v3 case studies

Upload: nuryanti-rokhman

Post on 14-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 V3 Case Studies

    1/63

    Bioprocess SimulationCase Studies

    E. Heinzle

    Biochemical Engineering Department

    Saarland University

  • 7/30/2019 V3 Case Studies

    2/63

    Training Case: CellulaseProduction

    Cellulose is most common organic compound on earth

  • 7/30/2019 V3 Case Studies

    3/63

    Process Flow Diagram (Cellulase)

  • 7/30/2019 V3 Case Studies

    4/63

    Model parameter Value Source

    Bioreaction

    Initial cellulose concentration (g/L) 45 [17, 20]

    Yield (g cellulase/g cellulose) 0.33 [17]

    Productivity (g cellulase/L h) 0.125 [17]

    Utilization cellulose (%) 90 own estimate

    Initial CSL concentration (g/L) 7.5 [15, 16]

    Nutrients/trace elements (g/L) (sum) 4.1 [15, 16]

    Utilization CSL + nutrients (%) 75 own estimate

    Ammonia added (g/L) 1.0 own estimate

    CO2 formation (g/L fermenter volume) 18 [20]

    Final cellulase concentration (g/L) 13.4 calculated

    Fermentation time (h) 107 calculated

    Final biomass concentration (g dcw/L) 15 [20]

    Bioreaction conditions

    Inoculum volume (% of working volume) 5.0 [15, 16]

    Working volume vessel (%) 80 [15, 16]

    Aeration rate (vvm) 0.58 [17]

    Specific agitator power (W/m3

    ) 500 [17]Fermentation temperature (C) 28 [20]

  • 7/30/2019 V3 Case Studies

    5/63

    Material Balance of Cellulase Production

    Component Input (kg/kg P) Output (kg/kg P)

    Ammonia 0.08 -

    Biomass - 1.17

    Carbon dioxide - 1.48

    Cellulase

    in final product

    product loss

    -

    1.0

    0.04

    Cellulose 3.62 0.35

    Corn steep liquor 0.61 0.15

    Nutrients 0.33 0.08

    Water 77.4 77.8Sum 432 432

  • 7/30/2019 V3 Case Studies

    6/63

    Cellulose Production Scenarios

    Scenario

    Annual

    production

    (metric tons)

    Capital

    investment

    ($ million)

    Unit production

    cost ($/kg

    cellulase)

    Base case 456 20.6 15.4

    10% inoculum 475 23.4 16.4

    Additional

    chromatography385 22.1 20.4

  • 7/30/2019 V3 Case Studies

    7/63

    Sensitivity Analysis Yield Cellulase

    0 10 20 30 40 50 600

    10

    20

    30

    40

    50

    60

    Unitproductio

    n

    cost($/kg)

    Yield (%)

  • 7/30/2019 V3 Case Studies

    8/63

    Data Variation for MCS Cellulase

    ParameterValue base

    modelProbabilitydistribution

    Variation

    Yield (g/g) 0.33 normal V = 20%; range: 0.22 - 0.44

    Productivity (g/L h) 0.125 normal V = 20%

    Aeration rate (vvm) 0.58 even 0.3 to 0.8

    Specific power(kW/m3)

    0.5 triangular0.4 to 1.2, 0.5 as the most

    likely

  • 7/30/2019 V3 Case Studies

    9/63

    Probability Distribution of UnitProduction Cost (UPC)

    10 15 20 25 30

    0

    50

    100

    150

    200

    250

    300

    350

    400

    Frequency

    Unit production cost ($/kg P)

    Aeration rate

    Productivity

    Yield

    -75 -50 -25 0 25 50 75

    Contribution to variance (%)

  • 7/30/2019 V3 Case Studies

    10/63

    Total Capital Investment CellulaseCost item Multiplier Base Cost ($ thds.)

    Delivered purchased equipment cost (PC) 3,290

    Installation variable PC 1,060

    Process piping 0.35 1,150

    Instrumentation/control 0.4 1,320

    Insulation 0.03 100

    Electrical systems 0.10 330

    Buildings 0.45 1,480

    Yard improvement 0.15 490

    Auxiliary facilities 0.4 1,320

    Total plant direct cost (TPDC) 10,550

    Engineering 0.25 TPDC 2,640

    Construction 0.35 3,690

    Total plant indirect cost (TPIC) 6,330

    Total plant cost (TPC) = TPDC + TPIC 16,880

    Contractors fee 0.05 TPC 840

    Contingency 0.1 1,690

    Direct fixed capital cost (DFC) 19,410

    Land 0.015 DFC 290

    Start up & validation 0.05 970

    Working capital 30 days - 270

    Total capital investment (TCI) 20,650

  • 7/30/2019 V3 Case Studies

    11/63

    Annual Total Production Cost CellulaseCost item Multiplier Cost ($ thds./year)

    Variable costs

    Raw materials 256

    Consumables 112

    Labor

    Basic labor cost (BLC)

    Fringe benefits

    Supervision

    Administration

    Total labor cost (TLC)

    25,840 h/year

    $26/h

    0.4 BLC

    0.2 BLC

    0.5 BLC

    -

    672

    269

    134

    336

    1,410

    Operating supply 0.1 BLC 67

    Laboratory/QC/QA 0.15 TLC 222

    Utilities 1,161

    Waste treatment & disposal 64

    Royalties -

    Fixed costs

    Depreciation period 9.5 years

    Depreciation 0.095 DFC 1,840

    Insurance 0.01 DFC 194Local tax 0.02 DFC 388

    Maintenance & repair equipment specific 1,280

    Plant overhead cost 0.05 DFC 970

    General expenses

    Distribution & marketing - -Research & development - -

    Total product cost 6,990

  • 7/30/2019 V3 Case Studies

    12/63

    Case Studies

  • 7/30/2019 V3 Case Studies

    13/63

    Citric acid 5Aspargillus

    Stoichiometric modelFilamentous fungus

    Pyruvic acid 6

    Escherichia coli Detailed stoichiometric model, liquid-

    liquid extraction versus electrodialysis,scenario analysisBacterium

    L-Lysine 7Corynebacterium glutamicum Dynamic bioreaction model coupled to

    process model, sensitivity analysisBacterium

    Riboflavin 8Eremothecium ashbyii

    Batch productionFilamentous fungus

    a-Cyclodextrin 9Cyclodextrin glycosyl transferase

    Enzymatic conversion, scenario analysisEnzyme

    Penicillin V 10Penicillium chrysogenum Detailed process model, uncertainty

    analysis using Monte-Carlo simulationFilamentous fungus

    Recombinant HumanSerum Albumin

    11Pichia pastoris

    New process, recombinant therapeuticprotein from yeast, comparison ofadsorption processes, scenario analysisYeast

    Recombinant HumanInsulin

    12Escherichia coli

    Therapeutic protein from E. coli, proteinprocessing and refolding, detailed model

    of complex process, schedulingBacterium

    Monoclonal Antibody 13Chinese hamster ovary cells Animal cell culture, uncertainty analysis

    using scenarios, sensitivity analysis andMonte-Carlo simulationMammalian cell

    -1-Antitrypsin fromTransgenic Plant Cell

    Suspension Culture

    14Transgenic rice cells

    Plant cell culture, feasibility studyPlant cell

    Plasmid DNA 15 Therapeutic DNADNA for gene therapy and genevaccination

  • 7/30/2019 V3 Case Studies

    14/63

    Case Studies

    Pyruvic acid (National Research Center Jlich, IBT I + II)

    Fermentation (E. coli) Optimization microorganism

    Optimization process

    -Cyclodextrin (TU Harburg, Technische Mikrobiologie)

    Existing enzymatic process

    Optimization enzyme (CGTase)

    OH

    O

    O

  • 7/30/2019 V3 Case Studies

    15/63

    -Cyclodextrin: Starting PointExisting enzymatic process

    Optimization enzyme(CGTase, evolution of extremophilic enzyme)

    1. Modeling and assessment of the existing process

    (based on literature, patents and expert knowledge)2. Modeling and assessment of potential process improvements

  • 7/30/2019 V3 Case Studies

    16/63

    Reaction Scheme

    Cyclodextrin production

    Starch Dextrin

    MaltoseGlucose

    -Cyclodextrin

    -Cyclodextrin

    -Cyclodextrin

    Complexing agent

    -Cyclodextrin-Complex

    Biwer et al., Appl.Microbiol.Biotech. 2002: 59, 609-617

  • 7/30/2019 V3 Case Studies

    17/63

    Process Schemes

    Cyclodextrin Production

    Enz. Convers. + Complex

    Separation Complex

    Washing Complex

    Steam Distillation

    Decolorization

    Crystallization

    Vacuum Filtration

    Drying

    Solvent-Process

    Enzymatic Conversion

    Adsorption Column

    Decolorization

    Crystallization

    Vacuum Filtration

    Drying

    Non-Solvent-Process

  • 7/30/2019 V3 Case Studies

    18/63

    0,00

    0,02

    0,04

    0,06

    0,08

    0,10

    Solvent Process Non-Solvent Process

    EI[IndexPoin

    ts/kgP]

    Decanol

    other C-Compounds

    Cyclodextrins

    Glucose + Maltose

    Starch + Dextrin

    Output

    Comparison:Solvent Process Non-Solvent Process

    Carbohydratesin waste

    Product loss

    Decanol lessimportant

    Energy DemandSolvent-Process:

    18 MJ/kg P

    Energy DemandNon-Solvent-Process:

    13 MJ/kg P0 2 4 6 8Reactor

    Centrifugation

    Steam Distillation

    Adsorption

    Crystallization

    Vacuum Filtration

    Dryer

    Specific Energy Demand [MJ/kg P]

    Solvent Process

    Non-Solvent Process

  • 7/30/2019 V3 Case Studies

    19/63

    Sensitivity Analysis:

    Yield Enzymatic Conversion

    Environmental Indexhighly sensitive for yield

    Specific energy demandhardly sensitive for yield

    0

    1

    2

    3

    4

    5

    6

    20 30 40 50 60 70 80 90Yield Enzymatic Conversion [%]

    EI[IndexPo

    ints/kgP]

    Non-Solvent Process

    Solvent Process

    0

    5

    10

    15

    20

    25

    20 30 40 50 60 70 80 90Yield enzymatic conversion [%]

    Sp.

    EnergyDeman

    d[MJ/kgP]

    Solvent Process

    Non-Solvent Process

  • 7/30/2019 V3 Case Studies

    20/63

    Sensitivity Analysis:

    Volume Eluate Adsorption

    0

    10

    20

    30

    40

    50

    0 0,5 1 1,5 2 2,5 3

    Volume Eluat [bv]

    specificEnergyDemand[MJ

    /kgP]

    Non-Solvent ProcessSolvent Process

  • 7/30/2019 V3 Case Studies

    21/63

    Conclusion Cyclodextrin

    Standard process already shows manyadvantages of biotechnological processes

    Increase of yield = highest potential for

    improvement Purification including adsorption yields no

    significant improvements

  • 7/30/2019 V3 Case Studies

    22/63

    Monoclonal Antibodies (Mab) Scientific:

    adaptive proteins

    In vitrouse (antigen identification, antigen purification)

    In vivouse (therapeutic applications, diagnostic tools)

    Commercial: Growing market: 2,400 kg in 2006 (Chovav et al., 2003)

    New MAb entering the market; in the biopharmaceutical

    development pipeline Need for new production facilities and optimization of

    existing plants

    Chovav et al.: The state of biomanufacturing; UBS's Q-series: London, 2003.

  • 7/30/2019 V3 Case Studies

    23/63

    Process Steps MAb ProductionRaw material + inoculum

    preparetion

    Hybridoma fermentation

    Biomass removal

    Chromatographic steps (2-4)

    Viral inactivation

    Formulation of final product

    Typical steps of proteinproduction

    Mammalian cell lines

    Exact process flow diagramdepending on MAb

  • 7/30/2019 V3 Case Studies

    24/63

    Basic Assumptions

    2 x 15 m3 fermenter

    1 g/L Mab

    5% of batches fail

    326 operating days

    14 days fermentation time + 1.5 days lack

    time

    90% yield in each downstream step

  • 7/30/2019 V3 Case Studies

    25/63

  • 7/30/2019 V3 Case Studies

    26/63

    InoculumPreparation

    Seed train:

    Starting from T-flasks

    Six steps

    Volume factor: 7.5 Duration: 24 days

    Inoculum Prep

    P-1 / TFR-101

    T-Flask (225 mL)

    P-2 / RBR-101

    Roller Bottle (2.2 L)

    P-5 / SBR1

    First Seed Bioreactor (1000 L)

    P-6 / V-102

    Media Prep

    P-7 / DE-101

    Sterile Filtration

    P-11 / V-104

    Media Prep

    P-12 / DE-102

    Sterile Filtration

    P-10 / SBR2

    Second Seed Bioreactor (5000 L)

    S-101

    S-102

    S-103

    S-111

    S-112 S-113

    S-115

    S-114

    S-119

    S-130

    S-121

    S-122S-123

    S-125

    S-124

    S-129

    S-120

    S-

    P-3 / BBS-101

    Bag Bioreactor (20 L)

    S-104

    S-105

    S-107

    P-4 / BBS-102

    Bag Bioreactor (100 L)

    S-106

    S-108 S-110

    S-109

    P-9 / AF-101

    Air Filtration

    P-8 / G-101

    Gas Compression

    S-116

    S-117

    S-118

    P-13 / G-102

    Gas Compression

    P-14 / AF-102

    Air Filtration

    S-126

    S-127

    S-128

  • 7/30/2019 V3 Case Studies

    27/63

    Bioreaction

    2 x 15 m3 working volume in staggered mode 1 g/l MAb after 14 days fed-batch

    25 g media/Liter (equal $5/L fermenter volume)

    P-20 / PBR1

    Production Bioreactor (20000 L)

    P-21 / V-106

    Media Prep

    P-22 / DE-103

    Sterile Filtration

    -

    S-149

    S-140

    S-141 S-142

    S-144

    S-143

    Bioreaction

    P-24 / AF-103

    Air Filtration

    P-23 / G-103

    Gas Compression

    S-145

    S-146

    S-147

  • 7/30/2019 V3 Case Studies

    28/63

    Primary Recovery + Protein A

    Biomass removal: Centrifugation + Filtration

    1st Chromatography step: Protein A (affinity) Viral inactivation: Acid treatment

    P-30 / V-101

    Surge Tank

    P-33 / V-103

    Storage

    P-40 / C-101

    Prot-A Chromatography

    P-42 / V-108

    Pool Tank / Viral Inactivation

    PrA-Equil

    PrA-Wash

    PrA-Eluat

    PrA-Reg

    S-161

    P-41 / DE-105

    Polishing FIlter

    S-160

    S-163

    S-162

    S-165

    P-31 / DS-101

    Centrifugation

    P-32 / DE-108

    Polishing Fitler

    S-150

    S-152

    S-151

    S-154

    S-153

    Primary RecoveryProtein-A

    S-155

    S-164

    S-156

  • 7/30/2019 V3 Case Studies

    29/63

    IXC, HIC + Final Formulation Ion exchange chromatography (gradient elution) Hydrophobic interaction chromatography

    Concentration, buffer change and product stabilization

    P-50 / C-102

    IEX Chromatography

    P-52 / V-109

    IEX Pool Tank

    IEX-Equil

    IEX-Wash

    IEX-WFI

    IEX-Eluat

    IEX-Strip

    S-170

    S-174

    P-60 / C-103

    HIC Chromatography

    P-62 / DE-106

    Nanofiltration

    P-70 / V-110

    HIC Pool Tank P-71 / DF-103

    Diafiltration

    P-72 / DE-107

    Final Polishing Filtration

    P-73 / DCS-101

    Final Cooling

    S-175

    HIC-Equil

    HIC-Wash

    HIC-Eluat

    HIC-Reg

    S-180

    S-185

    S-184

    S-190

    S-191

    S-192

    S-193

    S-195

    S-197

    S-196

    Final Product

    IEX-Rinse

    IEX Chrom HIC Chrom

    Final Filtration

    S-194

    P-51 / MX-102

    Mixing

    P-61 / MX-103

    Mixing

    S-171

    S-172

    S-173

    S-181

    S-182

    S-183

  • 7/30/2019 V3 Case Studies

    30/63

    Base Case: Inventory Analysis

    9.5 kg Mab per batch

    x 34 batches per year

    = annual production 307 kg

    4,600 tons/year raw materials 14,900 kg/kg Mab in final product

    Purchased Equipment cost: $9.3 million

    Total Capital Investment (TCI): 129 million

  • 7/30/2019 V3 Case Studies

    31/63

    Operating Costs Total Operating Costs: $40 million/year

    TOC: 55% bioreaction + inoculum; 45% downstream

    Unit Production Costs: $131/g final product

    0 5 10 15 20 25

    Raw Materials

    Labor-Dependent

    Facility-Dependent

    Laboratory/QC/QA

    Consumables

    Waste Treatment/Disposal

    Utilities

    Operating Cost

    $ million/year

  • 7/30/2019 V3 Case Studies

    32/63

    Status Mab case

    Base case model Based on assumptions and estimates

    Best guess for economic key metrics

    Existing variability not know

    Possible alternatives and variations not

    considered

  • 7/30/2019 V3 Case Studies

    33/63

    Areas of Uncertainty

    Waste

    Consumables

    FinalProductUtilities

    Labor

    RawMaterials

    BioreactionDownstreamProcessing

    Supply Chain MarketProcess

  • 7/30/2019 V3 Case Studies

    34/63

    Uncertainty Analysis: Elements

    EnvironmentalAssessment

    Process Model

    Uncertainty Analysis

    Process Data, Literature,Estimates

    EconomicAssessment

    Monte CarloSimulations

    SensitivityAnalysis

    Same PFD

    ScenarioAnalysis

    Different PFD

  • 7/30/2019 V3 Case Studies

    35/63

    Objective Functions

    First Step: Selection of objective functions:

    Technical performance: Annual amount of

    productEconomic performance: Unit ProductionCost, Return on Investment

    Environmental performance: EnvironmentalIndices

  • 7/30/2019 V3 Case Studies

    36/63

    Scenario: # of Fermenter

    Parameter 1 x 30 m3 2 x 15 m3

    Investment

    Annual Amount ofProduct

    Unit Production Cost

    Lower investment in downstream units overweights higherfermenter cost

    Higher labor cost + lower amount of product cause higher UPC

    Handling, failure risks

  • 7/30/2019 V3 Case Studies

    37/63

    Scenarios: Chromatography steps

    Parameter TCI UPC AnnualAmount

    Additional gel filtration + 33%

    Additional IXC + 18%

    Removal HIC - 16%

    Replacement Prot A byIXC

    - 9%

    Base case: Protein A IXC - HIC

  • 7/30/2019 V3 Case Studies

    38/63

    Sensitivity Analysis

    PFD usually not changed

    Impact of a single key parameter

    Technical, supply chain or market parameters

    Identification of the most sensitive parameters

    Does not expresses probabilities

  • 7/30/2019 V3 Case Studies

    39/63

    Sensitivity: Mab Concentration I

    Curves level off at around 2g/l

    Further improvement only through change of PFD

    0

    50

    100

    150

    200

    250

    0 0.5 1 1.5 2 2.5 3 3.5

    Final Product Concentration (g/l)

    UPC($/g)

  • 7/30/2019 V3 Case Studies

    40/63

    Sensitivity: Mab Concentration II

    Annual raw materialcost (media, buffers)and consumables

    (resins) increase withincreasing amount ofproduct

    Facility dependent and

    annual labor almostcost constant

    Cause lower UPC

    0

    5

    10

    15

    20

    25

    30

    0 0,5 1 1,5 2 2,5 3 3,5

    Final Product Concentration (g/l)

    ($

    Million) Raw Materials

    Facility

    Labor

    Consumables

    0

    25

    50

    75

    100

    125

    150

    0 0,5 1 1,5 2 2,5 3 3,5

    Final Product Concentration (g/l)

    ($/g)

    Raw Materials

    Facility

    Labor

    Consumables

  • 7/30/2019 V3 Case Studies

    41/63

    Sensitivity: Yield

    Relatively small impact on UPC

    100

    110

    120

    130

    140

    150

    0 10 20 30 40 50

    Yie ld Ra tio (g/g)

    UPC($/g)

  • 7/30/2019 V3 Case Studies

    42/63

  • 7/30/2019 V3 Case Studies

    43/63

    Figure 3-9

    Random Number

    Generation

    SuperPro Model Crystal Ball

    MS Excel

    ResultsResultsVariables

    Initiatessimulation

    VBA Script

  • 7/30/2019 V3 Case Studies

    44/63

    Technical parameters: Duration, yield + final Mab concentration in the

    fermenter

    Aeration rate fermenter Replacement frequency chromatography resins

    Yield chromatography steps

    MCS: Selection Input Variables

    Market parameter- Selling price Mab

    Supply Chain parameters- Price media- Price resins

    - Price electricity

    Parameters that routinely exhibit uncertainty in model/process:

  • 7/30/2019 V3 Case Studies

    45/63

    Probability Distribution Variables

    0,000

    0,005

    0,0100,015

    0,020

    0,025

    10 12 14 16 18

    0,000

    0,005

    0,010

    0,015

    0,020

    0,63 0,71 0,78 0,85 0,93

    0,000

    0,005

    0,0100,015

    0,0200,025

    4,1 4,4 4,7 5,0 5,4

    Triangular distribution: e.g.

    Fermentation time (base casevalue as the most likeliest)

    Normal distribution: e.g. HICyield (std-dev. 10%)

    Weibull distribution:Electricity price (empiricaldata)

    S P b bili Di ib i

  • 7/30/2019 V3 Case Studies

    46/63

    Source Probability Distributions

    Experimental data, e.g.:

    Fermentation parameters like yield, concentration,duration

    Empirical/statistical data, e.g.:

    World market price sugar (1996-2002)

    Electricity price (U.S. Market 2000-2004)

    Supplier information, e.g.: Price, yield, service life resins + membranes

    Literature data, e.g.:

    Fermentation parameters Raw material prices

    Expert opinion and own estimates:

    All parameters without directly accessible data

  • 7/30/2019 V3 Case Studies

    47/63

  • 7/30/2019 V3 Case Studies

    48/63

    Random Number

    Generation

    MCS: Computational Structure

    SuperPro Model Crystal Ball

    MS Excel

    ResultsResultsVariables

    Initiatessimulation

    VBA Script

    P b bilit di t ib ti UPC

  • 7/30/2019 V3 Case Studies

    49/63

    Probability distribution UPC

    Mean: $138/g

    St-Dev: $34/g Var: 25%

    Min: $62/g

    Max: $424/g

    90%-Perc.:$183/g

    80%-Perc.:$163/g

    Forecast: Unit Production Cost

    0

    500

    1000

    1500

    2000

    2500

    52 112 172 232 292($/g MAb)

    F

    req

    u

    en

    cy

    UPC: Fermentation versus

  • 7/30/2019 V3 Case Studies

    50/63

    UPC: Fermentation versus

    Downstream Parameter

    0

    0,01

    0,02

    0,03

    0,04

    0,05

    0,06

    0,07

    50 100 150 200 250 300 350

    UPC ($/g)

    Probability MCS-FP

    MCS-DSP

    FP: 126 +/- 22 $/g

    DSP:144 +/- 24 $/g

    UPC: All Groups

  • 7/30/2019 V3 Case Studies

    51/63

    UPC: All Groups

    0

    0,01

    0,02

    0,03

    0,04

    0,05

    0,06

    0,07

    50 100 150 200 250 300 350UPC ($/g)

    Probability

    MCS-AP

    MCS-TP

    MCS-SCMP

    MCS-FP

    MCS-DSP

    TP: 138 +/- 34 $/g

    SCP:131 +/- 2 $/g

    Parameter Contribution

  • 7/30/2019 V3 Case Studies

    52/63

    Parameter Contribution-75% -50% -25% 0% 25% 50% 75%

    Media Pow der Price

    Unit Cost Protein A Resin

    Unit Cost IXC Resin

    Unit Cost HIC Resin

    -75,0% -50,0% -25,0% 0,0% 25,0% 50,0% 75,0%

    Final MAb Concentration

    Product Yield HIC

    Product Y ield IXC

    Product Yield Prot A Chr.

    Rplc. Frequency Protein A

    Fermentation Time

    Allparameters

    Supply chainparameters

    ROI: Technical versus Supply

  • 7/30/2019 V3 Case Studies

    53/63

    ROI: Technical versus Supply

    Chain/Market Parameters

    0

    0,01

    0,02

    0,03

    0,04

    0,05

    0,06

    0 50 100 150 200 250

    ROI (%)

    P

    robability

    MCS-TP

    MCS-SCMP

    TP: 110 +/- 33%

    SCMP:110 +/- 25%

  • 7/30/2019 V3 Case Studies

    54/63

    ROI: Parameter Contribution

    -75% -50% -25% 0% 25% 50% 75%

    Final MAb Concentration

    MAb Selling Price

    Fermentation Time

    Product Yield HIC

    Product Yield IXC

    Product Yield Prot A Chr.

    Contribution all parameters

    Environmental Indices

  • 7/30/2019 V3 Case Studies

    55/63

    Environmental Indices

    0

    100

    200

    300

    20 36 52 68 84

    EI Input (IP/kg P)

    Frequency

    Parametercontribution

    similar to UPC

    EI Input

    -75% -50% -25% 0% 25% 50% 75%

    Final MAb Concentration

    Product Yield HIC

    Product Yield IXC

    Product Yield Prot A Chr.

    -75% -50% -25% 0% 25% 50% 75%

    Product Y ield HIC

    Product Y ield IXC

    Fermentation Yield

    Product Yield Prot A Chr.

    Input Output

    Results Mab

  • 7/30/2019 V3 Case Studies

    56/63

    Results Mab

    Better understanding of key parameters and processalternatives

    Most contributing parameters largely the same foreconomic and environmental variability

    Mab concentration and chromatography yields contributemost to the uncertainty

    Potential improvements:

    Increase MAb concentration to around 2 g/L Reduce to only two chromatography steps (media

    composition, strain requirements, by-products)

    Conclusion

  • 7/30/2019 V3 Case Studies

    57/63

    Conclusion

    Uncertainty addressed by a combination of scenario +sensitivity analysis + Monte Carlo simulation

    Representative process model and a thoroughevaluation of base case are crucial

    The connection of a process simulator with MonteCarlo software enables a time-efficient quantification

    Monte Carlo simulations provide a most probablevalue and an expected range of values

    Allows to prioritize the parameters that impacteconomic and environmental performance

    R&D effort can be directed to the most important risksand the most promising opportunities

  • 7/30/2019 V3 Case Studies

    58/63

    Acknowledgement

    Intelligen Inc. (N.J.): Demetri Petrides, JohnCalandranis, Evdokia Achilleos

    Charles Cooney and Group at MIT

  • 7/30/2019 V3 Case Studies

    59/63

  • 7/30/2019 V3 Case Studies

    60/63

    Process Diagram

    Final

    Product

    RawMaterials

    Utilities

    Waste

    Consumables

    Labor

    BioreactionDownstream

    Processing

    Consumables

    Waste

    Facility-Dependent Costs: MAb

  • 7/30/2019 V3 Case Studies

    61/63

    Facility Dependent Costs: MAb

    Direct Fixed Capital (DFC) $ 165.7 Million

    Insurance 0.015 = 2.5

    Local Taxes 0.025 = 4.1DFC

    Contractors Fee 0.055 = 9.1

    Annual Facility-Dependent Cost $ 42.3 Million

    Depreciation period 10 years

    Depreciation 0.10 = 16.6TCI

    Maintenance 0.06 = 9.9

    Operating Cost MAb

  • 7/30/2019 V3 Case Studies

    62/63

    Operating Cost MAb

    Laboratory/QC/QA 0.6 = 2.3TLC

    Operating Cost $ 60.3 Million

    Raw Materials 3.5

    Consumables 8.2

    Total Labor Cost (TLC) 3.9

    Utilities 0.024

    Waste Treatment/Disposal 0.006

    Facility-Dependent Costs 42.3

  • 7/30/2019 V3 Case Studies

    63/63

    Figure 3-5

    P-1 / V-101

    Seed Fermentation

    P-12 / G-104

    Gas Compression

    P-18 / MX-101

    Mixing

    S-101

    S-102

    S-103

    S-106

    S-107

    S-108

    S-109

    S-110

    P-2 / V-102

    Seed Fermentation

    P-3 / G-101Gas Compression

    P-5 / MX-102

    Mixing

    S-111

    S-112

    S-113

    S-116

    S-118

    S-119

    S-120

    S-117

    P-4 / ST-101

    Heat Sterilization

    S-114

    S-115

    P-6 / V-103

    Seed Fermentation

    P-7 / G-102

    Gas Compression

    P-8 / MX-103

    Mixing

    S-122

    S-123

    S-124

    S-125

    S-126

    S-127

    S-128

    S-121

    P-9 / ST-103

    Heat Sterilization

    S-129

    S-130

    P-11 / G-103

    Gas Compression

    P-13 / MX-104

    Mixing

    S-132

    S-133

    S-134

    S-136

    P-10 / ST-104

    Heat Sterilization

    P-15 / V-104

    Fermentation

    S-131

    S-135

    S-137 S-138

    S-139

    S-140

    P-16 / RVF-101

    Rotary Vacuum Filtration

    S-141

    S-143S-144

    P-17 / UF-101

    Ultrafiltration

    S-142

    S-145

    S-146

    P-14 / ST-102

    Heat Sterilization

    S-104

    S-105