vedeld introduction.pdf

Upload: hamza2085

Post on 14-Apr-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Vedeld Introduction.pdf

    1/24

    Introduction to free spans

  • 7/30/2019 Vedeld Introduction.pdf

    2/24

    Slide 2

    Content

    Why do we have free spans?

    Do free spans represent a problem?

    Example of failures Basis for DNV RP-F105

  • 7/30/2019 Vedeld Introduction.pdf

    3/24

    Slide 3

    Why free spans?

  • 7/30/2019 Vedeld Introduction.pdf

    4/24Slide 4

    Uneven seabed

    Reinertsen Engineering

  • 7/30/2019 Vedeld Introduction.pdf

    5/24

    Slide 5

    Seabed scouring

  • 7/30/2019 Vedeld Introduction.pdf

    6/24

    Slide 6

    Other reasons

    Temporary spans at pipelinecrossings

    Tie-in to subsea structures, platforms

    etc. Other eroding processes than

    scouring (e.g. sand waves)

    Pock marks

  • 7/30/2019 Vedeld Introduction.pdf

    7/24

    Slide 7

    Local imperfection

  • 7/30/2019 Vedeld Introduction.pdf

    8/24

    Slide 8

    Free span terminology

    Span shoulder

    Gap / Span height

    Span length

  • 7/30/2019 Vedeld Introduction.pdf

    9/24

    Slide 9

    Are free spans a problem?

  • 7/30/2019 Vedeld Introduction.pdf

    10/24

    Slide 10

    VIV - a real problem?

    A few cases

  • 7/30/2019 Vedeld Introduction.pdf

    11/24

    Slide 11

    Cook Inlet Area

  • 7/30/2019 Vedeld Introduction.pdf

    12/24

    Slide 12

    Subsea Pipelines in Cook Inlet

    Aging pipelines (installed late 60ties)

    Significant corrosion in some oil lines

    Strong tidal current Seabed conditions are very dynamic

    Scouring produces span gaps of less than a foot

    14 failures due to VIV during 1965-1976!

    Annual inspection for free spans (side scan sonar) Spans longer than 50 and 1 gap intervened to avoid VIV damage/failure

  • 7/30/2019 Vedeld Introduction.pdf

    13/24

  • 7/30/2019 Vedeld Introduction.pdf

    14/24

    Slide 14

    Fracture surface

  • 7/30/2019 Vedeld Introduction.pdf

    15/24

    Slide 15

    Free spans must be taken seriously

    Non-stationary (developing) spans represent a particular challenge

  • 7/30/2019 Vedeld Introduction.pdf

    16/24

    Slide 16

    Costs related to failure

    Mobilisation for repair several million US$

    Offshore time 0.5-1 million US$/day

    Loss of income example Langeled gas export 15-20 million US$/day

    Environmental costs/aspects

    Loss of reputation

    Less regularity gas market

    Cost may be huge!

  • 7/30/2019 Vedeld Introduction.pdf

    17/24

    Slide 17

    Problem areas

  • 7/30/2019 Vedeld Introduction.pdf

    18/24

    Slide 19

    Free Span Assessment - Multidiscipline

    Environmental conditions

    - Flow conditions from combined wave and current

    - Local topography

    Loading Mechanism- Vortex Induced Vibration (in-line & cross-flow)

    - Direct wave loads & Proximity Effects

    Structural Response- Soil-pipe interaction

    - Non-linearities (geometrical, static/dynamic properties)

    Acceptance criteria- SN-approach (weld, defects, )

  • 7/30/2019 Vedeld Introduction.pdf

    19/24

    Slide 20

    Basis for DNV-RP-F105

    VIV Models based on experience fromR&D projects & pipeline design:

    MULTISPAN Project (1994-1996)- Response Model for In-line VIV

    - On-set criteria for cross-flow

    - Reliability based calibration

    GUDESP PROJ ECT (1989-1994)- Cross-flow Response model

    - Effect of Waves

    Research projects- SVS full scale test

    - MASPUS lab test

    DHI/Statoil study Ormen Lange

    - VIV testing multi-span & multi-mode

    - Soil damping study

    Allows for state-of-the-art fatigueanalyses

    Links in-line VIV and wave loads

    Allows cross-flow vibrations Safety philosophy in compliance

    with DNV-OS-F101

    Introduces consistent link between

    analysis models and safety factor(s)

    Applied in numerous projects in

    - North Sea

    - Persian Gulf

    - South East Asia

    - GOM

    - WA

  • 7/30/2019 Vedeld Introduction.pdf

    20/24

    Slide 21

    Uniqueness ref. API RP 1111 (1999)

  • 7/30/2019 Vedeld Introduction.pdf

    21/24

    Slide 22

    Calculation Tool

    Free span assessment complex

    Require detailed knowledge in several disciplines:

    - hydrodynamics, VIV and load models

    - environmental conditions, long-term statistics- fatigue calculations

    - structural response incl. geotechnical aspects

    DNV-RP-F105 still complex (and difficult?) to use

    Need for a calculation tool to:

    - make it easier to apply the RP

    - enable a cost-efficient span assessment

  • 7/30/2019 Vedeld Introduction.pdf

    22/24

    Slide 23

    FatFree Main SheetFatFree Main Sheet

    12.06.2006

    Vers. 10.0

    DNV version Expiry date: 31.12.2007 Release Note

    Project: Date: 12.06.2006 Calculations by

    No Wave Case References: verification of version Verified by

    h [m] 300 fo(in-line) 0,773 struc 0,000 m1 3

    L [m] 40 fo(cr-flow) 0,798 soil (in-line) 0,000 m2 3 1,00

    e [m] 2,69 Ain (in-line) 446 soil (cr-flow) 0,000 Log(C1) 11,222 k 1,00

    d [m] 0 Acr(cr-flow) 461 h,RM 0,000 Log(C2) 11,222 f,IL(inline) 1,00

    pipe 0,0 max 940 KS(in-line) 0,00 logNsw 8,00 f,CF(cr-flow) 1,00

    D[m] 0,612 /D 0,24 KS(cr-flow) 0,00 S0 [MPa] 0,00 S 1,00

    L/D 65 Seff/PE -0,23 KV 2,105E+07 SCF 1,00 on,IL 1,10

    KL 1,592E+07 on,CF 1,00

    KV,S 5,300E+05 R 1,00

    kc 0,33 Heff [N] 2,00E+05 Ds 0,5000 0,30 steel 7850

    fcn (MPa) 45 p [bar] 105 tsteel 0,0132 [oC

    -1] 1,17E-05 concrete 2240

    T [

    o

    C] 0 tconcrete 0,0500 E [N/m

    2

    ] 2,07E+11 coating 1300tcoating 0,0060 CD(current) 1,00 cont 153

    RESULTS

    In-line (Response Model) 1,09E+03 yrs

    Cross-Flow 1,00E+06 yrs Peak Von Mises Peak Von Mises

    x(1 year) 0,0 158,2 x(1 year) 7,2 135,2In-line (Force Model) - yrs x(10 year) 0,0 158,2 x(10 year) 16,7 141,4In-line (Combined) - yrs x(100 year) 0,0 158,2 x(100 year) 26,1 148,6

    Current Modelling

    Code

    Directionality

    Current

    Current Sheet Name

    Calculation options

    Return Period Values

    FATFREE IS READY

    FATIGUE ANALYSIS OF FREE SPANNING PIPELINESMuthu Chezhian ([email protected])

    Olav Fyrileiv ([email protected])

    Programmed by DNV Deep Water Technology

    Kim Mrk ([email protected] )FATFREE

    Safety FactorsSoil PropertiesResponse Data SN-Curves

    Densities [kg/m3]

    DYNAMIC STRESS [MPa]

    Wave Modelling

    FATIGUE LIFE

    STRUCTURAL MODELLING

    Constants

    InlineCross-flow

    Pipe Dimensions [m]Coating data

    Free Span Scenario

    Wave Sheet Name

    Wave-template

    Functional Loads

    Flat sea-bed RP-F105 Span User DefinedF1 (free corrosion)

    CALCULATE

    UPDATE SHEET

    PRINT RESULTSSPAN RUNS

    USER HELP

    OPTIONS

    No Wave

    Discrete - C dir.

    Uc Histogram

    RP-F105

    Automatic Generated

    Damage distribution vs direction

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    1,2

    0 20 40 60 80 100

    RM (In-Line)FM (In-Line)Cross-FlowComb.(In-Line)

    pdf for omnidirectional current

    0,0

    1,0

    2,0

    3,0

    4,0

    5,0

    0,0 0,2 0,4 0,6 0,8 1,0

    RM(cross-flow)*4

    RM(inline)*10

    velocity

    User DefinedSingle-mode

    Well defined

  • 7/30/2019 Vedeld Introduction.pdf

    23/24

    Slide 24

    Summary

    Free spans due to:- Uneven seabed

    - Scouring

    -Other seabed erosion phenomena

    - Tie-in / crossings

    Free spans may cause failure

    Large costs associated with failures

    Free spans require multi-discipline assessment

    Basis for DNV RP-F105

  • 7/30/2019 Vedeld Introduction.pdf

    24/24

    Slide 25

    http://www.dnv.com/