user's guide 12-02-2009 tlsd

Upload: david-bautista-gonzalez

Post on 02-Jun-2018

221 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/10/2019 User's guide 12-02-2009 TLSD

    1/45

    The use of the software is restricted to participants to

    Imperial College JIP on Deconvolution.

    If you are a participant, click I agree

    Your Company

    Your Company

    Your Company

    YourCompany

    Your Company Your Company

  • 8/10/2019 User's guide 12-02-2009 TLSD

    2/45

    TLSD is a pre-processor that converts a variable rate pressure history into a unit

    rate drawdown with a duration equal to the total duration of the pressure history.

    TLDS

    * von Schroeter, T., Hoellander, F. and Gringarten, A. C.:

    Deconvolution of Well test Data as a Non-linear Total Least Square Problem, SPEJ

    (Dec. 2004) 375-390

    TLSD uses a deconvolution algorithm

    based on the Total Least Squaremethod*, which provides stable results.

    The algorithm estimates both rates

    (called adapted rates herein) and

    normalised derivative by minimising an

    error measure, E, which is a weightedcombination of pressure match, rate

    match, and a penalty term based on

    the overall curvature of the graphed

    derivative and whose purpose is to

    enforce smoothness of the resultingdeconvolved derivative.

    Data: p, q

    Curvature operator: matrix D, vectork

    Parameters:

    : relative weight : regularization parameter

    4342132144 344 21

    curvaturematchratematchpressure

    222

    kzDqygyppE i ++=

    Guess g , discretize into D(z), minimize E over pi , y, z

  • 8/10/2019 User's guide 12-02-2009 TLSD

    3/45

    The weight of the pressure match is normalized to one and the estimate

    depends on two weights, for the rate match, and for the roughness penalty.

    is usually set at a default value and only the regularisation parameter is

    varied.

    Regularisation introduces bias, however, and thus the user must choose a level

    of that imposes just enough smoothness to eliminate small-scale oscillations

    on the derivative while preserving genuine reservoir features.

    The methodology for well test analysis using deconvolution is summarised in the

    schematic in the following page:

  • 8/10/2019 User's guide 12-02-2009 TLSD

    4/45

    Deconvolved mn(p) derivative Adapted rates

    Convolved pseudo-pressure with adapted rates

    Pressure data p

    Unit rate convolved pseudo-pressure drawdown

    Interpretation

    model

    Pressure data

    Adapted rates

    END

    Pseudo-pressure mn(p)

    Rates

    mn(p) vs. p

    NO

    YES

    Deconvolve

    Compare

    Convolve

    Convolve

    Analyse ConvolveRefine

    match

    Unit rate

    p vs. mn(p)Unit rate convolved

    pressure drawdown

    Well test analysis using deconvolution

  • 8/10/2019 User's guide 12-02-2009 TLSD

    5/45

    1. Deconvolution with various levels of regularisation is applied to pressure andrate data (for gas, pressures are first converted to normalised pseudo-

    pressure in order to approximate a linear system).

    2. Once a satisfactory derivative has been obtained, a convolved pressure

    history is calculated with that derivative, the adapted rates and the initialpressure obtained from deconvolution, and compared with the measured

    pressures.

    3. If the match is acceptable, a unit-rate pseudo-pressure drawdown is

    generated for a duration equal to that of the test, using the deconvolvedderivative.

    4. This unit-rate drawdown is analysed in the conventional way.

    5. The resulting model is then used applied to the measured pressure datausing the adapted rates and the model parameters are refined until an

    acceptable match is obtained.

    Well test analysis using deconvolution

  • 8/10/2019 User's guide 12-02-2009 TLSD

    6/45

    Maureen A2

    Test 1 (Exploration)

    FP06

    Test 2 (Product ion)

    FP35

    The procedure is illustrated with Well A2 from the Maureen reservoir

  • 8/10/2019 User's guide 12-02-2009 TLSD

    7/45

    Maureen A2

    Test 2 (Build-up)

    Test 1 (Bui ld-up)

    Test 2 (Drawdown)

    RADIAL FLOW

    SPHERICAL FLOW

    WELLB

    ORE

    STOR

    AGE

    Changing

    Wellbore

    Storage

    No boundaries are apparent on a Log-log plot

  • 8/10/2019 User's guide 12-02-2009 TLSD

    8/45

    Maureen A2 Test 1 (Exploration)Yet, an interpretation model of infinite extent applied to one of the tests fails to match the other test

    Exploration test

    Production testExploration

    test

    Exploration test

  • 8/10/2019 User's guide 12-02-2009 TLSD

    9/45

    Production

    test

    10-3 10-1 10 103

    Elapsed time, t ( hours)

    PressureChan

    geand

    Derivative(psi)

    104

    103

    102

    10

    1

    10-1

    10-2

    Maureen A2 Test 2 (Production)

    Decreasing wellbore storage(gas goingback into solution)

    Exploration test

    Production test Production test

  • 8/10/2019 User's guide 12-02-2009 TLSD

    10/45

    Test 1 (build-up)

    Test 2 (build-up)

    Maureen A2: Evidence of depletionThe only suggestion of boundaries comes from the superposition plot

  • 8/10/2019 User's guide 12-02-2009 TLSD

    11/45

    Time from the start of the test (hours)

    0 4000 8000 12000 16000

    Pressure

    (psia)

    3600

    3400

    3200

    3000

    2800

    2600

    2400

    2200

    Maureen A2 : Closed rectangle model

    Test 1 Test 2

    (pav)i psia

    (pav)f at the

    end of the test psiakh mD.ft

    k(xy) mD

    k(z) mD

    C1 bbl/psi

    C2 bbl/psi hrs

    hw/h

    hw ftS(w)

    S(c)

    S(t)

    Zw ft

    d1 ft

    d2 ft

    d3 ft

    d4 ftA

    3471.1

    346989170

    442

    4

    0.44

    0.35

    70-3.3

    12.8

    3.3

    166.5

    15900

    8120

    16000

    29093.52E+08 ft

    2

    3478.6

    256584090

    416

    6

    0.37

    0.06

    7.551E-03

    0.35

    70-3.7

    12.2

    1.4

    166.5

    5233

    25923

    7947

    17343.65E+08

    Based on this suggestion, in conventional analysis, a closed reservoir model is used

    and the distances to the boundaries are adjusted by regression. The distances to

    boundaries are highly non-unique, but the area is reasonably constrained

    Boundaries can be made to appear

    by deconvolution

  • 8/10/2019 User's guide 12-02-2009 TLSD

    12/45

    Click TLSD

    to start

    Then click Deconvolution & Convolution

  • 8/10/2019 User's guide 12-02-2009 TLSD

    13/45

    Input: Variable rate pressure file

    Input: Rate history file

    Select rate history range from rate history file (default: all rates are used)

    Select of flow periods to deconvolve from pressure file

    Select initial pressure

    input or calculation

    STEPS

    1

    2

    3

    4

    Get default

    parameters

    Start deconvolution

    Deconvolved derivative

    Unit rate drawdown with total duration of test calculated from deconvolved derivative

    Adapted rates, corrected for errors as determined by deconvolution

    Not implemented yet

    Input: pseudo-pressure vs. pressure file for gas data deconvolution

    Verification

    11

    Final analysis

    12

    Advanced options: do not modi fy

    Select Excel file to display deconvolution results or ignore for default7

    9

    Convolved pressure history, calculated from deconvolved derivative, to be compared with input data

    Data derivative plot 10

    5 Number of points calculated forthe deconvolved derivative (does

    not converge if too many points)

    8

    6

  • 8/10/2019 User's guide 12-02-2009 TLSD

    14/45

    STEP 1: Input variable rate pressure history file

    Format:

    1st line: text

    1st column: time from start

    2nd column: pressure

  • 8/10/2019 User's guide 12-02-2009 TLSD

    15/45

    STEP 2: Input rate history file

    Format:

    1st line: text

    1st column: duration

    2

    nd

    column: rate

    To avoid resolution

    problems, choose unitsso that rate values are

    small (e.g., MMscf/Dinstead of Mscf/D)

  • 8/10/2019 User's guide 12-02-2009 TLSD

    16/45

    Additional STEP if gas: Input pseudo-pressure file

    2

    1

    Format:

    1st line: text

    1st column: pressure

    2nd column: pseudo-pressure

  • 8/10/2019 User's guide 12-02-2009 TLSD

    17/45

    STEP 3: Select rate to be included in deconvolution (default: ALL)

    2

    43

    1

    This STEP 3 can be skipped if all rates are to be included in deconvolution

  • 8/10/2019 User's guide 12-02-2009 TLSD

    18/45

    STEP 4: Select flow periods to be included in deconvolution

    2

    2

    43

    1

  • 8/10/2019 User's guide 12-02-2009 TLSD

    19/45

    STEP 5: Impose a value for the initial pressure

    Enter initial pressure

    Default: highest

    pressure value2

    1

  • 8/10/2019 User's guide 12-02-2009 TLSD

    20/45

    STEP 5: Alternatively, let deconvolution calculate the initial pressure

    Only if an initial DST is included in the pressure history

  • 8/10/2019 User's guide 12-02-2009 TLSD

    21/45

    STEP 6: Initialise to obtain default weights and

  • 8/10/2019 User's guide 12-02-2009 TLSD

    22/45

    STEP 7: Select an existing output Excel file (or accept the default name)

    This Excel fi le is

    automaticallycreated to display

    the deconvolved

    derivative

  • 8/10/2019 User's guide 12-02-2009 TLSD

    23/45

    STEP 7: Rename the output Excel file (or accept the default name)

  • 8/10/2019 User's guide 12-02-2009 TLSD

    24/45

    STEP 8: Start deconvolution

  • 8/10/2019 User's guide 12-02-2009 TLSD

    25/45

    STEP 8 (contd): Deconvolution proceeds

  • 8/10/2019 User's guide 12-02-2009 TLSD

    26/45

  • 8/10/2019 User's guide 12-02-2009 TLSD

    27/45

    STEP 9 Deconvolved derivative plotted in Project Excel File

  • 8/10/2019 User's guide 12-02-2009 TLSD

    28/45

    STEP 9 (contd): Increase and redo deconvolution from STEP 8

    Repeat with different values of until satisfactory pressure

    match, rate match and deconvolved derivative are obtained

  • 8/10/2019 User's guide 12-02-2009 TLSD

    29/45

    BETTER DECONVOLVED DERIVATIVE

    (i.e., converging to the most likely behaviour)

    Increasing

    Successive deconvolved derivatives are plotted together

  • 8/10/2019 User's guide 12-02-2009 TLSD

    30/45

    Successive deconvolved derivatives are compared in the Project Excel

    File which is automatically generated by the software in Step 8

    Deconvolved derivative files, *.pd , for various deconvolutions

    Number of deconvolutions

    STEP 10: Successive deconvolved derivatives can be compared with

  • 8/10/2019 User's guide 12-02-2009 TLSD

    31/45

    1

    2

    STEP 10: Successive deconvolved derivatives can be compared with

    actual data by adding Data Derivative (rate-normalised)

    Ratio of derivative window length to total

    length of data on a superposition plot

    3 4

    STEP 10: Data derivatives

  • 8/10/2019 User's guide 12-02-2009 TLSD

    32/45

    STEP 10: Data derivatives

    STEP 10: Data derivatives can be imported if the derivative calculated in

  • 8/10/2019 User's guide 12-02-2009 TLSD

    33/45

    Rate for flow period 34

    Column G is

    derivative

    divided by rate

    Column E is

    Elapsed time

    Number of points plotted

    Number of data derivatives plotted

    STEP 10: Data derivatives can be imported if the derivative calculated in

    The Project excel file is too noisy

  • 8/10/2019 User's guide 12-02-2009 TLSD

    34/45

    STEP 10: Deconvolved derivative can also be plotted from TLSD

    1

    2

  • 8/10/2019 User's guide 12-02-2009 TLSD

    35/45

    PLOTS: Deconvolved derivative

  • 8/10/2019 User's guide 12-02-2009 TLSD

    36/45

    PLOTS: Input pressure and rate histories

    1

    2

  • 8/10/2019 User's guide 12-02-2009 TLSD

    37/45

    PLOTS: Input pressure and rate histories

  • 8/10/2019 User's guide 12-02-2009 TLSD

    38/45

    STEP 11: rate match (adapted rates vs. input rates)

    1

    2

  • 8/10/2019 User's guide 12-02-2009 TLSD

    39/45

    STEP 11 : rate match (adapted rates vs. input rates)

  • 8/10/2019 User's guide 12-02-2009 TLSD

    40/45

    STEP 11 : Pressure match

    (convolved pressure history vs. input pressure history)

    1

    2

    This plot must be made to verify the quality of the deconvolution

  • 8/10/2019 User's guide 12-02-2009 TLSD

    41/45

    STEP 11 : Pressure match

    (convolved pressure history vs. input pressure history)

    Match shown only for the flow periods used for deconvolution

  • 8/10/2019 User's guide 12-02-2009 TLSD

    42/45

    STEP 11 : Pressure match- zoomed

    (convolved pressure history vs. input pressure history)

    Match shown only for

    the flow periods used

    for deconvolution

    STEP 12: Select the unit rate drawdown corresponding

  • 8/10/2019 User's guide 12-02-2009 TLSD

    43/45

    3470.58

    3470.60

    3470.62

    3470.64

    3470.66

    3470.68

    3470.70

    3470.72

    3470.74

    -2000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

    Pressur

    e(psia)

    Elapsed time (hrs)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    TotalRate(STB/D)

    STEP 12: Select the unit rate drawdown corresponding

    to the best deconvolved derivative (*.up)

    STEP 12 (contd): Analyse the unit rate drawdown corresponding

  • 8/10/2019 User's guide 12-02-2009 TLSD

    44/45

    0.0001

    0.001

    0.01

    0.1

    0.0001 0.01 1 100 10000 1000000

    PressureChangeandDerivative(psi)

    Elapsed time (hrs)

    Log-Log Diagnostic - Flow Period 2

    0.00001

    0.0001

    0.001

    0.01

    0.1

    1

    0.0001 0.01 1 100 10000 1000000

    Pres

    sureChangeandDerivative(psi)

    Elapsed time (hrs)

    Log-Log Match - Flow Period 2

    3470.59

    3470.60

    3470.61

    3470.62

    3470.63

    3470.64

    3470.65

    3470.66

    3470.67

    3470.68

    3470.69

    -4 -3 -2 -1 0 1 2 3 4 5

    Pressure(psia)

    Superposition Function (STB/D)

    Horner Analysis - Flow Period 2

    3470.61

    3470.62

    3470.63

    3470.64

    3470.65

    3470.66

    3470.67

    3470.68

    3470.69

    3470.70

    3470.71

    -3 -2 -1 0 1 2 3 4

    Pressure(psia)

    Superposition Function ( STB/D)

    Horner Match - Flow Period 2

    3470.58

    3470.60

    3470.62

    3470.64

    3470.66

    3470.68

    0 2000 4000 6000 8000 10000 12000 14000 16000 18000

    Pressure(psia)

    Elapsed time (hrs)

    Simulation (Constant Skin) - Flow Period 2

    3470.56

    3470.58

    3470.60

    3470.62

    3470.64

    3470.66

    3470.68

    3470.70

    3470.72

    3470.74

    -5000 0 5000 10000 15000 20000

    Pressure(psia)

    Elapsed time (hrs)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    TotalRate(STB/D)

    Pressure History Model

    Partially Penetrating Well with C and SHomogeneousRectangle

    Results

    (pav)i 3470.690 ps ia(pav) f 3470.611 ps iapwf 3470.595 psiakh 94881 mD.ft

    k(xy) 469.7 mDk(z) 46.47 mDC 0.2573 bbl/psihw/h 0.3276Hw 66.17 ftS(w) -1.78S(c) 10.88S(t) 5.46Zw 56.24 ftType top No FlowType bot No Flow

    d1 5548.55 ftd2 9851.6 ftd3 6218.37 ftd4 20754.1 ftA 3.6013E+008 ft2Type d1 No FlowType d2 No FlowType d3 No FlowType d4 No FlowPI 65.02 B/D/psiPI-SS 45.21 B/D/psiFE 1.340 fraction

    Dp(S) -0.007519 ps i

    STEP 12 (cont d): Analyse the unit rate drawdown corresponding

    to the best deconvolved derivative

    STEP 13: Use the unit rate drawdown interpretation model to analyse

  • 8/10/2019 User's guide 12-02-2009 TLSD

    45/45

    p y

    the measured pressures with the adapted rates (*.ar)

    1

    10

    100

    1000

    0.0001 0.001 0.01 0.1 1 10 100

    PressureChangeandDe

    rivative(psi)

    Elapsed time (hrs)

    Log-Log Diagnostic - Flow Period 34

    0.1

    1

    10

    100

    1000

    0.0001 0.001 0.01 0.1 1 10 100 1000 10000

    Pres

    sureChangeandDerivative(psi)

    Elapsed time (hrs)

    Log-Log Match - Flow Period 34

    2250

    2300

    2350

    2400

    2450

    2500

    30000 40000 50000 60000 70000 80000 90000 100000

    Pressure(psia)

    Superposition Function (STB/D)

    Horner Analysis - Flow Period 34

    2200

    2300

    2400

    2500

    2600

    0 20000 40000 60000 80000 100000

    Pressure(ps

    ia)

    Superposition Function (STB/D)

    Horner Match - Flow Period 34

    2200

    2400

    2600

    2800

    3000

    3200

    3400

    3600

    -2000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

    Pressure(psia)

    Elapsed time (hrs)

    Simulation (Constant Skin) - Flow Period 34

    -4000

    -3000

    -2000

    -1000

    0

    1000

    2000

    3000

    4000

    5000

    6000

    -5000 0 5000 10000 15000 20000

    Pressure(psia)

    Elapsed time (hrs)

    0

    10000

    20000

    30000

    40000

    50000

    60000

    70000

    80000

    OilRate(STB/D)

    Pressure History Model

    Partially Penetrating Well with C and SHomogeneousRectangle

    Results

    (pav)i 3470.690 ps ia(pav) f 2545.409 ps iapwf 2277.907 psiakh 60681 mD.ft

    k(xy) 300.4 mDk(z) 30.00 mDC 0.08331 bbl/psihw/h 0.3416Hw 69.00 ftS(w) -3.86S(c) 10.39S(t) -0.92Zw 101.00 ftType top No FlowType bot No Flow

    d1 5548.55 ftd2 9851.6 ftd3 6218.37 ftd4 20754.1 ftA 3.6013E+008 ft2Type d1 No FlowType d2 No FlowType d3 No FlowType d4 No FlowPI 52.34 B/D/psiPI-SS 48.30 B/D/psiFE 2.185 fraction

    Dp(S) -343.5 psi

    THE END