vizbi 2014 - visualizing genomic variation

34
Visualizing Genomic Variation Prof Jan Aerts Faculty of Engineering - ESAT/STADIUS iMinds Medical ICT Department KU Leuven [email protected] http://visualanalyticsleuven.be

Upload: jan-aerts

Post on 11-Jun-2015

391 views

Category:

Technology


0 download

DESCRIPTION

This talk was given at the VizBi 2014 conference. See vizbi.org/2014

TRANSCRIPT

Page 1: VIZBI 2014 - Visualizing Genomic Variation

Visualizing Genomic Variation

Prof Jan AertsFaculty of Engineering - ESAT/STADIUSiMinds Medical ICT DepartmentKU [email protected]://visualanalyticsleuven.be

Page 2: VIZBI 2014 - Visualizing Genomic Variation
Page 3: VIZBI 2014 - Visualizing Genomic Variation

What is genomic variation?

Page 4: VIZBI 2014 - Visualizing Genomic Variation
Page 5: VIZBI 2014 - Visualizing Genomic Variation

Aerts & Tyler-Smith, In: Encyclopedia of Life Sciences, 2009

“copy number variation”

transitionstransversions

Page 6: VIZBI 2014 - Visualizing Genomic Variation

Effects of variation on phenotype

• change in protein abundance

• level of transcription or translation (loss/gain)

• stability

• change in protein structure (partly deleted, fusion genes, …)

Page 7: VIZBI 2014 - Visualizing Genomic Variation

What are we interested in?

• multiple samples

• show all affected genes (or functional units)

• cluster individuals

• functional effect of structural variation

• gene-centric instead of positionally ordered: coordinate-free view

• high-level annotations (pathways, GO-terms)

• uncertainty (statistical & positional) and underlying evidence

Page 8: VIZBI 2014 - Visualizing Genomic Variation
Page 9: VIZBI 2014 - Visualizing Genomic Variation
Page 10: VIZBI 2014 - Visualizing Genomic Variation

DNA sequencingread mapping

variant callingwhat is effect of variant?

check signal

QC QC

variant filtering

Page 11: VIZBI 2014 - Visualizing Genomic Variation

Single Nucleotide Polymorphisms

Page 12: VIZBI 2014 - Visualizing Genomic Variation

General approach: reference-based

Page 13: VIZBI 2014 - Visualizing Genomic Variation

UCSC

Ensembl

Page 14: VIZBI 2014 - Visualizing Genomic Variation
Page 15: VIZBI 2014 - Visualizing Genomic Variation

Ferstay et al, IEEE InfoVis, 2013

Variant Viewsequence variants in gene context

Page 16: VIZBI 2014 - Visualizing Genomic Variation

Integrative Genome Viewer (IGV)

Page 17: VIZBI 2014 - Visualizing Genomic Variation

Sequence logo

Page 18: VIZBI 2014 - Visualizing Genomic Variation

Sequence Diversity Diagram

Page 19: VIZBI 2014 - Visualizing Genomic Variation

Structural Variation

Page 20: VIZBI 2014 - Visualizing Genomic Variation

dotplot

Pevzner & Tessler, Genome Research, 2003

Page 21: VIZBI 2014 - Visualizing Genomic Variation

read depth information: arrayCGH and next-generation sequencing

Xie & Tammi, BMC Bioinformatics, 2009

Page 22: VIZBI 2014 - Visualizing Genomic Variation

next-generation sequencing: read-pair information

Medvedev, Nature Methods, 2009

Stephens et al, Cell, 2011

Page 23: VIZBI 2014 - Visualizing Genomic Variation

Integrate read-depth and read-pair information

Pavlopoulos et al, Nucleic Acids Research, 2013

Stephens et al, Cell, 2010

Meander

Page 24: VIZBI 2014 - Visualizing Genomic Variation

From data generation to data interpretation: understanding the effect of structural variation

Page 25: VIZBI 2014 - Visualizing Genomic Variation

linearity of reference chromosome broken by structural variation, but still using the reference for comparison

!

!

=> domain expert needs to try and “wrap his head around” the data

=> need to lessen the cognitive load in interpretation: change a cognitive task into a perceptual one

UCSC Genome Browser

Page 26: VIZBI 2014 - Visualizing Genomic Variation

Nielsen & Wong, Nat Methods, 2012

Page 27: VIZBI 2014 - Visualizing Genomic Variation

represent the chromosome as it is in vivo (=~ FISH)

Feuk, Nature Reviews Genetics, 2006

reconstruct rearranged chromosome based on graph structure of segments

Page 28: VIZBI 2014 - Visualizing Genomic Variation

breakpoint graph

Pevzner & Tessler, Genome Research, 2003

Page 29: VIZBI 2014 - Visualizing Genomic Variation

focus on functional impact - Pipit

Sakai et al, submitted

Page 30: VIZBI 2014 - Visualizing Genomic Variation
Page 31: VIZBI 2014 - Visualizing Genomic Variation

Challenges

Page 32: VIZBI 2014 - Visualizing Genomic Variation

• visual and interaction scalability

• genome size: HSA1 = 240Mb = 240,000 screens at 1pixel/bp = 72km

• deep sequencing => very high depth per track

• high-dimensional data: many tracks (n=98!)

• compare multiple samples

• computational scalability

• how to compute fast enough to make interactivity possible? (e.g. switching between data resolutions)

Challenges

Page 33: VIZBI 2014 - Visualizing Genomic Variation

Thank you

• Authors of papers mentioned

• Bioinformatics/Visual Analytics Leuven

• Ryo Sakai

• Raf Winand

• Thomas Boogaerts

• Toni Verbeiren

• Georgios Pavlopoulos

• Data Visualization Lab (datavislab.org)

• Erik Duval

• Andrew Vande Moere

�33

Page 34: VIZBI 2014 - Visualizing Genomic Variation

Questions?