variable stiffness actuation based on dual actuators...

18
1 Variable Stiffness Actuation Variable Stiffness Actuation based on Dual Actuators based on Dual Actuators Connected in Series and Parallel Connected in Series and Parallel Intelligent Robotics Lab KOREA UNIVERSITY Connected in Series and Parallel Connected in Series and Parallel Prof. Jae Prof. Jae-Bok Song ( Bok Song ([email protected] ) Intelligent Robotics Lab. (htt // b ti k k ) (http://robotics.korea.ac.kr ) Depart. of Depart. of Mechanical Engineering, Mechanical Engineering, Korea Korea University, University, Seoul Seoul, Korea , Korea Various Variable Stiffness Devices at Korea Univ. Various Variable Stiffness Devices at Korea Univ. Serial-type Dual Actuator Unit Serial connection Position control Stiffness control Safety Joint Mechanism Passive compliance 1 rotational DOF Joint type Parallel connection Parallel-type Dual Actuator Unit Force estimation Collision safety Environment estimation pHRI Safety Link Mechanism Passive compliance 3 i l DOF Intelligent Robotics Lab 2 Antagonistic actuation Variable stiffness Parallel actuation 3 rotational DOFs Link type pHRI KOREA UNIVERSITY

Upload: others

Post on 10-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Variable Stiffness Actuation based on Dual Actuators ...mech.vub.ac.be/RSS2008_VIA/pdfs/RSS08_Jae-BokSONG.pdf · kSM kSM o Δω=ωSM −ωo kSM ω SM= 270 deg/s, ωo= 170 deg/s, =

1

Variable Stiffness Actuation Variable Stiffness Actuation based on Dual Actuators based on Dual Actuators

Connected in Series and ParallelConnected in Series and Parallel

Intelligent Robotics LabKOREA UNIVERSITY

Connected in Series and ParallelConnected in Series and Parallel

Prof. JaeProf. Jae--Bok Song (Bok Song ([email protected] )Intelligent Robotics Lab.

(htt // b ti k k )(http://robotics.korea.ac.kr)

Depart. of Depart. of Mechanical Engineering, Mechanical Engineering, Korea Korea University, University, SeoulSeoul, Korea, Korea

Various Variable Stiffness Devices at Korea Univ.Various Variable Stiffness Devices at Korea Univ.Serial-type Dual Actuator Unit

• Serial connection

• Position control

• Stiffness control

Safety Joint Mechanism

• Passive compliance

• 1 rotational DOF

• Joint type

• Parallel connection

Parallel-type Dual Actuator Unit

• Force estimation

• Collision safety

• Environment estimation

• pHRI

Safety Link Mechanism

• Passive compliance

3 i l DOF

IIntelligent RRobotics LLab2

• Antagonistic actuation

• Variable stiffness

• Parallel actuation

• 3 rotational DOFs

• Link type

• pHRI

KOREA UNIVERSITY

Page 2: Variable Stiffness Actuation based on Dual Actuators ...mech.vub.ac.be/RSS2008_VIA/pdfs/RSS08_Jae-BokSONG.pdf · kSM kSM o Δω=ωSM −ωo kSM ω SM= 270 deg/s, ωo= 170 deg/s, =

2

Dual Actuator Unit (DAU)

Redundant Actuation

• Simultaneous control of position and stiffness for one DOF

• Improved safety

Power Transmission

Actuator 1

Actuator 2Improved safety

Two types of DAUs

Actuator 2

Dual Actuator Unit

Dis

tal l

ink

al li

nk

IIntelligent RRobotics LLab3

Serial connectionSerial connection Parallel connectionParallel connection

Serial-type Dual Actuator Unit(S-DAU)

Parallel-type Dual Actuator Unit(P-DAU)

D

Pro

xim

a

Variable Stiffness ActuatorsVariable Stiffness Actuators

VSAVSA--IIII (variable stiffness actuation)(variable stiffness actuation)•• Univ. of Pisa (Univ. of Pisa (BicchiBicchi, 2008), 2008)• Torsion spring + 4-bar linkage

ANLES (actuator with nonlinear elastic system) • Tokai Univ. (Koganezawa, 2006)• Torsion spring + nonlinear guide

IIntelligent RRobotics LLab4KOREA UNIVERSITY

Page 3: Variable Stiffness Actuation based on Dual Actuators ...mech.vub.ac.be/RSS2008_VIA/pdfs/RSS08_Jae-BokSONG.pdf · kSM kSM o Δω=ωSM −ωo kSM ω SM= 270 deg/s, ωo= 170 deg/s, =

3

Research Trends: Compliant ActuatorsResearch Trends: Compliant Actuators

MACCEPA (mechanically adjustable compliance and controllable equilibrium position actuator)• Vrije Univ. Brussel (Ham, 2008)

Antagonistically actuated joint with quadratic series-elastic actuation

• Georgia Tech. (DeWeerth, 2005)• Tension spring and curved surface

Spring

Roller

IIntelligent RRobotics LLab5KOREA UNIVERSITY

Curved surface

Serial-type Dual Actuator Unit

(S-DAU)

IIntelligent RRobotics LLab6

Page 4: Variable Stiffness Actuation based on Dual Actuators ...mech.vub.ac.be/RSS2008_VIA/pdfs/RSS08_Jae-BokSONG.pdf · kSM kSM o Δω=ωSM −ωo kSM ω SM= 270 deg/s, ωo= 170 deg/s, =

4

S-DAU : Introduction

S-DAU

• Connected in series

• Based on planetary gear train

Features

• Positioning actuator (PA) with high gear ratio

• Stiffness modulator (SM) with low gear ratio

• Indep. control of position and stiffness

• Force estimation

ad/s

)

m)

IIntelligent RRobotics LLab7

• Collision safety

• Stiffness estimation

• Environment estimationM

ax v

eloc

ity (r

a

Max

torq

ue (N

SS--DAU : Principle of OperationDAU : Principle of Operation

Planetary gear train

• Two inputs & One outputUseful for actuator unit

with dual inputs

S-DAU based on planetary gear train

IIntelligent RRobotics LLab8KOREA UNIVERSITY

Page 5: Variable Stiffness Actuation based on Dual Actuators ...mech.vub.ac.be/RSS2008_VIA/pdfs/RSS08_Jae-BokSONG.pdf · kSM kSM o Δω=ωSM −ωo kSM ω SM= 270 deg/s, ωo= 170 deg/s, =

5

SS--DAU : Principle of OperationDAU : Principle of OperationNo contact with environmentNo contact with environment

k θτ⎧

Contact with environmentContact with environmentSMPADAU θθθ +=

IIntelligent RRobotics LLab9KOREA UNIVERSITY

SMT

SMSMSM

SMSMTSM

SMSMSM

Kki

iKk

,

,

θ

τθτ

⋅=⇒

⎩⎨⎧

⋅=⋅=

SS--DAU : ConstructionDAU : Construction

PA29mm Version 2Version 2

• Planetary gear train

• Gear ratio

- 690:1 for PA, 56:1 for SM

• Version 1 : 48x61x110 mm, 500g

SM

61mm

Version 1Version 1

Version 1 : 48x61x110 mm, 500g (including clutch mechanism)

• Version 2 : 26x61x110 mm, 450g

IIntelligent RRobotics LLab10KOREA UNIVERSITY

Planetary gear train

Page 6: Variable Stiffness Actuation based on Dual Actuators ...mech.vub.ac.be/RSS2008_VIA/pdfs/RSS08_Jae-BokSONG.pdf · kSM kSM o Δω=ωSM −ωo kSM ω SM= 270 deg/s, ωo= 170 deg/s, =

6

SS--DAU : Position Control / Stiffness ControlDAU : Position Control / Stiffness Control

Nm

/deg

)

Nm

/deg

)

IIntelligent RRobotics LLab11KOREA UNIVERSITY

Join

t stif

fnes

s (N

Join

t stif

fnes

s (NResponse to

stiffness change

SS--DAU : DAU : Force EstimationForce Estimation

Force estimationForce estimation• No need for an expensive F/T sensor for force control

• k : user specified

FJk TSMSMSMSM ⋅=⇒⋅= τθτ

• kSM : user specified• θSM : measured by the SM encoder

0

10

20 Measured forceEstimated force

IIntelligent RRobotics LLab12KOREA UNIVERSITY

0 3 6 9 12 15 18

-10

-20

Time (sec)

Page 7: Variable Stiffness Actuation based on Dual Actuators ...mech.vub.ac.be/RSS2008_VIA/pdfs/RSS08_Jae-BokSONG.pdf · kSM kSM o Δω=ωSM −ωo kSM ω SM= 270 deg/s, ωo= 170 deg/s, =

7

SS--DAU : Collision DAU : Collision SafetySafety

Joint Stiffness :Joint Stiffness :

• : initial stiffness,

• Example

ωβ Δ⋅−= veloSMSM kk

oSM ωωω −=ΔoSMk

ωSM= 270 deg/s, ωo = 170 deg/s,

= 1.5 Nm/deg, βvel = 0.01,

kSM = 0.5 Nm/deg just after collision

oSMk

IIntelligent RRobotics LLab13KOREA UNIVERSITY

SS--DAU : Parallel Manipulator with Two SDAU : Parallel Manipulator with Two S--DAUsDAUs

Experimental Setup

• 5-linkage parallel manipulator with two S-DAUs.

• Independent position and stiffness controllers based on DSP 2812.

• Verifies S-DAU’s force estimation ability using a F/T sensor

DAU 1

DAU 2

F/T sensor

xy

Link 4

Link 5

Link 2

Joint 1 & Joint 2

Verifies S DAU s force estimation ability using a F/T sensor.

IIntelligent RRobotics LLab14KOREA UNIVERSITY

Position controller Stiffness controller

Link 3

Page 8: Variable Stiffness Actuation based on Dual Actuators ...mech.vub.ac.be/RSS2008_VIA/pdfs/RSS08_Jae-BokSONG.pdf · kSM kSM o Δω=ωSM −ωo kSM ω SM= 270 deg/s, ωo= 170 deg/s, =

8

SS--DAU : Stiffness EstimationDAU : Stiffness Estimation

Stiffness estimation for hard material• Applied force : 3N 10N

• Stiffness of environment Ke :

- 3.5kN/m (estimated), 3.75kN/m(measured)

•Stiffness of manipulator KSM: about 100N/m

IIntelligent RRobotics LLab15KOREA UNIVERSITY

Position information Estimated stiffness

SS--DAU : Stiffness AdaptationDAU : Stiffness Adaptation

Stiffness

• Stiffness matrix stiffness ellipse in Cartesian space

• Low stiffness in normal direction Good control of contact force

Hi h tiff i t ti l di ti G d f t j t t ki• High stiffness in tangential direction Good performance on trajectory tracking

• Stiffness ellipse adaptable to surface normal using the estimated force

[u 1,1, u 1,2 ]T[u ,1, u ,2 ]T

2

y

Ellipse

IIntelligent RRobotics LLab16KOREA UNIVERSITY

x

Principal axis: eigenvalue

[u1, u2 ]T: eigenvector Fixed stiffness ellipse

Adaptable stiffness ellipse

Page 9: Variable Stiffness Actuation based on Dual Actuators ...mech.vub.ac.be/RSS2008_VIA/pdfs/RSS08_Jae-BokSONG.pdf · kSM kSM o Δω=ωSM −ωo kSM ω SM= 270 deg/s, ωo= 170 deg/s, =

9

SS--DAU : Surface EstimationDAU : Surface Estimation

Surface estimation

232425262728

Environment

Trajectory of PA

Trajectory of

2930

ii

iii

iv

v

IIntelligent RRobotics LLab17KOREA UNIVERSITY

0 1 2 3 4 5 6 7 819202122

Position x (cm)

Trajectory of end-effector

i

Parallel-type Dual Actuator Unit

(P-DAU)

IIntelligent RRobotics LLab18

Page 10: Variable Stiffness Actuation based on Dual Actuators ...mech.vub.ac.be/RSS2008_VIA/pdfs/RSS08_Jae-BokSONG.pdf · kSM kSM o Δω=ωSM −ωo kSM ω SM= 270 deg/s, ωo= 170 deg/s, =

10

PP--DAU : IntroductionDAU : Introduction

P-DAU

• Connected in parallel

• Antagonistic actuation

Features

• Linear spring + Cam-follower

Nonlinear stiffness characteristics

• Compact design

• Parallel actuation available

IIntelligent RRobotics LLab19

• Parallel actuation available

Combined torques from dual actuators

Antagonistic actuation• Basic principle of human motion

• Two muscles for control of a single joint.

• Muscles modeled as nonlinear springs

Agonist

PP--DAU : Principle of OperationDAU : Principle of Operation

Spring 1

Spring 2

FF

Spring 1

Spring 2xx

M i l t

Low Stiffness High Stiffness

Muscles modeled as nonlinear springs .

Antagonist

IIntelligent RRobotics LLab20KOREA UNIVERSITY

Spring 2 Spring 1Output link

x1-x2 -x2' x1'x x

Spring 2 Spring 1Output link

P2 P1 P2 P1

Moving plate

Page 11: Variable Stiffness Actuation based on Dual Actuators ...mech.vub.ac.be/RSS2008_VIA/pdfs/RSS08_Jae-BokSONG.pdf · kSM kSM o Δω=ωSM −ωo kSM ω SM= 270 deg/s, ωo= 170 deg/s, =

11

Cam-Follower Mechanism

• Compact design.

• Cam profile Various nonlinear characteristics.

PP--DAU : Principle of OperationDAU : Principle of Operation

Output link

Face cam

Cam profile

Cam movement

IIntelligent RRobotics LLab21KOREA UNIVERSITY

Translating cam withtranslating roller follower

Face cam with oscillating follower

Cam-follower in P-DAU

Translating follower

Variable Stiffness mechanism of P-DAU• Antagonistic actuation• Cam-follower + Linear spring Nonlinear spring

PP--DAU : Principle of OperationDAU : Principle of Operation

IIntelligent RRobotics LLab22KOREA UNIVERSITY

Page 12: Variable Stiffness Actuation based on Dual Actuators ...mech.vub.ac.be/RSS2008_VIA/pdfs/RSS08_Jae-BokSONG.pdf · kSM kSM o Δω=ωSM −ωo kSM ω SM= 270 deg/s, ωo= 170 deg/s, =

12

P-DAU : Variable Stiffness Mechanism

Low Stiffness ( Small compression of spring)

High Stiffness ( Large compression of spring)

IIntelligent RRobotics LLab23KOREA UNIVERSITY

P-DAU : Parallel Actuation

Parallel actuation

• Antagonistic actuation: Only a single actuator can apply a force to an object.j

• Parallel actuation: Both actuators can apply forces to an object.

Combined torque from dual actuatorsNo variable stiffness

Clutching point

IIntelligent RRobotics LLab24KOREA UNIVERSITY

Antagonistic actuation

Parallel actuation with clutch mechanism

Actuation mode

Antagonistic actuation

Parallel actuation

Clutching point

Page 13: Variable Stiffness Actuation based on Dual Actuators ...mech.vub.ac.be/RSS2008_VIA/pdfs/RSS08_Jae-BokSONG.pdf · kSM kSM o Δω=ωSM −ωo kSM ω SM= 270 deg/s, ωo= 170 deg/s, =

13

P-DAU : Parallel Actuation

Clutch mechanism

• Based on cam-profile.

• Operated by the difference in position between upper and lower plates.

Spring

Middle plate

Clutch cam

Clutch pin

IIntelligent RRobotics LLab25KOREA UNIVERSITY

P-DAU : Construction

Actuation Mechanism of PActuation Mechanism of P--DAUDAU

• Compact design power transmission by two Internal ring gears

Middle plate

Upper plate

Lower plate

Connected

Internal ring gear 2

Shaft to middle plate

Spur gears to internal ring gears

Variable stiffness module

IIntelligent RRobotics LLab26KOREA UNIVERSITY

Internal ring gear 1 to upper plate

Internal ring gear 2

Internal ring gear 2Internal ring gear 1

Page 14: Variable Stiffness Actuation based on Dual Actuators ...mech.vub.ac.be/RSS2008_VIA/pdfs/RSS08_Jae-BokSONG.pdf · kSM kSM o Δω=ωSM −ωo kSM ω SM= 270 deg/s, ωo= 170 deg/s, =

14

PP--DAU : ConstructionDAU : Construction

• φ 70x62 mm, 470g (without motors)

• Maximum payload: 5Nm

• Variable stiffness range: 0.01 ~ 0.6 Nm/deg

• Response time : < 1sec(from min. stiffness to max. stiffness)

IIntelligent RRobotics LLab27KOREA UNIVERSITY

Upper/Lower plateUpper/Lower plate Ver. 1Ver. 1

PP--DAU : Performance DAU : Performance

Antagonistic Actuation Mode Parallel Actuation Mode

IIntelligent RRobotics LLab28KOREA UNIVERSITY

Page 15: Variable Stiffness Actuation based on Dual Actuators ...mech.vub.ac.be/RSS2008_VIA/pdfs/RSS08_Jae-BokSONG.pdf · kSM kSM o Δω=ωSM −ωo kSM ω SM= 270 deg/s, ωo= 170 deg/s, =

15

Safe Joint Mechanism(SJM)

25 m

m

R 30

IIntelligent RRobotics LLab29

SJM : Introduction

Safe robot arm (Compliant robot arm)

• Active compliance

• Collision detection by sensors

Control of actuators

• Slow response, noise, malfunction

• Passive Compliance

•Spring, flexible link/joint, soft covering

IIntelligent RRobotics LLab30

Absorbing collision force

•Fast response, high reliability

but positioning inaccuracy.

Rovie, ATRFlexible joint (Quanser)

Page 16: Variable Stiffness Actuation based on Dual Actuators ...mech.vub.ac.be/RSS2008_VIA/pdfs/RSS08_Jae-BokSONG.pdf · kSM kSM o Δω=ωSM −ωo kSM ω SM= 270 deg/s, ωo= 170 deg/s, =

16

SJM : Principle of OperationSJM : Principle of Operation

Safety vs Performance

• Tradeoff

• Low stiffness for safety

Hi h tiff f f30

40

50

Forc

e (N

)

Safe region

Unsafe region60

High stiffness

Dangerous

Low stiffness

IDEAL

• High stiffness for performance

Our approach

• Nonlinear stiffness characteristics

Only by passive mechanical elements

• Normal operation

0

10

20

0 10 20 30 40

Operating region

Sa e eg o

Inaccurate positioning

Displacement (mm)

IIntelligent RRobotics LLab31

Stiff arm for accurate positioning

• Collision situation (Large impact)

Soft arm for shock-absorbing

SJM : Principle of OperationSJM : Principle of Operation

Nonlinear spring systemNonlinear spring system

• 4-bar linkage + Pre-compressed spring

• Transmission angle of 4-bar linkage

L i f f t ti ilib i tiffn

ess (

N/m

m)

Low spring force for static equilibrium

• Threshold force: Transmitted force ≥ Spring force

St

FS

Output slider

Spring

IIntelligent RRobotics LLab32KOREA UNIVERSITY

yx

FEO1

Input sliderA

B

: transmission angle: External force : Spring forceFE FS

Page 17: Variable Stiffness Actuation based on Dual Actuators ...mech.vub.ac.be/RSS2008_VIA/pdfs/RSS08_Jae-BokSONG.pdf · kSM kSM o Δω=ωSM −ωo kSM ω SM= 270 deg/s, ωo= 170 deg/s, =

17

SJM : PerformanceSJM : Performance)

150

n (g

)

200w/o SJMwith SJM

IIntelligent RRobotics LLab33KOREA UNIVERSITY

Forc

e (N

)

-50

0

50

100

Acc

eler

atio

n

0 10Time (msec)

20Start of collsion

HIC = 450

HIC = 15

Harmonic DriveM t

SJM : Current StatusSJM : Current Status

Safe manipulator• 6 DOF manipulator with SJM

• SJM installed at the elbow joint.

SJM

Motor2nd version3rd version

IIntelligent RRobotics LLab34

• Size : Ø75*35mm• Weight : 180g• Torque : 10 Nm• Range : ± 23°• HIC : below 100

KOREA UNIVERSITY

• Size : Ø65*25mm• Weight : 125g• Torque : 8.5 Nm• Range : ± 25°• HIC : below 100

Page 18: Variable Stiffness Actuation based on Dual Actuators ...mech.vub.ac.be/RSS2008_VIA/pdfs/RSS08_Jae-BokSONG.pdf · kSM kSM o Δω=ωSM −ωo kSM ω SM= 270 deg/s, ωo= 170 deg/s, =

18

Thank you !!Thank you !!

IIntelligent RRobotics LLab35KOREA UNIVERSITY

Contact: Prof. JaeContact: Prof. Jae--Bok SONG at [email protected] SONG at [email protected]