   The   team   was   helped   by   ESO   customer   G.   Lo   Curto,   the   contratists   from  Conyser  and  several  people  from  Paranal  and  from  Mecatronics  workshop,  see  the  section  1.4        

1.2    Documents    The  main  applicable  and  reference  documents  are  listed  hereafter.    1.2.1 Applicable  Documents  AD-­1   ESPRESSO  Statement  of  Work   VLT-­‐SOW-­‐ESO-­‐13520-­‐5059   1   01.02.2011  AD-­2   ESPRESSO   Technical  

Specifications  VLT-­‐SPE-­‐ESO-­‐13520-­‐4633   3   01.02.2011  

AD-­3   ESPRESSO  Project  Plan   VLT-­‐PLA-­‐ESP-­‐13520-­‐0007   5   25.03.2013  AD-­4   ESPRESSO  Management  Plan   VLT-­‐PLA-­‐ESP-­‐13520-­‐0015   4   25.03.2013  

Page 6: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

6/36   ESPRESSO  Project  

 1.2.2 Reference  Documents  RD-­1   ESO-­‐Paranal  Observatory  ICD   VLT-­‐ICD-­‐ESO-­‐13529-­‐5412   2   25.03.2013  RD-­2   Upgrades  to  Paranal  

Observatory  Technical  Infrastructure  

VLT-­‐TRE-­‐ESO-­‐13529-­‐5411   2   25.03.2013  

1.3    Acronyms    1T   Front-­‐End  Unit  room  in  the  CCL  A/C   Air  Conditioning  AD   Applicable  Document  AI   Action  Item  ANF   Antofagasta  Airport  CCL   Combined  Coudé  Laboratory  CR   Coudé  Room  CT   Coudé  Train  ESPRESSO   Echelle  Spectrograph  for  Rocky  Exoplanets  and  Stable  Spectroscopic  Observations  FEU   Front-­‐End  Unit  LFC   Laser  Frequency  Comb  LT   Laser  Tracker  OD   Optical  Density  PAO   Paranal  Observatory  PM   Project  Manager  PRS   FEU  Rotary  Stage  RD   Reference  Document  UT   Unit  Telescope  VLT   Very  Large  Telescope  VLTi   Very  Large  Telescope  interferometer  

1.4    Participants  and  interacting  ESO  and  LPO  staff  ACA     Alexandre  Cabral  (ESP)  AOL     António  Oliveira  (ESP)  CRA     Cristian  Ramirez  (ESO  PAO)  DME     Denis  Mégevand  (ESP)  EFU     Eloy  Fuenteseca  (ESO  PAO)  GAV     Gerardo  Avila  (ESP,  ESO)  GLC     Gaspare  Lo  Curto  (ESO)  GPA     Giorgio  Pariani  (ESP)  HBA     Herman  Barrios  (PAO,  Conyser  contratists  responsible)  MAB     Manuel  Abreu  (ESP)  MAL     Matteo  Aliverti  (ESP)  NHA     Nicholas  Haddad  (ESO  PAO)  PVH     Pierre  Van  der  Heiden  (ESO  PAO)  RAB     Roberto  Abuter  (ESO)  

Page 7: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

VLT-­‐MIN-­‐ESP-­‐13520-­‐,  Issue  1.0   7/36  

Chapter  2.     Executive  Summary  All  8  CT  cabinets  (P5P6  and  P7  for  all  4  UTs)  installed  and  tested.  Power  available  in  the  cabinets  in  azimuth  platform,  not  yet  in  the  ones  in  the  CR  (although  cabling  is  present).    FEU  alignment  strategy  modified  as  planned  and  toggling  table  re-­‐aligned  within  ±100  µm  in  XY  and  ±5  arcsec  in  tip/tilt  fully  compliant  with  requirements.    CT  alignment:  strategy  for  materializing  the  altitude  axis  tested  successfully.  Alignment  accuracy  of  ±200  µm  in  XY  and  ±0.5  arcmin  in  tip/tilt  at  65°  altitude,  fully  compliant  with  requirements.  For   the   complete   Altitude   range,   alignment   changes   shifts   by   maximum   1.4   mm   in   XY   and  0.6  arcmin  in  tip/tilt.    The  stability  of  the  CCL  floor  was  tested  using  a  weight  of  2  tons,  and  an  effect  is  noticeable  at  proximity  of  the  convergence  axis.  At  the  position  of  the  vacuum  vessel,  the  effect  of  this  weight  was   lost   in   the   noise.   Taking   in   to   account   that   the   weight   of   the   spectrograph   is   4   times  superior,  we  can  extrapolate  that  an  effect  of  the  order  of  a  few  mm  in  the  CR  (about  5  arcsec  per  mm)  may  affect  the  vertical  position  of  the  laser  in  UT2  and  UT3,  at  the  end  of  the  light  duct.  If  this  is  verified,  it  might  be  necessary  to  re-­‐align  the  rotation  axis  of  the  Front  End  Unit.  We  consider  that  any  weight  inferior  to  the  ton  put  in  the  CCL  "public"  part  will  have  no  dramatic  effect.  Higher  loads  may  have  to  be  coordinated  with  the  ESPRESSO  Consortium.                                              

Page 8: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

8/36   ESPRESSO  Project  

Chapter  3.     Report  

3.1    Day  1:  09.02.2016  (Tuesday)  

1. Arrival  at  the  Paranal  observatory  2. Preparation  of  ESPRESSO  room  (LFC)  for  the  mission.  3. Opening  box  with  CT  electronics  stuff  arrived  from  Europe  (3  days  before).  4. Verification  of  all  components  and  cabinets:  everything  ok.  5. Labelling   cabinets   with   CT   device   identification   codes   plus   sticker   with   cabinet  

identification.  6. Moving  all  CT  components  to  thermal  enclosure  entrance.  7. Fabrication  of  a  new   feedthru  on   the   telescope  wall  with   two   Igus  connector   tips  and  a  

length  of  Igus  pipe.  Igus  tips  were  machined  at  mechanical  workshop  to  obtain  full  hole  clearance  in  these  pieces.  Tested  for  clearance  for  3  cables,  ok.    

@UT4-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  8. Hanging  P5/P6  cabinet  in  azimuth  location  

 @CCL-­‐FEU-­‐Laser-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  

9. Checked  laser  software  and  checked  camera  software/  PRS  software.  10. Different   exposure   time   where   tried   /   OD   filter   /   sampling   strategy   to   optimize   the  

barycentre  calculation  (actually  standard  deviation  of  about  2  µm).  11. Pentaprism  dismounted.  

 

     Figure  1  –FEU  situation  at  arrival  and  unpacked  flanges.  

   

Page 9: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

VLT-­‐MIN-­‐ESP-­‐13520-­‐,  Issue  1.0   9/36  

3.2    Day  2:  10.02.2016  (Wednesday)  

1. António  Oliveira  and  Giorgio  Pariani  did  the  security  course.  2. The  Genie  was  entered  in  the  CCL/1T  for  the  FEU  Laser  work.  

 @UT4-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  

3. Verification  of  fixing  positions  for  the  igus  piping  inside  telescope  tubes.  4. Verification  of  fixing  positions  for  the  igus  piping  inside  inner  track.  5. Herman  Barrios  and  crew  hanged  P7  cabinet  outside  UT4  CR.  6. Mounting  of  IEC  power  plug  on  ESO  provides  power  cable.  7. PVH  from  ESO  mounted  10A  breaker  on  power  cabinet  close  to  cabinet  for  powering  up  

AC  line  for  cabinets.    

@CCL-­‐FEU-­‐Laser-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  8. Mounting  of  the  TS-­‐FL  interface  place  (check  clock).  9. Removing  the  laser  from  the  ceiling.  10. Mounting   the   CCD   camera   on   the   ceiling.   Some   pieces   had   to   be   modified   by   the  

workshop.  11. Mounting  the  laser  on  the  TS-­‐FL  interface  plate.  12. Clock  alignment  between  laser  and  camera.  13. Test  of  the  alignment  procedure.  

 

     Figure  2  –Work  at  FEU.  

 

Page 10: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

10/36   ESPRESSO  Project  

@CCL-­‐A/C  Unit-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  14. A/C  computer  completely  blocked,  screen  seems  OK  but  no  reaction  apart  of  a  small  bip  

when  repowered.  GLC  asked  the  IT  people  to  have  a  look.    

3.3    Day  3:  11.02.2016  (Thursday)  

1. Gerardo  Avila  arrived.  2. DME  had  the  introduction  to  the  Sequani  operation  with  CRA  

 @UT4-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  

3. Final  marking  of  drill  holes   for   fixing  Igus  pipe  holders   in  both  azimuth  and   inner  track  locations.  

4. Herman  Barrios  drill  holes  and  fixed  Igus  pipe  holders.  5. -­‐  Layout  pipes  in  final  position  for  P6  and  P5  locations.  6. -­‐  Laying  out  motor  cables  for  P6  and  P5  functions.  7. -­‐  Motor  and  Cables  tested  ok.  8. -­‐  Verification  of  Alignment  source  /  cover  actuation:  ok.  9. -­‐  Verification  of  alignment  source  fiber  produced  by  Gerardo:  ok  by  eye,  to  be  measured  

later  in  one  of  the  UTs.  NOTE:  Only  one  bundle  was  produced  due  to  later  arrival  of  purchased  fibres.  One  will  be  tested  and  assembled  and  the  others  will  be  integrated  in  next  mission.  

10. Moved  parts  and  tools  to  UT1  location.  

 Figure  3  –  P5P6  cabinet  and  cables  at  UT4.  

 @UT4-­‐InnerTrack-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  

11. The  position  of  the  P7-­‐R8  tube  and  its  protections  on  UT4  inner  track  was  analysed.  

Page 11: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

VLT-­‐MIN-­‐ESP-­‐13520-­‐,  Issue  1.0   11/36  

12. There  are  a  thread  and  an  adjusting  screw  that  define  the  limit  (being  the  screw  the  worst  case).  For  the  adjusting  screw  we  will  have  to  create  a  5  cm  space  between  protections.    

13. The  use  of  a  0.5  m  length  protection  was  tested  and  with  Gaspare  it  was  decided  that  we  will  use  3  of  0.5  m.  As  decided  with  Gaspare,   there   is  no  need  to  protect  the  Prism  box,  and  therefore  the  1.5  m  length  is  enough.    

@CCL-­‐FEU-­‐Laser-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  14. Clock  alignment  (relative  camera  -­‐  laser).    15. Tip  tilt  laser  alignment  (accuracy  below  ±5  arcsec).  This  corresponds  to  less  than  1.5  mm  

accuracy  at  60  m,  well  below  the  final  success  criteria.  16. XY  laser  alignment  (below  100  µm).  17. Prism  mounted  and  roughly  aligned  in  vertical  direction.  18. Tip  tilt  laser  alignment  verification  comparing  the  results  obtained  with  different  rotation  

angles  (differences  below  ±2  arcsec).    

             Figure  4  –  CCD  Camera  at  CCL  ceiling  (with  and  without  Lens  for  Tip/Tilt  and  XY  alignment)  and  laser  

mounted  on  the  rotating  platform.  

 @CCL-­‐A/C  Unit-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  

1. A/C  computer  reset  by  IT  people.  Alpiq  could  then  reconnect  remotely  the  Beckhof  to  the  PC.  

2. EFU  and  his  team  came  to  check  and  finetune  the  cooling  water  supply  flux.  Leak  detector  also  checked  by  NHA.  Green  light  to  launch  the  long  term  tests.  

 

3.4    Day  4:  12.02.2016  (Friday)  

1. Herman   Barrios   &   crew   installed   P7   cabinets   on   UT1,   UT2   and   UT3,   comprising   the  process   of   drilling   holes   for   M8   anchors,   installation   of   vibration   dampers   and   fixing  cabinet  in  place.    

Page 12: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

12/36   ESPRESSO  Project  

@UT1-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  2. Installation   of   P5/P6   cabinet   in   metallic   anchors   in   the   azimuth   platform   (already   in  

place),  telescope  wall.  3. Mounting  of  cable  feed  through  from  cabinet  side  to  P5  location,  internal  to  telescope.    To  

note  that  all  tasks  performed  by  Herman  Barrios  in  UT4,  drilling  holes  and  installing  pipe  holders,   were   now   performed   by   Espresso   staff   for   all   the   remainder   installation  activities.  

4. Drilling,   riveting   and   fixing   of   IGUS   cable   holders   inside   telescope,   near   to   P5.   Holders  were   also  provided   to   allow  wrapping  of   excessive   cable   (this  was  done   for  P5   and  P5  motor  cables).  Same  solution  applied  to  all  the  telescopes.  

5. Drilling,   riveting   and   fixing   of   IGUS   cable   holders   inside   the   inner   track,   close   to   P6  location.  

6. Laying  out  of  IGUS  pipe  from  P5  location  to  inner  track,  for  conveying  of  P6  motor  cable.    

 Figure  5  –  Cables  at  P5  location  and  IGUS  pipe  from  P5  location  to  inner  track,  for  conveying  of  P6  motor  

cable  (UT4).  

 7. Testing   of   cable   health   (P5   and   P6)   by   connecting   a   PiMICOS   stage   and   running  

preconfigured  commands  (homing,  goto  position  +150,  go  to  position  +10,  homing).  This  test  was  performed  by   connecting   a   laptop   to   the  PLC   secondary  Ethernet   port   (X001)  with  a  crossover  cable,  and  running  the  commands  under  twincat  environment.  Tests  OK.  

8. Test   of   switching   on/off   the   alignment   source,   using   the   laptop   connected   to   the  PLCS.  Tested  OK.  

9. Installation  of  P7  cabinet  outside  CR  on  UT1.  Mounting  of  IEC  plug  on  AC  line  that  provides  power  to  the  cabinet.  

10. Accessing  inner  track  and  from  M9  location,  insertion  of  P7  motor  cable  on  a  hole  on  the  ceiling  of  UT1  CR.  

Page 13: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

VLT-­‐MIN-­‐ESP-­‐13520-­‐,  Issue  1.0   13/36  

11. Removing  plastic  cable  tray  covers  on  ceiling  of  CR  in  order  to  allow  installation  of  motor  cable.   Maintenance   of   cable   tray.   Installation   of   extra   screws   to   insure   better   holding  (correction  of  work  done  in  previous  mission).  

12. Insertion  of  plastic  protection  on  the  feedthru  on  the  CR  door  frame.  13. Laying   out   of  motor   cable.   Fixing   cable   outside   CR  with   Igus   plastic   holder   (and   pipe).  

Putting  back   the  cable   tray  covers.   Inserting  excess  cable  back   to   Inner   track.  Access   to  inner   track   and  wrap  up   excess  P7     cable   around   the   aperture   on  M9   location   (   below  wood  plate).  

14. Test  P7  cable  health  using  the  same  procedure  described  before.  15. Finished  installation  of  UT1,  bringing  all  materials  to  UT2.  

   

@UT1-­‐InnerTrack-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  16. The  position  of  the  P7-­‐R8  tube  and  its  protections  on  UT1  inner  track  was  analysed.  17. For  the  thread  the  protection  might  be  lowered  1  cm  (as  the  thread  is  at  the  level  of  the  

nominal  height  and  there   is  a  margin  of  2  cm  for   the   tube).  For   the  adjusting  screw  we  will   need   to   position   the   two   0.5   m   length   protections   with   it   in   between   (this   is   all  explained  in  the  videos  made  in  all  UTs).    

@CCL-­‐FEU-­‐Laser-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  18.  Laser  beam  shined  into  the  4  tunnels  for  first  clock  and  height  alignment.  

       Figure  6  –  Laser  beam  shined  into  the  4  tunnels  for  first  clock  and  height  alignment.  

 19. For  the  rough  alignment  in  the  beam  height  and  clock,  the  laser  beam  was  pointed  to  the  

CR  for  each  UT,  and  an  imaged  was  acquired  from  the  CCL  (camera  with  250mm  zoom).  The  image  was  then  processed  with  a  Matlab  software  that    a)   identifies  the  mounting  flange  in  the  CR  (gradient  method  for  edge  detection)  

Page 14: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

14/36   ESPRESSO  Project  

b)   crops  the  image  around  the  flange  hole  c)   rescale  the  image  (mm/pixel)  d)   finds  the  beam  centroid.    

20. This   software   was   able   to   calculate   the   horizontal   and   vertical   misalignment   with   a  repeatability   of   ±1mm   in   vertical   direction   and   ±0.8mm   in   horizontal   direction.   (2σ  values  obtained  by  5  photos  taken  for  each  Coudé  train).  The   difference   between   those   values   and   the   ones   obtained   with   the   camera   placed  directly  in  the  Coudé  room  (ACA  method)  are  always  between  0.5  and  1.5  mm.  

 

50 100 150

20

40

60

80

100

120

140

160

180

50 100 150

20

40

60

80

100

120

140

160

180

20 40 60 80 100 120

20

40

60

80

100

120

dx = -3.2 mm, dy = -3.9 mm

20 40 60 80 100 120

20

40

60

80

100

120

 Figure  7  –  Measurements  of  Laser  beam  position  at  CR  with  photos  taken  from  CCL.  

 21. In  order  to  evaluate  the  influence  of  the  CCL  floor  (and  its  “membrane”  behaviour)  on  the  

FEU  laser  beam,  a  series  of  tests  were  performed  using  the  Genie  (1900  kg)  around  the  CCL  area.  The   following   figures   and   graphs   show   the   measured   displacement   of   the   FEU   Laser  beam  on  the  UT1  and  UT3  CR  incoherent  duct  entrance  while  the  Genie  was  moving.  As  seen,   the  weight  of   the  Genie  near  the  FEU  structure  thus   influence  the  alignment  of  the  FEU  structure,  with  a  maximum  value  of  15  arcsec  for  UT1.  It  must  be  noted  that  this  effect  is  only  noticeable  when  the  Genie  is  near  the  FEU  structure.  

22. In  order  to  test  de  repeatability  of  the  measurements,  the  test  on  UT1  was  repeated  with  a  similar  Genie  path  (at  different  speed)  and  similar  results  were  obtained.  

 

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500

1000

1500

2000

2500

3000

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

Page 15: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

VLT-­‐MIN-­‐ESP-­‐13520-­‐,  Issue  1.0   15/36  

A

BC

DEF

GH I

UT1

 Figure  8  –  Path  of  Genie  for  the  test  on  the  Displacement  of  FEU  Laser  in  UT1  CR  incoherent  duct.  

 

A                                                        B        C              D                              E                                        F                    G      H                      I            

1  mm  displacement  =>  3.2  arcsec

 Figure  9  –  Displacement  of  FEU  Laser  in  UT1  CR  incoherent  duct.  

 

Page 16: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

16/36   ESPRESSO  Project  

M K

JIH

G

B

C

A

DE

F

L

UT3

 Figure  10  –  Path  of  Genie  for  the  test  on  the  Displacement  of  FEU  Laser  in  UT3  CR  incoherent  duct.  

 

G                            H                                                                                        I          J                          K                          L                          M

1  mm  displacement  =>  3.6  arcsec

A                                                                                    D                  E                                            F    G      H                          I    J        K      L        M

 Figure  11  –  Displacement  of  FEU  Laser  in  UT3  CR  incoherent  duct.  

   

Page 17: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

VLT-­‐MIN-­‐ESP-­‐13520-­‐,  Issue  1.0   17/36  

3.5    Day  5:  13.02.2016  (Saturday)  

@UT2-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  23. Mounting  P5/P6  and  P7  cabinets  on  UT2  using  the  same  procedure  as  described  before  

for  UT1  cabinets  installation.  24. Testing  of  relevant  cabinet  functions.  Tests  OK  25. Placing  cable  labels  near  cabinets  and  close  to  respective  stage  location  in  UT1  and    UT2.  26. Bring  all  materials  to  UT3.  

 @UT2-­‐InnerTrack-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  

27. The  position  of  the  P7-­‐R8  tube  and  its  protections  on  UT2  inner  track  was  analysed.  28. This   is   the  worst  case  and  the  protection  must  be  cut  with   two  openings   for   the   thread  

and  for  the  adjusting  screw.  Also  the  P7-­‐R8  tube  must  be  cut  about  1  cm  (and  closed  with  a  flat  part).  All  the  dimensions  are  described  in  the  videos.  

 Figure  12  –  P7R8  tube  and  the  interference  with  M7  thread  and  adjusting  screw  (worst  case  in  UT2).  

 @CCL-­‐FEU-­‐Laser-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  

29. Test  of  PRS  initialization  repeatability  (Figure  13).  The  toggling  system  has  been  moved  to  the  optical  switch  a  number  of  times  with  different  approach  speeds.  The   difference   in   the   initializing   position   is   related   to   the   delays   due   to   the   MoCo  controller.  Just  keeping  a  constant  speed  during  the  initialization  process  (fixed  to  0.1°/s)  strongly  increases  the  repeatability  to  about  ±1asec.  

Page 18: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

18/36   ESPRESSO  Project  

 Figure  13  –  Test  of  PRS  initialization  repeatability  

 30. Tilt   verification  between   toggling   system  and  CR   flanges   shining   the   laser   in   the  4  UTs  

(results  shown  at  the  end  of  the  document)  31. The  Genie  has  been  removed  from  the  CCL.  

The  difference  in  tiptilt  of  the  plane  generated  by  the  toggling  system  with  respect  to  the  best  fit  of  the  CR  flanges  centres  in  the  2  conditions  was  compared.    Shining  the  laser  in  the   tunnels  we   found  a  difference  between  9.7  arcsec  and  15.8  arcsec  depending  of   the  method  used  (respectively  Alex  Camera  in  the  CR  or  Giorgio  photographic  machine  with  f250  objective  looking  from  the  CCL).  The  value  obtained  by  the  camera  mounted  on  the  ceiling  of  the  CCL  was  10.5  arcsec.  

 @ISSUE_OF_THE_DAY-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  

 During  some  repeatability   tests   the  stage  passed  over  the  optical  switch.  Previously  the   optical   switch   was   activated   just   for  counter-­‐clockwise   rotation   and   not   for  clockwise   rotation.   Due   to   a   command  bug   the   stage   overtakes   the   switch  causing   an   entanglement   of   the   laser  cables.  The  cables  pull  the  laser  out  of  its  housing  causing   a   full   misalignment   of   the   laser  itself.  

       

Page 19: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

VLT-­‐MIN-­‐ESP-­‐13520-­‐,  Issue  1.0   19/36  

3.6    Day  6:  14.02.2016  (Sunday)  

@UT4-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  1. Finishing  UT4  P7  installation.  UT3  was  not  accessible  until  11PM.  2. Installation  of  P7  cabinets  according  to  procedure  described  before.  3. Test  of  P7  cable  health,  and  cabinet  relevant  functions.  Tests  OK  4. Placing  labels  on  motor  cables  5. Finished  UT4  Installation.    

@UT3-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  6. Starting   P7   installation   in   UT3.   Installation   of   P7   cabinets   and   cables   according   to  

procedure  already  described.  7. Running  relevant  tests.  Tests  all  ok.  8. Placing  Labels  on  P7  motor  cable.  9. Installation  of  UT3  P5/P6  cabinet  and  motor  cables  according  do  procedure  above.  10. Running  relevant  tests.  Tests  all  ok  11. Placing  labels  on  P5/P6  motor  cables.  12. Finished  UT3  installation  

 @CT-­‐Cabinets-­‐in-­‐All-­‐UTs-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  

13. This   finished   all   cabinet   installations:   there   are   a   few   items   to   complete   which   are   of  responsibility  of  ESO:  

o Cabinets  in  P5/P6  and  P7  locations  in  all  UTs  do  not  have  yet  comm  connections  o All  P7  locations  in  all  UTs  do  not  have  yet  a  live  power  connections  

14. Meeting  at  LFC  room  to  discuss  on  solutions  that  may  have  to  be  implemented  to  reduce  power   of   the   alignment   source   (on   P5/P6   cabinets)   below   the   minimum   power   level  allowed   by   the   Thorlabs   LED   circuitry   on   the   cabinet.   Due   to   the   error   status   signal  required   for   committing   the   PLC   twin   cat   device   that   actuates   this   source,   it   may   be  necessary  to  have  extra  means  to  reduce  power  by  optical/mechanical  means  below  the  electrical  threshold  levels.  This  error  status  signal   is   triggered  when  the  current   flowing   in   the   led   is   lower  than  a  certain  threshold  (it  may  be  configured  in  the  electrical  circuit  of  the  LED  power  supply),  indicating  LED  source  malfunction.  Solution   similar   to   DTS0074   from   OZ-­‐optics   may   be   required.   This   is   a   in   line   fiber  attenuator   that   could   be   installed   inside   the   cabinet,   inline   with   the   patch   cable  connection  the  LED  source  to  the  interconnection  plate  on  the  bottom  of  the  cabinet.    Gerardo  Avilla  shall  evaluate  the  adequate  level  of  attenuation  and  the  type  of  attenuator  to  be  mounted   inside   the   cabinets.  This  provision   shall   be   installed   in   June  mission   for  UT4.    

Page 20: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

20/36   ESPRESSO  Project  

@UT3-­‐InnerTrack-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  15. The  position  of  the  P7-­‐R8  tube  and  its  protections  on  UT3  inner  track  was  analysed.  16. This  is  the  more  relaxed  case.  Both  the  thread  and  the  adjusting  screw  are  10  mm  above  

the  protection  at  the  nominal  height  of  180  mm.    @CCL-­‐FEU-­‐Laser-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  

1. Clock  alignment  (relative  camera  -­‐  laser)  in  order  to  match  xy  laser  variation  with  xy  CCD  variation.  

2. Tip  tilt  laser  alignment  (  below  ±5  arcsec  ):  The  tip  tilt  measures  have  been  done  reducing  the  power  of  the  laser  in  order  to  remove  the  OD5  filter.  This  was  made  to  avoid  errors  due  to  the  filter  wedge  (estimated  about  15  arcsec).  The  final  result  are  (3  repetitions):   Theta  x  =4.9±0.1   Theta  x  =5.0±0.1  

 

 Figure  14  –  Above:  2  spots  (0°  and  180°)  of  one  image;  Below:  x,y  values  for  0°  and  180°.  The  value  of  the  

barycentre  is  calculated  averaging  the  50  values.  

 3. xy  laser  alignment  (below  100  microns):  

The  final  results  are:  x  direction  -­‐15   y  direction  -­‐109  

Page 21: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

VLT-­‐MIN-­‐ESP-­‐13520-­‐,  Issue  1.0   21/36  

 

 Figure  15  –  Above:  2  spots  (0°  and  180°)  of  one  image  before  and  after  sigma  clipping;  Below:  x,y  values  for  

0°  and  180°.  The  value  of  the  barycentre  is  calculated  averaging  the  30  values.  

4. Prism  mounted  and  aligned  in  vertical  direction.  The  height  of  the  pentaprism  has  been  corrected  using  the  values  obtained  by  the  camera  from  the  CCL  (objective  f250).  

 Figure  16  –  Prism  mounted  and  aligned  in  vertical  direction.  

 

Page 22: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

22/36   ESPRESSO  Project  

5. In  order  to  evaluate  the  effect  of  the  tilt   in  the  FEU  structure  measured  yesterday  (with  FEU  Laser)   on   FRD   losses,   Gerardo  Ávila   did   some   calculations   shown   in   the   following  figure.  As  seen,  the  0.25  arcmin  tilt  measured  (in  the  worst  case  of  UT1  with  Genie  near  the  structure)  will  produce  an  FRD  loss  much  lower  than  1%  (1%  loss  is  for  a  1.5  arcmin  tilt).  

 Figure  17  –  Gerardo  Ávila  calculations  on  FRD  loss  due  to  tilt  on  the  FEU  structure.  

3.7    Day  7:  15.02.2016  (Monday)  

@CT-­‐Cabinets-­‐-­‐-­‐  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  1. Alignment  source  Fiber  measurement  regarding  coupling  efficiency,  uniformity  between  

fiber  ends  and  min/max  intensity   levels  allowed  by  the   led  source.  Measurements  were  done  in  both  UT4  and  UT3.  The  results  showed  compliance  with  success  criteria:  uniformity  between  100  µm  fibers  is  better  than  4%  and  coupling  efficiency   in  the  order  of  1.9%  for  the  100  µm  fiber  and  0.6%  for  the  50  µm.  

2. Along  with  Gerardo  Avila   and  Alexandre  Cabral,   tested   layout   of   fiber   in  P5   location   in  order   to   check   length   requirements   and   possible   fixation   points.   Conclusions   led   to  reduction  in  total  length  of  the  alignment  source  fiber  from  7.5  m  to  6.5  m  and  increase  in  10  cm  the  length  of  the  independent  fiber  patches  after  the  spliced  section.  

3. Crosscheck   of   all   cabinets   for   labelling,   connections   or   any   other   issue   regarding  installation.  Corrected  or  added  labelling  (in  cables)  when  needed.  All  cabinets  are  OK.  

4. Need   to  print   out   cabinet   schematics   to   place  paper   copies   in   each   cabinet.   Schematics  were  updated  and  Gaspare  LoCurto  shall  print  them  out.  

 

Page 23: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

VLT-­‐MIN-­‐ESP-­‐13520-­‐,  Issue  1.0   23/36  

 

 Figure  18  –  Cabinets  installed  for  the  CT.  Left  P5P6  and  right  P7  and,  from  top  to  bottom,  UT1  to  UT4.  

 

Page 24: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

24/36   ESPRESSO  Project  

 5. Meeting  with  RAB  (ESO)  regarding  the   future   installation  of  engineering  network   in  the  

observatory,  dealing  with  all  PLC/Beckhoff  instruments.  Several  solutions  were  discussed,  all  implying  more  or  less  intrusive  modifications  on  the  cabinets,   considered   critical   at   this   phase   of   the   CT   electronics   commissioning.   To   be  decided  the  actual  solution  and  the  timing  for  its  implementation.    

@CCL-­‐FEU-­‐Laser-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  6. Check  form  the  CR  for  CR  flange  vs  PRS  planes  verification.  

The  laser  has  been  shined  in  all  the  UTs  to  correct  the  height  and  the  clock.  The   mean   value   and   the   standard   deviation   obtained   from   15   second   of   continuous  acquisition  are  shown  below:  

 Figure  19  –  Mean  value  and  the  standard  deviation  obtained  from  15  second  of  continuous  acquisition.  

 7. Following   figures  show  the   final  results  comparing  the  values  acquired  with  the  LT  and  

the  ones  obtained  shining   the   laser   in   the  4  CR  with  and  without   the  genie  near   the  FE  structure.  

Page 25: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

VLT-­‐MIN-­‐ESP-­‐13520-­‐,  Issue  1.0   25/36  

 Figure  20  –  Final  results  comparing  the  values  acquired  with  the  LT  and  the  ones  obtained  shining  the  laser  

in  the  4  CR  with  and  without  the  genie  near  the  FE  structure.  

 

3.8    Day  8:  16.02.2016  (Tuesday)  

@CT-­‐Cabinets-­‐-­‐-­‐  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  1. Meeting   with   the   LPO   IT   responsible,   Daniel   Gaytan   in   order   to   evaluate   the   several  

solutions  available  to  connect  the  engineering  network  to  the  PLCs.  Three  base  solutions  were  advanced,  all  implying  effort  to  be  committed  in  the  alteration  of  the  cabinets.  These  are:  

o In  P7  cabinet  location  (bodega),  access  directly  the  local  switch  using  a  UTP  copper  cable.   This   implies   modifications   on   the   cabinet:   RJ45   feedthru   on   the   bottom  flange,  extra  UTP  patch  cable  to  connect  to  secondary  port  of  PLC.  

o In  P7  (or  P5/P6)  location,  access  to  other  pair  of  fibre  optic  cable  associated  to  the  engineering   network.   Implies   integrating   an   extra   media   converter   inside   the  cabinet   and   mounting   a   new   set   of   FO   feedthru   on   the   bottom   flange   of   the  cabinets.  

Page 26: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

26/36   ESPRESSO  Project  

o In   the   Azimuth   platform,   access   the   network   rack   via   copper   UTP,   where   a  dedicated  media  converter  is  hosted.  Direct  patch  cable  in  this  rack  to  the  optical  network  distribution  panel.  In  this  case  the  modifications  in  the  cabinet  would  be  the  RJ45  feedthru  plus  internal  UTP  patch  cable    

 @CCL-­‐FEU-­‐Laser-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  

1. Verification  of  the  init  stop.  2. Preparation  of  the  moco  files  for  PRS  control.  3. Turbulence   analysis   performed   on   all   UTs  with   the   FEU   Laser   and   the   Camera   Sensor  

installed   on   the   CR.   The   structure   function   is   calculated   as   the   RMS   difference   in   the  centroid  position  between  images  at  different  time  gaps.  The  figure  reports  the  structure  function   in   the  horizontal   and  vertical  directions   for   the   centroid  position  as  measured  from  the  CR.  The  correlation   time   is  similar  between   the  different  UTs  (about  10s),  but  UT2  and  UT3  show  about  1/5  of  the  residuals  as  respect  to  UT1  and  UT4.  

0 5 10 15 20 25 300

0.05

0.1

0.15

0.2

0.25

0.3

Δ x

pos

ition

RM

S (m

m)

Time gap (s)0 5 10 15 20 25 30

0

0.05

0.1

0.15

0.2

0.25

0.3Δ

y p

ositi

on R

MS

(mm

)

Time gap (s)

UT1UT2UT3UT4

 Figure  21  –  Turbulence  analysis  performed  on  all  UTs  (day  time).  

 4. Analogous  calculations  are  performed  for  the  UT4  during  day  time  (left)  and  night   time  

(right).  During  day   time,   the   residuals   are  about   the  double  of   the  night,  with  a   similar  correlation  time.  

0 5 10 15 20 25 300.12

0.17

0.22

0.27

0.3

Δ p

ositi

on R

MS

(mm

)

Time gap (s)

UT4, orizontalUT4, vertical

0 5 10 15 20 25 30

0.1

0.125

0.15

Δ p

ositi

on R

MS

(mm

)

Time gap (s)

UT4, orizontalUT4, vertical

 Figure  22  –  Turbulence  analysis  performed  on  UT4  during  day  time  (left)  and  night  time  (right)..  

   

Page 27: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

VLT-­‐MIN-­‐ESP-­‐13520-­‐,  Issue  1.0   27/36  

3.9    Day  9:  17.02.2016  (Wednesday)  

Departure  to  Antofagasta  of    Matteo  and  Giorgio.    @CT-­‐Cabinets-­‐-­‐-­‐  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  

1. Teleconf   with   Igor   and   Marco.   Antonio,   Manuel   and   Denis   (later   Gaspare)   attended   in  Paranal.  Issue:  engineering  network  and  the  best  way  to  connect  CT  cabinet  PLCs.  Although  not  mandatory   in   terms  of  ESO  point  of   view,  namely   taking   into  account   the  advanced  stage  of  acceptance/installation  of  some  of  ESPRESSO  PLC  subsystems,  we  all  agree  that  a  permanent  connection  to  the  engineering  network  would  be  interesting  at  a  long  term  and  advantageous  for  us.  From   the   different   technical   solutions   that   could   be   put   in   place,   the   accepted   solution  was  the  one  that  is  common  for  all  CT  cabinets  and  FE:  

o ESO   provides   an   extra   pair   of   Fiber   optics   cabling   connected   to   the   engineering  network.  

o The  adaptation  of   existing  Espresso   subsystems,  namely  of  CT   cabinets,   includes  mounting  of  an  extra  media  converter  inside.  

o For   the   CT   cabinets   there   would   be   some   mechanical   adaptations   to   be  implemented   in   each   one,   including   the   mechanical   mounting   of   the   media  converter,   FO   feedthru   on   the   bottom   flange   and   the   production   and   wrapping  inside  of  2  patch  cables  (  1  fiber  pair,  one  UTP).  

The  next  step  would  be  issuing  a  CRE  from  ESO  to  the  consortia  to  propose  this  alteration.  Only  after  this,  actual  implementation  would  be  put  in  place.  

2. Cabinet  schematics  were  placed  in  all  the  cabinets,  attached  to  the  door.  3. Stowing  all  CT  electronics  components  and  tools.  A  large  box  containing  Igus  piping  and  

accessories,  small  tools  and  components  with  restricted  use  of  CT  electronics,  was  placed  in  the  CCL.  

 Figure  23  –  Manuel  and  Antonio  near  one  of  the  P5P6  cabinets  installed  in  the  Azimuth  platform.  

 

Page 28: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

28/36   ESPRESSO  Project  

@LAT-­‐in-­‐VLTiDelayLine-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  1. Preparation  of  material  

o Mounting  of  the  LAT  optomechanics.  o Mounting  of  LAT  on  support  frame  for  its  alignment  in  the  Delay  Line  corridor  in  

VLTi  Complex.  2. Alignment  of  LAT.  Figure  24  shows  the  setup:    

a) The   laser   beam  which   is   reflected   by   the   cube   splitter   is   sent   to   a   corner   cube  placed  at  2m  (at  this  distance,  due  to  the  divergence  of  the  beam,  it  is  guaranteed  that   the   diaphragm   near   the   laser   alignment   with   incoming   beam   removes   any  lateral  misalignment  of  the  corner  cube).  The  error  parallelism  of  the  corner  cube  is  5  arcsec  (Newport  Model:  UBBR1-­‐5).  

b) The  beam  transmitted  by   the  beam  splitter   is   then  reflected  by   the  adjusting   flat  mirror.  This  beam  is  sent  to  a  translucent  paper  situated  at  6  m.  The  beam  coming  from   the   corner   cube   is   also   projected   on   this   screen.   However   its   intensity   is  much  lower  than  the  main  spot  (from  the  adjusting  flat  mirror).  

c) A  camera  to  visualize  the  spots  is  placed  between  the  LAT  and  screen.  It  lies  at  1  m  from  the  screen  and  it   is  connected  to  a   laptop.  The  Camera  Sensor  (also  used  in  CR  to  visualize  FEU  laser  beam)  software  allows  to  measure  the  spot  position  with  a  resolution  of  20  µm  (limited  by  noise  and  beam  fluctuation).  

3. LAT  Alignment  Procedure:  a) The  beam  coming  from  the  corner  cube  and  the  diaphragm  defines  the  optical  axis.  

The  spot  on  the  screen  is  then  recorded  and  its  centroid  is  defined  as  the  reference  position.   For   this   operation,   the   bright   spot   is   eliminated   by   putting   a   piece   of  paper  between  the  beam-­‐splitter  and  the  mirror.  

b) The  bright  beam  is  allowed  to  reach  the  screen  and   it   is  much  more   intense  that  the   reference   spot.  The  camera   is  adjusted  on   the  bright   spot  and   its   centroid   is  measured.   The   spot   is   then   sent   to   the   reference   position   by   adjusting   the   flat  mirror   in   tip/tilt.   The   system   camera-­‐software   is   able   to   place   the   bright   spot  better   than   130  µm   in   (Figure   25).   Therefore   the   error   collinearity   of   the   two  beams   are,   for   a   6  m   distance,   sum   squaring   with   the   parallelism   error   of   the  corner  cube,  0.11  arcmin.  

 Figure  24  –  LAT  alignment  on  the  VLTi  Delay  Line  Lab.  

 

Page 29: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

VLT-­‐MIN-­‐ESP-­‐13520-­‐,  Issue  1.0   29/36    

   Figure  25  –  Spots  on  the  Camera  Sensor  for  the  LAT  alignment  (left  centre  reference  measured  at  the  end  of  

the  alignment  to  confirm  stability  and  right  the  aligned  spot  after  mirror  tip  tilt  blocking).  

 

3.10    Day  10:  18.02.2016  (Thursday)  

Departure  to  ANF  of  Manuel  Abreu  and  António  Oliveira.    

@CT-­‐Cabinets-­‐-­‐-­‐  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  1. Final  inspection  of  the  cabinets  with  Gaspare  Lo  Curto:  

o Note  that  the  cabinets  at  bodega  level  in  all  UT  do  not  have  yet  live  power  lines.  o All   cabinets   have   the  main   switch   in   off   position   and   the   internal   breaker   in   off  

position.  2. Final  stowing  away  and  cleaning  of  material  and  components  related  to  CT  electronics.  

 

@LAT-­‐in-­‐UT3-­‐NasmythTube-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  3. Mounting  of  the  LAT  support  (spider)  inside  the  telescope  Nasmyth  Centre  Piece  in  UT3.  

The   spider  was  mounted   from   the  M1  mirror   side  with   the   Sequani   lift.   The   operation  took   a   lot   of   time   (around   1   hour)   because   the   difficulty   to   remove   the   attachment  hookers  inside  the  telescope  tube  and  their  replacement  by  the  hookers  dedicated  for  the  fixation   of   the   spider.   The   spider   was   “shorter”   than   the   hooker   level   and   therefore   a  simultaneous   fixation   of   both,   the   spider   and   hookers   was   necessary.   This   second  operation  was  difficult  and  long.  

4. The  LAT  was  then  mounted  on  the  spider.  The  orientation  was   fixed   in  such  a  way  that  the   X,   Y   movements   of   the   translation   stage   were   as   parallel   as   possible   with   the  orientation  of   the  guide  probe   (GP).  This  allows   to  de-­‐couple   the  X,  Y  movement  of   the  spot.  

5. The  LAT  includes  2  sets  of  X,  Y  movements,  one  with  a  large  range  (~10mm)  and  a  second  with  a  short  movement  range  (~4mm).  Both  of  them  were  adjusted  in  such  a  way  that  the  laser  beam  was  centred  on  the  pupil  beacon  and  on  the  centre  of  the  GP  pick-­‐up  mirror.  

Page 30: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

30/36   ESPRESSO  Project  

6. To  identify  the  centre  of  the  GP  pick  up  mirror,  a  black  target  with  a  silver-­‐white  marks  and  a  spot  (~1mm)  in  the  centre.  This  target  was  provisionally  mounted  in  front  of  the  GP  mirror.  The  GP  was  sent  to  the  centre  of  the  field.  

7. The  Adapter/Rotator  was  turned  by  360°  to  record  the  movement  of  the  LAT  spot  on  the  target.  For   that,   the  Camera  Sensor   imaging  system  was  mounted  between  the  LAT  and  the   GP.   The   system   includes   a   video   camera   mounted   behind   the   LAT   support   and  pointing  to  the  GP.  A  laptop  is  used  to  record  and  analyse  the  position  of  the  spot  on  the  target  

 Figure  26  –  LAT  at  Nasmyth  tube  in  the  VLT  UT3  unit  centre  piece.  

 

3.11    Day  11:  19.02.2016  (Friday)  

@LAT-­‐in-­‐UT3-­‐NasmythTube-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  1. The  identification  of  centre  of  rotation  of  the  GP  mirror  was  consistent  with  the  reference  

point  in  the  GP  CCD  (deduced  by  start  observation  and  rotating  the  Adapter/Rotator  with  the   GP   in   the   centre   of   the   field).   The   difference  was   less   than   2   pixel   error   (220   µm,  110  µm  each  pixel  image).  

 Figure  27  –  Characteristics  of  the  GP  sensor  from  VLT-­SPE-­ESO-­11420-­0675.  

 

Page 31: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

VLT-­‐MIN-­‐ESP-­‐13520-­‐,  Issue  1.0   31/36  

2. Next  step:  the  LAT  was  fine  tuned  in  X,  Y  and  tip-­‐tilt.  In  order  to  adjust  the  position  of  the  laser   spot  on   the  pupil  beacon,   the   fibre  pupil  beacon  was  extended  with  an  additional  fibre  of  20  m  (200  µm  core)  to  reach  the  Telescope  Centre  Piece.  The  output  fibre  end  was  connected  to  a  Thorlabs  photodiode  (PM100USB  -­‐  USB  Power  and  Energy  Meter)  and  this  connected  to  a   laptop  for   flux  recording.  The  flux   level  was  of   the  order  of  tenth  of  µW.  The  spot  shape  was  assumed  to  be  a  Gaussian  function.  The  spot  size  at  the  level  of  the  pupil   beacon   was   around   20   mm   at   2σ.   A   Gaussian   simulation,   considering   the   Pupil  Beacon  collimator  entrance  diameter  of  2.5  mm,  provided  the  position  error  of  the  spot  on   the   pupil   beacon.   The   spot   position   resolution   was   estimated   to   be   2  mm  (corresponding   to   a   decrease   from   the   maximum   amplitude   in   the   meter   of   7.4%),  equivalent  to  0.5  arcmin.  

3. To  laterally  align  the  LAT,  the  position  of  the  rear  spot  projected  on  the  target  on  the  GP  was  recorded.  

4. The  large  range  X,  Y  stage  position  resolution  was  around  20µm.  5. Alignment  Procedure:  

a) Due  to  the  large  lever  arm  between  the  LAT  and  the  pupil  beacon,  the  LAT  was  first  tilted   to   centre   the   spot   on   the   pupil   beacon   and   then   to   laterally   translate   the  laser  to  put  the  backwards  spot  on  the  GP  target  

b) The   fine   threat  Newport   screws   controlling   the   tip-­‐tilt  were   screwed   in  order   to  send  the  LAT  spot  on  the  pupil  beacon.  

c) All  the  springs  were  tighten  close  to  the  maximum  strength.  d) The  control  of  the  tilt  was  done  by  maximizing  the  flux  on  the  photodetector.  e) The   laser   spot   on   the   GP   target   was   sent   by   X,   Y   translation   to   the   centre   of  

rotation.  f) Correction  of  the  tip-­‐tilt  to  compensate  the  X,  Y  movement.  g) Residual  correction  of  the  X,  Y  spot  position.  h) The   blockage   of   the   tip-­‐tilt   screws   was   done   by   push-­‐pulling   the   micrometre  

screws  and  the  blocking  screws  simultaneously.  i) The  X,  Y  adjustment  was  repeated  using  the  GP  CCD  camera  (Technical  CCD).  For  

that,  the  laser  beam  was  attenuated  with  a  couple  of  polarizers.  A  third  polarizer  was  necessary  to  increase  the  attenuation  to  avoid  camera  saturation.  

j) The  X,  Y  adjustment  is  then  done  by  sending  the  laser  spot  to  the  reference  point  in  the  GP  camera.  The  difficulty  of  this  method  was  to  compute  the  barycentre  of  the  spot  because  frequently  the  spot  was  close  to  the  edge  of  the  dichroic  mirror  or  in  front  of  “shadow  features”  on  the  surface  of  the  CCD.  Anyway,  this  method  would  be  preferred  to  the  target  attached  to  the  GP  arm.  

k) The  position  of  the  reference  pixel  is  defined  in  the  database,  in  the  table:  Appl_data:TCS:msw:insData.data        columns  #  14  and  15,  row  #  2  The  value  (as  of  19-­‐02-­‐2016  @  13:00)  is:  (x  ;  y)  =    (305.9  ;  297.4).  It  was   last   updated   in  November   2013,   and   re-­‐checked   on   average   twice   a   year  since  then.  The  value  is  updated  only  if  the  deviation  is  large  (large  TBD).  

l) The  reached  alignment  accuracy  was  less  than  0.25  arcmin  (at  17°  altitude)  in  tip-­‐tilt  and  for  XY  (305.1  ;  298.2)  approximately  1.13  pixels  corresponding  to  125  µm  on  the  GP  target.  

Page 32: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

32/36   ESPRESSO  Project  

6. In  order  to  evaluate  the  influence  of  telescope  flexures,  the  telescope  was  moved  from  17°  altitude  to  89°  and  back.  The  position  of   the  spot  on  the  GP  was  measured  and  also  the  power   coming   from   the   pupil   beacon   (directly   to   the   power   meter,   without   the   20  m  fibre).  During  the  alignment  the  tilt  was  slightly  offset  to  compensate  for  the  flexure  and  to  optimize  the  alignment  close  to  65°  (the  selected  nominal  observing  altitude).  As  seen  in  the  following  graphics,  there  is  a  flexure  on  the  telescope  spider  that  produces  a   tilt  variation  on   the  LAT  beam.   It   is  clear  a   “compensated”  behaviour   from  17°   to  45°  and  also  some  hysteresis.  As  seen,  the  offset  on  the  alignment  optimized  the  alignment  for  50°  altitude.  Nevertheless  it  must  be  noticed  that  the  maximum  tilt  deviation  is  below  1  arcmin,  well  within  the  success  criteria.  For   the   XY   position   on   the   GP,   the   graph   (showing   in   a   red   cross   the   centre   position),  shows  also  the  hysteresis  and  demonstrates  that  an  offset  correction  is  also  required.  It  must  be  mentioned  that  after  this  tests  the  telescope  was  moved  from  17°  to  89°  and  back   two   times  more   and   the   both   the   power   and   the   pixel   position   had   a   very   good  repeatability  (almost  exact  in  power  and  0.2  of  a  pixel  in  beam  position).  

8.0

8.5

9.0

9.5

10.0

10.5

15 30 45 60 75 90

Power  in  µW

Altitude  in  deg

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

15 30 45 60 75 90

Displacem

ent  from

 maxim

um  in  m

m

Altitude  in  deg

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

15 30 45 60 75 90

Angular  variatio

n  from

 maxim

um  in  arcmin

Altitude  in  deg

 Figure  28  –  Tip  tilt  variation  measured  with  pupil  beacon  power  during  telescope  altitude  variation.  The  telescope  went  from  17°  to  89°  and  back.  The  large  sport  corresponds  to  the  first  measurement.  The  

displacement  from  maximum  was  calculated  considering  the  decrease  in  measured  power.  

290

295

300

285 290 295 300 305

Y  pixel

X  pixel

17°20°

30°40°

50°60°70°

89°

80°

 Figure  29  –  XY  variation  on  the  GP  during  telescope  altitude  variation.  The  large  sport  corresponds  to  the  

first  measurement.  The  red  cross  corresponds  to  the  central  pixel.  

 

Page 33: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

VLT-­‐MIN-­‐ESP-­‐13520-­‐,  Issue  1.0   33/36  

 

3.12    Day  12:  20.02.2016  (Saturday)  

@LAT-­‐in-­‐UT3-­‐-­‐-­‐  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  1. Test  of  flexure  of  the  telescope  for  high  altitude  angles  

a) The   LAT   alignment   was   performed   when   the   telescope   was   at   17°.   Since   the  average  observations  are  made  around  65°,  we  studied  the  shift  of  the  spots  (pupil  beacon  and  GP  camera)  as  a   function  of   the  altitude  angle.  The  movement  of   the  laser  spot  on  the  pupil  beacon  is  mainly  due  to  the  flexure  of  the  tube  supporting  M2.   The   shift   of   the   opposite   LAT   spot   on   the  GP   camera   is   probably   due   to   an  error   angle   of   the   altitude   angle   (were   the   LAT   is  mounted)  with   respect   to   the  Adapter/Rotator  axis.  

b) In  a  first  test,  the  spot  movements  were  recorded  for  a  number  of  altitude  angles.  Coming   back   to   the   telescope   initial   position,   we   noticed   a   small   hysteresis  behaviour.   In   a   second   test,   the   shifts   at   65°   were   recorded   and   counter-­‐shifts  were  applied  when  the  telescope  was  at  17°.  When  the  telescope  were  sent  again  at  65°,  we  noticed  that  the  shifts  were  not  exactly  at  the  optimal  position.  One  way  to  overcome  this  problem  is  to  re-­‐align  the  LAT  directly  at  65°.  

c) The  following  graphs  show  the  detailed  results  obtained  with  an  alignment  offset  to  perform  better  at  65°.  They  show  that  both  the  tip  tilt  and  XY  position  are  now  better  optimized  for  65°.  

7.5

8.0

8.5

9.0

9.5

10.0

10.5

15 30 45 60 75 90

Power  in  µW

Altitude  in  deg

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

15 30 45 60 75 90

Displacem

ent  from

 maxim

um  in  m

m

Altitude  in  deg

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

15 30 45 60 75 90

Angular  variatio

n  from

 maxim

um  in  arcmin

Altitude  in  deg

 Figure  30  –  Tip  tilt  variation  measured  with  pupil  beacon  power  during  telescope  altitude  variation.  

Optimized  alignment  for  65°.    

Page 34: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

34/36   ESPRESSO  Project  

294

299

304

309

299 304 309

Y  pixel

X  pixel

17°20°

30°

40°

50°

60°

70°

89° 80°

65°

 Figure  31  –  XY  variation  on  the  GP  during  telescope  altitude  variation.  Optimized  alignment  for  65°.  

 

2. Conclusion  a) The  LAT  can  be  used  to  define  the  best  “optical”  axis  for  the  ulterior  alignment  of  

the  optics  of  the  Coudé  Train.  b) The  LAT  can  be  relatively  easy   to  align  with  respect   to   the  M2  pupil  beacon  and  

with   respect   to   the   centre   of   rotation   of   the   Adapter/Rotator.   The   accuracy   tilt  error  is  less  than  0.5  arcmin  (<  2mm  on  the  pupil  beacon).  The  lateral  error  is  less  than   0.2mm   for   65°   altitude   (<   2   pixels   in   the   GP).   For   the   maximum   altitude  amplitude,  as  shown  in  the  following  graphics,  the  XY  decentre  in  within  ±1.4  mm,  which  is  totally  acceptable  (the  requirement  on  the  alignment  for  65°  altitude  was  ±1  mm).  

0.00

0.22

0.44

0.66

0.88

1.10

1.32

1.54

15 30 45 60 75 90

Decen

tre  from

 GP  centre  pixel  in  m

m

Altitude  in  deg

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

15 30 45 60 75 90

Decen

tre  from

 GP  centre  pixel  in  pixel

Altitude  in  deg

 Figure  32  –  XY  distance  from  central  pixel  as  a  function  of  altitude  angle.  

 

Page 35: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

VLT-­‐MIN-­‐ESP-­‐13520-­‐,  Issue  1.0   35/36  

3. Test  the  x-­‐y  sensitivity  to  tip-­‐tilt  alignment:  a) Starting  (x  ;  y)  =  (311.7  ;  308.5)  b) Release  the  spring  of  the  upper  adjustment  of  the  tip-­‐tilt  by  one  complete  rotation  

(x  ;  y)  =  (310.9  ;  309.4)   =>  variation  of  X  =  -­‐1.8  pix  and  Y  =  +0.9  pix.  c) Screw  the  upper  adjustment  by  one  complete  turn:  

laser  light  out  of  beacon  by  approximately  5  cm  (around  10  arcmin)  (x  ;  y)  =  (247  ;  328)     =>  variation  of  X  =  -­‐65  pix  and  Y  =  +20  pix.  

 4. Summary  of  the  hours  worked  in  UT3:  

17-­‐02   2h  18-­‐02   4  h  19-­‐02   6.5h  20-­‐02   5h    

5. Having   to   start   from   scratch,   on   a   next  mission,   unless   there   are   troubles,  we   estimate  that  it  will  be  needed  6  hours  to  materialize  the  ALT  axis  =>  a  full  day.  Any  realignment  can  be  done  in  less  than  1  hour  (considering  that  tiptilt  is  not  so  difficult  to  obtain,  is  not  so  sensitive  and  should  be  maintained,  and  we  only  need  to  correct  XY).  

 

3.13    Day  13:  21.02.2016  (Sunday)  

1. Packing  and  leaving  the  Paranal  observatory.                      

Page 36: VLT-MIN-ESP-13520-0217 MissionXIII Paranal 201602 · 6/36% ESPRESSOProject% % 1.2.2 Reference%Documents% RDG1* ESO1ParanalObservatoryICD% VLT1ICD1ESO11352915412% 2% 25.03.2013% RDG2*

36/36   ESPRESSO  Project  

Chapter  4.     Postponed  tasks  and  AI  The   following   tasks/AI   have   to   be   done   before   the   June  mission   (unless   other   date   is  specified).    

1. Only  one  bundle  was  produced  due  to  later  arrival  of  purchased  fibres.  One  will  be  tested  and  assembled  and  the  others  will  be  integrated  in  next  mission.  AI-­‐01(02-­‐2016)   on   Gerardo   Ávila   to   produce   4   bundles   according   to   instructions  described  in  this  report.    

2. The  support  of  the  alignment  source  fibre  bundle  needs  to  be  redesign  to  allow  an  easy  attachment  to  the  telescope  in  the  P5  area.  AI-­‐02(02-­‐2016)  on  Alexandre  Cabral  to  provide  the  drawings  of  the  new  support.  Due  date  15-­‐03-­‐2016    

3. On  UT2   it   will   be   necessary   to   fix   the  wooden   floor   on   the   Inner   Track   to   the   I   Beam  structure  near  the  CT  optical  path  marked  with  tape.  AI-­‐03(02-­‐2016)  on  Gaspare  Lo  Curto  to  request  Herman  Barrios  to  perform  this  task.    

4. On   the   CT   Cabinets   it   is   still   necessary   that   ESO   completes   the   following   two   tasks:  Cabinets  in  P5/P6  and  P7  locations  in  all  UTs  do  not  have  yet  comm  connections;  All  P7  locations  in  all  UTs  do  not  have  yet  a  live  power  connections.  AI-­‐04(02-­‐2016)  on  Gaspare  Lo  Curto  to  request  ESO  Paranal  to  perform  this  task.    

5. The   alignment   source   fibre   needs   to   have   extra   means   to   reduce   power   by  optical/mechanical  means  below  the  electrical  threshold  levels.  AI-­‐05(02-­‐2016)  on  Gerardo  Ávila   to   evaluate   the   adequate   level   of   attenuation  and   the  type  of  attenuator  to  be  mounted  inside  the  cabinets.      

6. For  the  alignment  of  the  LAT  on  the  VLTi  delay  line  it  will  be  necessary  to  have  a  longer  post  (more  than  50  mm,  ideally  80  mm).  AI-­‐06(02-­‐2016)  on  Alexandre  Cabral  to  bring  the  post  to  Paranal.