vacuum tight metal to ceramic joining -...

56
Vahagn Vardanyan PhD Student Vacuum Tight Metal to Ceramic Joining CANDLE SRI, Yerevan, Armenia, 12/03/2015 Thesis Supervisor Vardan Avagyan

Upload: others

Post on 19-Oct-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Vahagn Vardanyan PhD Student

    Vacuum Tight Metal to Ceramic Joining

    CANDLE SRI, Yerevan, Armenia, 12/03/2015

    Thesis Supervisor – Vardan Avagyan

  • Ceramic Properties

    In general, most ceramic are:

    • Hard, • Wear-resistance, • Brittle, • Refractory, • Thermal insulators, • Electrical insulators, • Nonmagnetic, • Oxidation Resistant, • Prone to thermal shock, • Chemically stable.

  • Advanced Ceramics Materials

    • Aerospace, • Nuclear Waste Containment, • Military Armor Systems, • Automotive /Engine, • Semiconductors, • Heat Exchangers, • Fluid Handling, • Medical, • Metallurgy,

  • Aerospace Silicon Nitride

    Silicon Nitride provide Superior

    mechanical reliability wear resistance.

    • Jet engine igniters. • Missile radomes. • Aircraft engine parts. • Hydraulic wear components.

  • Ceramic Cutting Tools (Si3N4, etc.) Semiconductor Applications

    - Vacuum Chucks – AlN, - RF Windows – Y2O3, - Focus Rings,

    - Gas Distribution Plantes – Si3N4, - Crucibles – SiO2, - Heaters – AlN.

  • Silicon Nitride

    • Extreme Thermal Shock Resistance, • High Toughness (for ceramic), • Strong electrical insulator, • 1/3 weight of steel, • RF transparent.

    Boron Carbide

    Nuclear Waste Containment

    Neutron absorption and shielding of nuclear

    fuel storage and transport

  • Bayard Alpert Gauge Molecular Pumps

    Metal to ceramic junctions in UHV technology

  • UHV multiple pin feedthoughs

  • Vacuum Chambers for Accelerators

  • Metal – Ceramic Joint Parameters

    - High Mechanical strength,

    - Outgassing Low Level,

    - Reliable during long time,

    - Electro – Magnetic Parameters, - Low Material Penetration,

    - Dimensional Stability,

    - Thermal shock resistance.

  • Parameters

  • Interferometric profilometer

  • Diffusion Welding Laboratory

    - Pressure,

    - Temperature,

    - Time,

    - Environment

    Diffusion Welding , Brazing parameters

    Tunnel Furnace

    Induction-Vacuum Furnace

    Vacuum Furnace

  • Regime of Metalization (Our experiments)

  • Phase Diagram Mn-Mo

  • Phase Diagram MnO - Al2O3 Phase Diagram TiO - Al2O3

  • Materials Melting Point

    (°C)

    Density

    (g·cm− )

    Thermal Expansion

    µm·m− ·K− (at 25 °C)

    Description Brinell Hardness

    (MPa)

    1 Mo 2623 10.28 4.8 paramagnetic 1370–2500

    2 Mn 1246 7.21 21.7 paramagnetic 196

    3 Ni 1455 8.908 13.4 Ferromagnetic 667–1600

    4 Cu 1084.62 8.96 16.5 diamagnetic 235–878

    5 Ti 1668 4.506 8.6 paramagnetic 716–2770

    6 Ag 961.78 10.49 18.9 diamagnetic 206-250

    7 Kovar 1450 5.5

    Material Descriptions

  • Curry point for different materials

  • Coefficient of

    Thermal expansion

  • Cutting, grinding, etc.

    Our Experiments

  • Methods of metallization layers

  • Coating type Temperature 0C

    duration Cooling speed 0C/min

    Environment

    Mn, Mo (22X, 22XC, A-

    995, M-7)

    1 270 – 1 400 20 - 40 5 - 10 N2 : H2 = 2 : 1 N2 : H2 = 3 : 1

    dew point

    +15 - +250C

    Mo, Mn, Si 1 280 – 1 320 40 Cooling - 4.2 N2 : H2 = 3 : 1 dew point

    +15 - +250C

    Regime of Metalization

  • Ceramic Cutting Machine

  • Our Experiments

  • Ceramic - Type Metallization Past Concentration %

    Cearmaic Steatit, K-1 Mo : Fe 98 : 2

    Ceramic Forsterit, ФС-5Л, Ф-555

    Mo : Mn

    Mo : TiH2 : Al2O3

    96 : 4

    63.8-74,0.8-6.1

    Alumina silicate ceramic WC : TiC : Fe 60 : 10 : 30

    Alumina

    22X, 22XC

    Mo

    Mo : Mn

    Mo : Mn : Si

    Mo : Mn : TiH2

    Mn : Mo2B5 , Mo

    100

    80 : 20

    80:20 (+5)

    80 :20 : 10

    20 : 10-15 : 70-65

    M7 Mo ; Mn : MoB

    Mo : Mn : MoSi2 Mo ; Mn : C-48

    62.5 : 20 : 17.5

    77 : 20 : 3

    75 : 20 :5

    - 4 Mo : Mn : Si 75-78 : 20 : 5-3

    A-995 Mo : Mn : Mo2B5 : Д-22 74 : 15 : 5 : 6

    Sapphirite Mo : Mn : V2O5 75 : 20 : 5

    Policore Mo : Mn : Si 80 : 20 : (+5)

    Monocrystal sapphire Mo : Mn : Mo2B5 : 74 : 15 : 5 : 6

    Rubine Mo : glass CT-1 70 : 30

    Beryllium ceramic Mo : Mn : Si 80 : 20 : (+5%)

  • Thermal expansion of various oxide ceramic and metallic materials as a function of temperature.

  • Solder for Brazing

    Wettability of Solder

    Solder Surface Energy

  • Mechanical stress calculation of metal - ceramic junctions

    - Review of methods,

    - Design – calculation – simulation, - Experiment,

    - Testing

    Types of junction

  • Kovar

  • Mass Spectrometry

    Residual gas analysis in high vacuum

  • Microstructuries

  • Type Purity

    (mass - %)

    Density

    (g/cm3)

    C 98,43 3.75

    Al23 99,70 3.81

    D1 99.70 3.84

    D2 99.73 3.91

    D3 99.74 3.90

    U 99.74 3.93

    AL24 99.77 3.59

  • Windows for Particle Accelerators

    - Diamond windows,

    - Silica windows,

    - Sapphire windows,

    - Kapton Windows,

    - Titanium Windows,

    - Beryllium Windows,

    - Alumina Windows,

    - Glass Windows

    - …..

    7056 Glass Viewport

    Kovar sleeve Sapphire windows

  • Direct Brazing of Sapphire to Niobium

    Niobium to Sapphire

  • Diffusion brazing methods of difficult geometry dissimilar details.

    Patent number – AM201453 Vardan Shavarsh Avagyan, Vahagn Vanik Vardanyan

    Intellectual Property Agency of the Republic of Armenia

    New Diffusion Brazing Method

  • RF Windows

    Main Requirements.

    - High Mechanical strength,

    - Outgassing Low Level,

    - Reliable during long time,

    - Thermal shock resistance,

    - Necessary Electro – Magnetic Parameters, - Low Material Penetration,

    - Necessary Thermal Conductivity,

    - Dimensional stability.

  • 1. waveguide, 2. coaxial

    3. Waveguide - coaxial

    RF Windows

  • 1. Vacuum Tight parameters at 1011Pa and max. working temperature16000C,

    2. low gas permeability 800 - 10000C – for 02, N2, Ar, etc., 3. Minimum dielectric loss, 109 – 1011 Gigahertz, 500- 7000C, 4. High Electrical strength (vacuum, inert gas, ),

    5. High mechanical strength,

    6. High thermal conductivity,

    7. Multiple thermal shock,

    8. Joining ability to metals,

    9. Radiation durability,

    10.High Purity.

    Parameters of ceramic for RF Windows

    Temperature range -60 to +6500C

    Max pressure - 10kgf/cm2

    Alumina Ceramic RF Windows

  • Types of RF Windows

  • d – толщина диэлектрика

    Beryllium Windows

    X-Ray Windows

    loss of power

  • Diffusion Brazing and Welding for RF Windows

  • Types of RF Windows

  • Cerami

    c Type

    L·mm ·

    mmHg

    cm/cm2 ×103

    Gas type %

    H2 N2+CO CO2 H2O

    22XC 1.2 55 40 3 2

    22X 0.6 55 40 3 2

    A-995 1.9 47 41 10 2

    M-7 3.8 52 43 3 2

    102 2.0 57 31 10 2

    Ф-17 3.0 48 44 6 2

    C-14 3.6 50 42 5 3

    Parameters of RF Ceramic. Nitrid Bore

    - Necessary RF parameters,

    - Mechanical and thermal parameters

    - High Mechanical strength,

    - Outgassing Low Level,

    - Reliable during long time,

    - Thermal shock resistance,

    - Electro – Magnetic Parameters, - Low Material Penetration,

    - Corrosion resistance,

    - Dimensional stability.

  • RF Windows

    Various Ceramics for RF Window

    WESGO A L300 COORS AD995 KYOCERA 476SS NTK UHA99

    KEK

  • Metalize:

    - Mo (85%) + Mn (10%) + Glass (3-7%) for 99.5% ceramic

    - Mo (85%) + Mn (10%) + Ti + Glass (3-7%) for 99.9% ceramic

    - Thickness: 15~20 µm

    - Sintering Temperature: 1350 °C

    Metallizing for High Purity Ceramic KEK

    Glass 3% Glass 5% Glass 7%

    For Brazing

    Use activate type brazing material: Au + Cu + Ti (1~2%)

    Temperature: ~900 °C in vacuum

  • KEK

  • UHV Vacuum Test Stend

    Residual gas analysis in high vacuum

    Outgassing

    Etc.

  • Software

  • Thank You!