vertical-down hybrid welding in ship building...

34
PAGE 1 www.wir-fuegen-alles.de © RWTH Aachen University VERTICAL-DOWN HYBRID WELDING IN SHIP BUILDING - THE NEXT INNOVATION STEP - Univ.-Prof. Dr.-Ing. U. Reisgen Dr.-Ing. S. Olschok Dipl.-Ing. C. Turner

Upload: duongkhanh

Post on 12-May-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

PAGE 1www.wir-fuegen-alles.de© RWTH Aachen University

VERTICAL-DOWN HYBRID WELDING IN SHIP BUILDING

- THE NEXT INNOVATION STEP -

Univ.-Prof. Dr.-Ing. U. ReisgenDr.-Ing. S. OlschokDipl.-Ing. C. Turner

PAGE 2www.wir-fuegen-alles.de© RWTH Aachen University

History Hybrid Welding (in Shipbuilding)

1979 First mention in literatureSteen, W.M., Eboo, M.: „Arc augmented Laser beam welding”, Metal Construction, volume 11, issue 7, 1979

1994 – 1999 Work at ISF with CO2 lasers with different laser power

Till 1999 development of possible fileds of application for shipbuilding (butt joint, fillet joint)

Certification of hybrid welding by DNV for plates till 12 mm thickness

2000 Installation and bringing into service of first panel line world wide (20 m)

2000 – 2012 Development with solid state lasers

2009 First panel line with 30 m width with solid state laser

2011 Formulation of three ISO standards for hybrid welding

PAGE 3www.wir-fuegen-alles.de© RWTH Aachen University

New Standards for Hybrid WeldingComing Soon

ISO-TC44-SC10-WG9 „HYBRID WELDING“Secretariat: Torsten Diether, Deutsches Institut für Normung e.V. (DIN)Convenor: Simon Olschok, RWTH Aachen University (ISF)

ISO/DIS 12932: Welding — Laser-arc hybrid welding of steels, nickel and nickel alloys — Quality levels for imperfections

ISO/DIS 15609-6: Specification and qualification of welding procedures for metallic materials — Welding procedure specification — Part 6: Laser-arc hybrid welding

ISO/DIS 15614-14: Specification and qualification of welding procedures for metallic materials — Welding procedure test —Part 14: Laser beam arc hybrid welding

PAGE 4www.wir-fuegen-alles.de© RWTH Aachen University

Hybrid - Advantages

GMA Laser- cheap, conventional power source- directed influence of the

thermal cycle- Addition of filler material

> good gap bridging ability> metallurgical influence of

the grain structure

- high welding speed

- high welding in depth

- deep small weld seam

Hybrid process

- stabilisation of the process by interaction between the single processes- increase of the thermal efficiency- extended welding possibilities

PAGE 5www.wir-fuegen-alles.de© RWTH Aachen University

Source: FORCE Institute, Denmark

1. Forming Panels

2. Adding longitudinal stiffeners (bulb flats)

3. Adding transversal stiffeners (bulb flats)

Starting Situation 1995First Three Welds of a Ship

PAGE 6www.wir-fuegen-alles.de© RWTH Aachen University

CO2-Laser (TLF12000 turbo)Material: AH36; t = 12 mmEdge preparation: PlasmacutFiller wire: G3Si1; dFW = 1,2 mm

PL

vw

VFW

= 12 kW= 2 m/min= 12 m/min

Pictures: MEYER WERFT, Papenburg

CO2-Laser-GMA Hybrid Welding – Butt WeldApplication at a Shipyard (10 m length)

PAGE 7www.wir-fuegen-alles.de© RWTH Aachen University

CO2-Laser-GMA Hybrid Welding – Fillet WeldApplication at a Shipyard (10 m length)

>

Detail-scale 5:1

z

xy

Welding parameters:

ttPvv

Web

Flange

L

W

FW

7 mm6 mm6 kW1.25 m/min12.5 m/min

PAGE 8www.wir-fuegen-alles.de© RWTH Aachen University

CO2-Laser-GMA Hybrid WeldingPanel Production

Pictures: MEYER WERFT, Papenburg

900 km Weld Seam Length

450 km Hybrid Welds

PAGE 9www.wir-fuegen-alles.de© RWTH Aachen University

200 mm

Fillet Weld PB

Fillet Weld PG

Long

itudi

nal S

tiffe

ners

Tran

sver

sal S

tiffe

ners

Pan

el

Solid State Laser – Next GenerationWelding Task

PAGE 10www.wir-fuegen-alles.de© RWTH Aachen University

Nominal output power 10.0 kW(at the workpiece)Wavelength: 1070 nmFibre optics core: ø 200 µmBPP: < 12 mm x mrad Foot Print: 800 x 1.460 mmHeight: 1.500 mm Cooling capacity: 31 kWWPE (wt cooler ): > 27%

KuKa KR 60 Jet 60 kGCloos Robot Control Rotrol IICloos GMA Machine QuintoCloos Hybrid Head

Fiber Laser IPG Scanner Mirror ILV KuKa Robot, Cloos Control

Welding Equipment

PAGE 11www.wir-fuegen-alles.de© RWTH Aachen University

9 mm Web6 mm BeltvW = 1,5 m/minGMA Leading

6 mm Web6 mm BeltvW = 2,2 m/minGMA Leading

9 mm Web6 mm BeltvW = 1,5 m/minGMA Trailing

Fillet Weld PB

PAGE 12www.wir-fuegen-alles.de© RWTH Aachen University

For welding as far in the corner as possible(floor plate), the GMA torch is set in neutralposition, the laser beam irradiates at anangle of 13° from the top in leading direction.Biggest problem: molten pool is running ahead.Through adaptation of the GMA processduring welding operation, the molten poolis retained.

9 mm Web6 mm BeltvW = 1,2 m/minGMA Leading

6 mm Web6 mm BeltvW = 2,2 m/minGMA Leading

9 mm Web8 mm BeltvW = 1,2 m/minGMA LeadingAdjustment of tP

Fillet Weld PG (falling down)

PAGE 13www.wir-fuegen-alles.de© RWTH Aachen University

Without Gap7 mm WebvW = 1,5 m/minPL = 8 kWvf = 11,5 m/min

Gap 0,5 mm7 mm WebvW = 1,5 m/minPL = 8 kWvf = 13,0 m/min

Gap 1 mm7 mm WebvW = 1,5 m/minPL = 8 kWvf = 15,0 m/min

Gap Bridging Ability with Scanner Mirror

PAGE 14www.wir-fuegen-alles.de© RWTH Aachen University

side control hide control

GMA Sensoring- Problem -

PAGE 15www.wir-fuegen-alles.de© RWTH Aachen University

GMA Sensoring- Problem -

PAGE 16www.wir-fuegen-alles.de© RWTH Aachen University

Synchronous Displacement of Robot and Scan Mirror

Hybrid Sensoring- Solution -

PAGE 17www.wir-fuegen-alles.de© RWTH Aachen University

Current

Mirror/Rob

Current Mean

Current

Mirror/Rob

Current Mean

Current

Mirror/Rob

Current Mean

Time [s]Time [s]Time [s]

Cu

rren

t [A

]

Cu

rren

t [A

]

Cu

rren

t [A

]

Current-/Mirror (Rob) Signalin Case of Position Misalignment – Part 1

PAGE 18www.wir-fuegen-alles.de© RWTH Aachen University

Position Misalignment, Not Readjusted

Position Misalignment, Readjusted

Time [s]

Cur

rent

[A]

CurrentMirror/RobCurrent Mean

Time [s]

Cur

rent

[A]

CurrentMirror/RobCurrent Mean

Current-/Mirror (Rob) Signalin Case of Position Misalignment – Part 2

PAGE 19www.wir-fuegen-alles.de© RWTH Aachen University

Weld Search

PAGE 20www.wir-fuegen-alles.de© RWTH Aachen University

Video: MEYER WERFT, Papenburg

Testing on Shipyard

PAGE 21www.wir-fuegen-alles.de© RWTH Aachen University

Testing on Shipyard

Video: MEYER WERFT, Papenburg

PAGE 22www.wir-fuegen-alles.de© RWTH Aachen University

Welding Task Third Generation- In Future Possible? -

Wall Thickness: 4 – 12 mmSeam length: up to 5 mType of weld: Fillet- and Buttm WeldJoint gap: 0 – 3 mmClamping: Teckwelding

GMA (3Gd):Lack of PenetrationIncomplete Fusion

GMA (3Gu):Thermal Load

Welding Task

Panel

Supporting Beam Structures

Holland Profiles

PAGE 23www.wir-fuegen-alles.de© RWTH Aachen University

„FaSek“ Goal and Benefit„Fully Mechanized, Sensor Based Vertical Down Welding for the Section Fabrication in the Shipbuilding Industry“

2 process variants for vertical down weldingBoth sided, simultanous GMA weldingLaser-GMA Hybrid Welding with GMA process opposite

High welding speed compared to the commonly used vertical uphill welding

High degree of mechanisation

Welding in one molten pool -> reduction of distortion

Automatic seam tracing and measurement of the joint gap

Automatic selection of the welding parameters dependent on the joint gap

PAGE 24www.wir-fuegen-alles.de© RWTH Aachen University

Concept Laser-GMA Hybrid

GMAfront

GMAback

Laser Beam

x-, y-, z-Adjustment

MSG Torch

Laser Optics withScanning Mirror Workpiece ILV Scanning Mirror

Schematic Drawing

200 mm

PAGE 25www.wir-fuegen-alles.de© RWTH Aachen University

Effect – Integration of the laser welding process

1mm

1mm

Base Material: Grade A (5 mm)

Consumable: G4Si1 (Ø 1,2 mm)

No joint gap

PAGE 26www.wir-fuegen-alles.de© RWTH Aachen University

No Joint Gap; Plasma Cut Edges

vS

[m/min]SG M21[l/min]

vWire

[m/min]fP

[Hz]IG

[A]IP

[A]tP

[ms]PL

[kW]AS

[%]fS

[Hz]xP

[mm]

front

1,5

15 3,5 96 39 390 1,9 6 15 100 20

back 15 5,0 138 39 390 1,9 - - - 0

1mm

Base Material: Grade A (5 mm)

Consumable: G4Si1 (Ø 1,2 mm)

PAGE 27www.wir-fuegen-alles.de© RWTH Aachen University

2 mm Joint Gap; Plasma Cut Edges

vS

[m/min]SG M21[l/min]

vWire

[m/min]fP

[Hz]IG

[A]IP

[A]tP

[ms]PL

[kW]AS

[%]fS

[Hz]xP

[mm]

front

1,5

15 6,0 181 39 390 1,9 6 25 100 20

back 15 6,0 181 39 390 1,9 - - - 0

1mm

Base Material: Grade A (5 mm)

Consumable: G4Si1 (Ø 1,2 mm)

PAGE 28www.wir-fuegen-alles.de© RWTH Aachen University

No Joint Gap; Plasma Cut Edges

vS

[m/min]SG M21[l/min]

vWire

[m/min]fP

[Hz]IG

[A]IP

[A]tP

[ms]PL

[kW]AS

[%]fS

[Hz]xP

[mm]

front

0,9

15 2,0 42 39 390 1,9 6 10 100 20

back 15 4,0 84 39 390 1,9 - - - 0

1mm

Base Material: Grade A (7 mm)

Consumable: G4Si1 (Ø 1,2 mm)

PAGE 29www.wir-fuegen-alles.de© RWTH Aachen University

2 mm Joint Gap; Plasma Cut Edges

vS

[m/min]SG M21[l/min]

vWire

[m/min]fP

[Hz]IG

[A]IP

[A]tP

[ms]PL

[kW]AS

[%]fS

[Hz]xP

[mm]

front

1,2

15 5,5 116 39 390 1,9 6 20 100 20

back 15 5,5 116 39 390 1,9 - - - 0

1mm

Base Material: Grade A (7 mm)

Consumable: G4Si1 (Ø 1,2 mm)

PAGE 30www.wir-fuegen-alles.de© RWTH Aachen University

Minimal Distortion

Wall Thickness 7 mm

No Joint Gap

PAGE 31www.wir-fuegen-alles.de© RWTH Aachen University

Fillet Weld; No Joint Gap; Plasma Cut Edges

vS

[m/min]SG M21[l/min]

vD

[m/min]fP

[Hz]IG

[A]IP

[A]tP

[ms]PL

[kW]AS

[%]fS

[Hz]xP

[mm]

vorne

1,0

15 3,5 106 39 390 1,9 6 5 100 20

hinten 15 4,5 136 39 390 1,9 - - - 0

Base Material: Grade A (5 mm)

Consumable: G4Si1 (Ø 1,2 mm)

PAGE 32www.wir-fuegen-alles.de© RWTH Aachen University

Outlook – Sensor Integration

Fully mechanized, sensor based vertical down welding for the section fabrication

1 LPF-camera detects the vertical andlateral postion of the joint

2 Axis to adjust the focal position

3 Axis to adjust the lateral position

4 Laser-Hybrid Welding Head YH50

Quelle: Precitec Group

PAGE 33www.wir-fuegen-alles.de© RWTH Aachen University

Outlook

Implementation of a high power solid state laser and different weldingpower sources

Usage of metal cored wire

Further welding trials to determine parameters and to increase therobustness of the processes using DoE

Field Trial Shipyard -> Comparison of „FaSek“ with the conventionallyused processes

Preparation of concepts for the workplace safety based on currentregulations, state of scientific research and firing test in the laboratory

PAGE 34www.wir-fuegen-alles.de© RWTH Aachen University

Das IGF-Vorhaben 16865 N der Forschungsvereinigung Center ofMaritime Technologies e.V. (CMT), Bramfelder Straße 164, 22305 Hamburg wurde über die AiF e.V. im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Technologie aufgrund eines Beschlusses des deutschen Bundestages gefördert.

Vielen Dank für ihr Aufmerksamkeit!