universidade de coimbrajgouveia/core.pdf · universidade de coimbra 20 dec 2012 - core -...

99
Lifts of convex sets and cone factorizations João Gouveia Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Upload: others

Post on 25-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Lifts of convex sets and cone factorizations

João Gouveia

Universidade de Coimbra

20 Dec 2012 - CORE - Université Catholique de Louvain

with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Page 2: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Lifts of Polytopes

What is a hard domain to do linear programming in?

Firstguess: a polytope with many vertices and facets.

However, polytopes with many facets can be projections ofmuch simpler polytopes. An example is the Parity Polytope:

PPn = conv({x ∈ {0,1}n : x has odd number of 1}).

For every even set A ⊆ {1, . . . ,n},∑i∈A

xi −∑i 6∈A

xi ≤ |A| − 1

is a facet, so we have at least 2n−1 facets.

Page 3: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Lifts of Polytopes

What is a hard domain to do linear programming in? Firstguess: a polytope with many vertices and facets.

However, polytopes with many facets can be projections ofmuch simpler polytopes. An example is the Parity Polytope:

PPn = conv({x ∈ {0,1}n : x has odd number of 1}).

For every even set A ⊆ {1, . . . ,n},∑i∈A

xi −∑i 6∈A

xi ≤ |A| − 1

is a facet, so we have at least 2n−1 facets.

Page 4: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Lifts of Polytopes

What is a hard domain to do linear programming in? Firstguess: a polytope with many vertices and facets.

However, polytopes with many facets can be projections ofmuch simpler polytopes.

An example is the Parity Polytope:

PPn = conv({x ∈ {0,1}n : x has odd number of 1}).

For every even set A ⊆ {1, . . . ,n},∑i∈A

xi −∑i 6∈A

xi ≤ |A| − 1

is a facet, so we have at least 2n−1 facets.

Page 5: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Lifts of Polytopes

What is a hard domain to do linear programming in? Firstguess: a polytope with many vertices and facets.

However, polytopes with many facets can be projections ofmuch simpler polytopes. An example is the Parity Polytope:

PPn = conv({x ∈ {0,1}n : x has odd number of 1}).

For every even set A ⊆ {1, . . . ,n},∑i∈A

xi −∑i 6∈A

xi ≤ |A| − 1

is a facet, so we have at least 2n−1 facets.

Page 6: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Lifts of Polytopes

What is a hard domain to do linear programming in? Firstguess: a polytope with many vertices and facets.

However, polytopes with many facets can be projections ofmuch simpler polytopes. An example is the Parity Polytope:

PPn = conv({x ∈ {0,1}n : x has odd number of 1}).

For every even set A ⊆ {1, . . . ,n},∑i∈A

xi −∑i 6∈A

xi ≤ |A| − 1

is a facet, so we have at least 2n−1 facets.

Page 7: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Parity Polytope

There is a much shorter description.

PPn is the set of x ∈ Rn such that there exists for every odd1 ≤ k ≤ n a vector zk ∈ Rn and a real number αk such that

I∑

k zk = x;I∑

k αk = 1;I ‖ zk ‖1 = k αk ;I 0 ≤ ( zk )i ≤ αk .

O(n2) variables and O(n2) constraints.

Page 8: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Parity Polytope

There is a much shorter description.

PPn is the set of x ∈ Rn such that there exists for every odd1 ≤ k ≤ n a vector zk ∈ Rn and a real number αk such that

I∑

k zk = x;I∑

k αk = 1;I ‖ zk ‖1 = k αk ;I 0 ≤ ( zk )i ≤ αk .

O(n2) variables and O(n2) constraints.

Page 9: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Parity Polytope

There is a much shorter description.

PPn is the set of x ∈ Rn such that there exists for every odd1 ≤ k ≤ n a vector zk ∈ Rn and a real number αk such that

I∑

k zk = x;

I∑

k αk = 1;I ‖ zk ‖1 = k αk ;I 0 ≤ ( zk )i ≤ αk .

O(n2) variables and O(n2) constraints.

Page 10: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Parity Polytope

There is a much shorter description.

PPn is the set of x ∈ Rn such that there exists for every odd1 ≤ k ≤ n a vector zk ∈ Rn and a real number αk such that

I∑

k zk = x;I∑

k αk = 1;

I ‖ zk ‖1 = k αk ;I 0 ≤ ( zk )i ≤ αk .

O(n2) variables and O(n2) constraints.

Page 11: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Parity Polytope

There is a much shorter description.

PPn is the set of x ∈ Rn such that there exists for every odd1 ≤ k ≤ n a vector zk ∈ Rn and a real number αk such that

I∑

k zk = x;I∑

k αk = 1;I ‖ zk ‖1 = k αk ;

I 0 ≤ ( zk )i ≤ αk .

O(n2) variables and O(n2) constraints.

Page 12: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Parity Polytope

There is a much shorter description.

PPn is the set of x ∈ Rn such that there exists for every odd1 ≤ k ≤ n a vector zk ∈ Rn and a real number αk such that

I∑

k zk = x;I∑

k αk = 1;I ‖ zk ‖1 = k αk ;I 0 ≤ ( zk )i ≤ αk .

O(n2) variables and O(n2) constraints.

Page 13: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Parity Polytope

There is a much shorter description.

PPn is the set of x ∈ Rn such that there exists for every odd1 ≤ k ≤ n a vector zk ∈ Rn and a real number αk such that

I∑

k zk = x;I∑

k αk = 1;I ‖ zk ‖1 = k αk ;I 0 ≤ ( zk )i ≤ αk .

O(n2) variables and O(n2) constraints.

Page 14: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Motivation

Polytopes with many facets can be projections of much simplerpolytopes.

Canonical LP LiftGiven a polytope P, a canonical LP lift is a description

P = Φ(Rk+ ∩ L)

for some affine space L and affine map Φ. We say it is a Rk+-lift.

The smallest k such that P has a Rk+-lift is a much better

measure of “LP-complexity” than number of facets and vertices.

Page 15: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Motivation

Polytopes with many facets can be projections of much simplerpolytopes.

Canonical LP LiftGiven a polytope P, a canonical LP lift is a description

P = Φ(Rk+ ∩ L)

for some affine space L and affine map Φ. We say it is a Rk+-lift.

The smallest k such that P has a Rk+-lift is a much better

measure of “LP-complexity” than number of facets and vertices.

Page 16: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Motivation

Polytopes with many facets can be projections of much simplerpolytopes.

Canonical LP LiftGiven a polytope P, a canonical LP lift is a description

P = Φ(Rk+ ∩ L)

for some affine space L and affine map Φ. We say it is a Rk+-lift.

The smallest k such that P has a Rk+-lift is a much better

measure of “LP-complexity” than number of facets and vertices.

Page 17: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Two definitions

Let P be a polytope with facets defined byh1(x) ≥ 0, . . . ,hf (x) ≥ 0, and vertices p1, . . . ,pv .

Slack MatrixThe slack matrix of P is the matrix SP ∈ Rv×f defined by

SP(i , j) = hj(pi).

Nonnegative FactorizationGiven a nonnegative matrix M ∈ Rn×m

+ we say that it has ak -nonnegative factorization, or a Rk

+-factorization if there existmatrices A ∈ Rn×k

+ and B ∈ Rk×m+ such that

M = A · B.

Page 18: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Two definitions

Let P be a polytope with facets defined byh1(x) ≥ 0, . . . ,hf (x) ≥ 0, and vertices p1, . . . ,pv .

Slack MatrixThe slack matrix of P is the matrix SP ∈ Rv×f defined by

SP(i , j) = hj(pi).

Nonnegative FactorizationGiven a nonnegative matrix M ∈ Rn×m

+ we say that it has ak -nonnegative factorization, or a Rk

+-factorization if there existmatrices A ∈ Rn×k

+ and B ∈ Rk×m+ such that

M = A · B.

Page 19: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Two definitions

Let P be a polytope with facets defined byh1(x) ≥ 0, . . . ,hf (x) ≥ 0, and vertices p1, . . . ,pv .

Slack MatrixThe slack matrix of P is the matrix SP ∈ Rv×f defined by

SP(i , j) = hj(pi).

Nonnegative FactorizationGiven a nonnegative matrix M ∈ Rn×m

+ we say that it has ak -nonnegative factorization, or a Rk

+-factorization if there existmatrices A ∈ Rn×k

+ and B ∈ Rk×m+ such that

M = A · B.

Page 20: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Yannakakis’ Theorem

Theorem (Yannakakis 1991)A polytope P has a Rk

+-lift if and only if SP has aRk+-factorization.

Our questions:

I Does it work for other types of lifts?

I Does it work for other types of convex sets?

I Can we include symmetry in the result?

Page 21: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Yannakakis’ Theorem

Theorem (Yannakakis 1991)A polytope P has a Rk

+-lift if and only if SP has aRk+-factorization.

Our questions:

I Does it work for other types of lifts?

I Does it work for other types of convex sets?

I Can we include symmetry in the result?

Page 22: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Yannakakis’ Theorem

Theorem (Yannakakis 1991)A polytope P has a Rk

+-lift if and only if SP has aRk+-factorization.

Our questions:

I Does it work for other types of lifts?

I Does it work for other types of convex sets?

I Can we include symmetry in the result?

Page 23: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Yannakakis’ Theorem

Theorem (Yannakakis 1991)A polytope P has a Rk

+-lift if and only if SP has aRk+-factorization.

Our questions:

I Does it work for other types of lifts?

I Does it work for other types of convex sets?

I Can we include symmetry in the result?

Page 24: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

The Hexagon

Consider the regular hexagon.

It has a 6× 6 slack matrix SH .

0 0 1 2 2 11 0 0 1 2 22 1 0 0 1 22 2 1 0 0 11 2 2 1 0 00 1 2 2 1 0

=

1 0 1 0 0

1 0 0 0 1

0 0 0 1 2

0 1 0 0 1

0 1 1 0 0

0 0 2 1 0

0 0 0 1 2 1

1 2 1 0 0 0

0 0 1 1 0 0

0 1 0 0 1 0

1 0 0 0 0 1

Page 25: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

The Hexagon

Consider the regular hexagon.

It has a 6× 6 slack matrix SH .

0 0 1 2 2 11 0 0 1 2 22 1 0 0 1 22 2 1 0 0 11 2 2 1 0 00 1 2 2 1 0

=

1 0 1 0 0

1 0 0 0 1

0 0 0 1 2

0 1 0 0 1

0 1 1 0 0

0 0 2 1 0

0 0 0 1 2 1

1 2 1 0 0 0

0 0 1 1 0 0

0 1 0 0 1 0

1 0 0 0 0 1

Page 26: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

The Hexagon

Consider the regular hexagon.

It has a 6× 6 slack matrix SH .

0 0 1 2 2 11 0 0 1 2 22 1 0 0 1 22 2 1 0 0 11 2 2 1 0 00 1 2 2 1 0

=

1 0 1 0 0

1 0 0 0 1

0 0 0 1 2

0 1 0 0 1

0 1 1 0 0

0 0 2 1 0

0 0 0 1 2 1

1 2 1 0 0 0

0 0 1 1 0 0

0 1 0 0 1 0

1 0 0 0 0 1

Page 27: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

The Hexagon

Consider the regular hexagon.

It has a 6× 6 slack matrix SH .

0 0 1 2 2 11 0 0 1 2 22 1 0 0 1 22 2 1 0 0 11 2 2 1 0 00 1 2 2 1 0

=

1 0 1 0 0

1 0 0 0 1

0 0 0 1 2

0 1 0 0 1

0 1 1 0 0

0 0 2 1 0

0 0 0 1 2 1

1 2 1 0 0 0

0 0 1 1 0 0

0 1 0 0 1 0

1 0 0 0 0 1

Page 28: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

The Hexagon

Consider the regular hexagon.

It has a 6× 6 slack matrix SH .

0 0 1 2 2 11 0 0 1 2 22 1 0 0 1 22 2 1 0 0 11 2 2 1 0 00 1 2 2 1 0

=

1 0 1 0 0

1 0 0 0 1

0 0 0 1 2

0 1 0 0 1

0 1 1 0 0

0 0 2 1 0

0 0 0 1 2 1

1 2 1 0 0 0

0 0 1 1 0 0

0 1 0 0 1 0

1 0 0 0 0 1

Page 29: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Hexagon - continued

It is the projection of the slice of R5+ cut out by

y1 + y2 + y3 + y5 = 2, y3 + y4 + y5 = 1.

For irregular hexagons a R6+-lift is the only we can have.

Page 30: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Hexagon - continued

It is the projection of the slice of R5+ cut out by

y1 + y2 + y3 + y5 = 2, y3 + y4 + y5 = 1.

For irregular hexagons a R6+-lift is the only we can have.

Page 31: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Hexagon - continued

It is the projection of the slice of R5+ cut out by

y1 + y2 + y3 + y5 = 2, y3 + y4 + y5 = 1.

For irregular hexagons a R6+-lift is the only we can have.

Page 32: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Generalizing to non-LP

We want to generalize this result to other types of lifts.

K -LiftGiven a polytope P, and a closed convex cone K , a K -lift of Pis a description

P = Φ(K ∩ L)

for some affine space L and affine map Φ.

Important cases are Rn+, PSDn, SOCPn, CPn, CoPn,. . .

We also need to generalize the nonnegative factorizations.

Page 33: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Generalizing to non-LP

We want to generalize this result to other types of lifts.

K -LiftGiven a polytope P, and a closed convex cone K , a K -lift of Pis a description

P = Φ(K ∩ L)

for some affine space L and affine map Φ.

Important cases are Rn+, PSDn, SOCPn, CPn, CoPn,. . .

We also need to generalize the nonnegative factorizations.

Page 34: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Generalizing to non-LP

We want to generalize this result to other types of lifts.

K -LiftGiven a polytope P, and a closed convex cone K , a K -lift of Pis a description

P = Φ(K ∩ L)

for some affine space L and affine map Φ.

Important cases are Rn+, PSDn, SOCPn, CPn, CoPn,. . .

We also need to generalize the nonnegative factorizations.

Page 35: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Generalizing to non-LP

We want to generalize this result to other types of lifts.

K -LiftGiven a polytope P, and a closed convex cone K , a K -lift of Pis a description

P = Φ(K ∩ L)

for some affine space L and affine map Φ.

Important cases are Rn+, PSDn, SOCPn, CPn, CoPn,. . .

We also need to generalize the nonnegative factorizations.

Page 36: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

K -factorizations

Recall that if K ⊆ Rl is a closed convex cone, K ∗ ⊆ Rl is itsdual cone, defined by

K ∗ = {y ∈ Rl 〈y , x〉 ≥ 0, ∀x ∈ K}.

K -FactorizationGiven a nonnegative matrix M ∈ Rn×m

+ we say that it has aK -factorization if there exist a1, . . .an ∈ K and b1, . . . ,bm ∈ K ∗

such thatMi,j =

⟨ai ,bj

⟩.

We can now generalize Yannakakis.

Theorem (G-Parrilo-Thomas)A polytope P has a K -lift if and only if SP has a K -factorization.

Page 37: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

K -factorizations

Recall that if K ⊆ Rl is a closed convex cone, K ∗ ⊆ Rl is itsdual cone, defined by

K ∗ = {y ∈ Rl 〈y , x〉 ≥ 0, ∀x ∈ K}.

K -FactorizationGiven a nonnegative matrix M ∈ Rn×m

+ we say that it has aK -factorization if there exist a1, . . .an ∈ K and b1, . . . ,bm ∈ K ∗

such thatMi,j =

⟨ai ,bj

⟩.

We can now generalize Yannakakis.

Theorem (G-Parrilo-Thomas)A polytope P has a K -lift if and only if SP has a K -factorization.

Page 38: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

K -factorizations

Recall that if K ⊆ Rl is a closed convex cone, K ∗ ⊆ Rl is itsdual cone, defined by

K ∗ = {y ∈ Rl 〈y , x〉 ≥ 0, ∀x ∈ K}.

K -FactorizationGiven a nonnegative matrix M ∈ Rn×m

+ we say that it has aK -factorization if there exist a1, . . .an ∈ K and b1, . . . ,bm ∈ K ∗

such thatMi,j =

⟨ai ,bj

⟩.

We can now generalize Yannakakis.

Theorem (G-Parrilo-Thomas)A polytope P has a K -lift if and only if SP has a K -factorization.

Page 39: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

The Square

The 0/1 square is the projectiononto x and y of the slice of PSD3given by 1 x y

x x zy z y

� 0.

Its slack matrix is given by

SP =

0 0 1 10 1 1 01 1 0 01 0 0 1

,and should factorize in PSD3.

Page 40: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

The Square

The 0/1 square is the projectiononto x and y of the slice of PSD3given by 1 x y

x x zy z y

� 0.

Its slack matrix is given by

SP =

0 0 1 10 1 1 01 1 0 01 0 0 1

,and should factorize in PSD3.

Page 41: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

The Square

The 0/1 square is the projectiononto x and y of the slice of PSD3given by 1 x y

x x zy z y

� 0.

Its slack matrix is given by

SP =

0 0 1 10 1 1 01 1 0 01 0 0 1

,and should factorize in PSD3.

Page 42: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Square - continued

SP =

0 0 1 10 1 1 01 1 0 01 0 0 1

,is factorized by

0 0 00 1 00 0 0

,

0 0 00 0 00 0 1

,

1 −1 0−1 1 00 0 0

,

1 0 −10 0 0−1 0 1

,

for the rows and 1 0 00 0 00 0 0

,

1 0 10 0 01 0 1

,

1 1 11 1 11 1 1

,

1 1 01 1 00 0 0

,for the columns.

Page 43: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Slack Operator

To further generalize Yannakakis to other convex sets, we haveto introduce a slack operator.

Given a convex set C ⊆ Rn, consider its polar set

C◦ = {x ∈ Rn : 〈x , y〉 ≤ 1, ∀y ∈ C},

and define the slack operator SC : ext(C)× ext(C◦)→ R+ as

SC(x , y) = 1− 〈x , y〉 .

Note that this generalizes the slack matrix.

Page 44: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Slack Operator

To further generalize Yannakakis to other convex sets, we haveto introduce a slack operator.

Given a convex set C ⊆ Rn, consider its polar set

C◦ = {x ∈ Rn : 〈x , y〉 ≤ 1, ∀y ∈ C},

and define the slack operator SC : ext(C)× ext(C◦)→ R+ as

SC(x , y) = 1− 〈x , y〉 .

Note that this generalizes the slack matrix.

Page 45: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Slack Operator

To further generalize Yannakakis to other convex sets, we haveto introduce a slack operator.

Given a convex set C ⊆ Rn, consider its polar set

C◦ = {x ∈ Rn : 〈x , y〉 ≤ 1, ∀y ∈ C},

and define the slack operator SC : ext(C)× ext(C◦)→ R+ as

SC(x , y) = 1− 〈x , y〉 .

Note that this generalizes the slack matrix.

Page 46: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Slack Operator

To further generalize Yannakakis to other convex sets, we haveto introduce a slack operator.

Given a convex set C ⊆ Rn, consider its polar set

C◦ = {x ∈ Rn : 〈x , y〉 ≤ 1, ∀y ∈ C},

and define the slack operator SC : ext(C)× ext(C◦)→ R+ as

SC(x , y) = 1− 〈x , y〉 .

Note that this generalizes the slack matrix.

Page 47: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Generalized Yannakakis for convex sets

We can then define a K -factorization of SC as a pair of maps

A : ext(C)→ K B : ext(C◦)→ K ∗

such that〈A(x),B(y)〉 = SC(x , y)

for all x , y .

Theorem (G-Parrilo-Thomas)A convex set C has a K -lift if and only if SC has aK -factorization.

Page 48: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Generalized Yannakakis for convex sets

We can then define a K -factorization of SC as a pair of maps

A : ext(C)→ K B : ext(C◦)→ K ∗

such that〈A(x),B(y)〉 = SC(x , y)

for all x , y .

Theorem (G-Parrilo-Thomas)A convex set C has a K -lift if and only if SC has aK -factorization.

Page 49: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

The Disk

The unit disk D is the projection onto xand y of the slice of PSD2 given by[

1 + x yy 1− x

]� 0.

D◦ = D, there must be A : S1 → PSD2 and B : S1 → PSD2such that 〈A(x),B(y)〉 = 1− 〈x , y〉

A(x , y) =

[1 + x y

y 1− x

], B(x , y) =

[1− x −y−y 1 + x

].

Page 50: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

The Disk

The unit disk D is the projection onto xand y of the slice of PSD2 given by[

1 + x yy 1− x

]� 0.

D◦ = D, there must be A : S1 → PSD2 and B : S1 → PSD2such that 〈A(x),B(y)〉 = 1− 〈x , y〉

A(x , y) =

[1 + x y

y 1− x

], B(x , y) =

[1− x −y−y 1 + x

].

Page 51: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

The Disk

The unit disk D is the projection onto xand y of the slice of PSD2 given by[

1 + x yy 1− x

]� 0.

D◦ = D, there must be A : S1 → PSD2 and B : S1 → PSD2such that 〈A(x),B(y)〉 = 1− 〈x , y〉

A(x , y) =

[1 + x y

y 1− x

], B(x , y) =

[1− x −y−y 1 + x

].

Page 52: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Cone ranks of polytopes

Recall - rank+(M) is the smallest k such that M has anRk+-factorization. rank+(P) := rank+(SP)

Given K = {K1,K2, · · · }, (e.g. Rk+, PSDk , CPk , CoPk ,. . . )

rankK(M) is the smallest i such that M has a Ki -factorization.Again rankK(P) := rankK(SP).

We are specially interested in rankpsd(M).

Page 53: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Cone ranks of polytopes

Recall - rank+(M) is the smallest k such that M has anRk+-factorization. rank+(P) := rank+(SP)

Given K = {K1,K2, · · · }, (e.g. Rk+, PSDk , CPk , CoPk ,. . . )

rankK(M) is the smallest i such that M has a Ki -factorization.

Again rankK(P) := rankK(SP).

We are specially interested in rankpsd(M).

Page 54: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Cone ranks of polytopes

Recall - rank+(M) is the smallest k such that M has anRk+-factorization. rank+(P) := rank+(SP)

Given K = {K1,K2, · · · }, (e.g. Rk+, PSDk , CPk , CoPk ,. . . )

rankK(M) is the smallest i such that M has a Ki -factorization.Again rankK(P) := rankK(SP).

We are specially interested in rankpsd(M).

Page 55: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Cone ranks of polytopes

Recall - rank+(M) is the smallest k such that M has anRk+-factorization. rank+(P) := rank+(SP)

Given K = {K1,K2, · · · }, (e.g. Rk+, PSDk , CPk , CoPk ,. . . )

rankK(M) is the smallest i such that M has a Ki -factorization.Again rankK(P) := rankK(SP).

We are specially interested in rankpsd(M).

Page 56: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Bounds for matrices

For M ∈ Rp×q+ .

I rank(M) ≤ rank+(M) ≤ min{p,q}.

I rank(M) ≤(rankpsd(M)+1

2

).

I rankpsd(M) ≤ rank+(M).

PropositionIf M ∈ Rn×n

+ is zero on the diagonal and positive everywhereelse then rank+(M) ≥ k, where k is the smallest integer suchthat n ≤

( kbk/2c

).

Page 57: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Bounds for matrices

For M ∈ Rp×q+ .

I rank(M) ≤ rank+(M) ≤ min{p,q}.I rank(M) ≤

(rankpsd(M)+12

).

I rankpsd(M) ≤ rank+(M).

PropositionIf M ∈ Rn×n

+ is zero on the diagonal and positive everywhereelse then rank+(M) ≥ k, where k is the smallest integer suchthat n ≤

( kbk/2c

).

Page 58: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Bounds for matrices

For M ∈ Rp×q+ .

I rank(M) ≤ rank+(M) ≤ min{p,q}.I rank(M) ≤

(rankpsd(M)+12

).

I rankpsd(M) ≤ rank+(M).

PropositionIf M ∈ Rn×n

+ is zero on the diagonal and positive everywhereelse then rank+(M) ≥ k, where k is the smallest integer suchthat n ≤

( kbk/2c

).

Page 59: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Bounds for matrices

For M ∈ Rp×q+ .

I rank(M) ≤ rank+(M) ≤ min{p,q}.I rank(M) ≤

(rankpsd(M)+12

).

I rankpsd(M) ≤ rank+(M).

PropositionIf M ∈ Rn×n

+ is zero on the diagonal and positive everywhereelse then rank+(M) ≥ k, where k is the smallest integer suchthat n ≤

( kbk/2c

).

Page 60: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Bounds for matrices - 2

PropositionIf M ∈ Rp×q has rank k, then the matrix M ′ obtained bysquaring each entry of M has psd-rank at most k.

Consider the matrix A ∈ Rn×n defined by ai,j = (i − j)2.

I rank(A) = 3;

I rankpsd(A) = 2;

I rank+(A) ≥ log2(n) grows with n.

rank+ can be arbitrarily larger than rank and rankpsd.

Page 61: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Bounds for matrices - 2

PropositionIf M ∈ Rp×q has rank k, then the matrix M ′ obtained bysquaring each entry of M has psd-rank at most k.

Consider the matrix A ∈ Rn×n defined by ai,j = (i − j)2.

I rank(A) = 3;

I rankpsd(A) = 2;

I rank+(A) ≥ log2(n) grows with n.

rank+ can be arbitrarily larger than rank and rankpsd.

Page 62: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Bounds for matrices - 2

PropositionIf M ∈ Rp×q has rank k, then the matrix M ′ obtained bysquaring each entry of M has psd-rank at most k.

Consider the matrix A ∈ Rn×n defined by ai,j = (i − j)2.

I rank(A) = 3;

I rankpsd(A) = 2;

I rank+(A) ≥ log2(n) grows with n.

rank+ can be arbitrarily larger than rank and rankpsd.

Page 63: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Bounds for matrices - 2

PropositionIf M ∈ Rp×q has rank k, then the matrix M ′ obtained bysquaring each entry of M has psd-rank at most k.

Consider the matrix A ∈ Rn×n defined by ai,j = (i − j)2.

I rank(A) = 3;

I rankpsd(A) = 2;

I rank+(A) ≥ log2(n) grows with n.

rank+ can be arbitrarily larger than rank and rankpsd.

Page 64: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Bounds for matrices - 2

PropositionIf M ∈ Rp×q has rank k, then the matrix M ′ obtained bysquaring each entry of M has psd-rank at most k.

Consider the matrix A ∈ Rn×n defined by ai,j = (i − j)2.

I rank(A) = 3;

I rankpsd(A) = 2;

I rank+(A) ≥ log2(n) grows with n.

rank+ can be arbitrarily larger than rank and rankpsd.

Page 65: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Bounds for polytopes - LP

PropositionAn Rk

+-lift of P induces an embedding from the lattice of facesof P, L(P), to the boolean lattice 2[k ]. In particular:

I If p is the size of the largest antichain in L(P), thenrank+(P) ≤ k where k is the smallest integer such thatp ≤

( kbk/2c

).

I [Goemans] If nP is the number of faces of P,rank+(P) ≥ log2(nP).

P = 3-cube: rank+(P) ≤ 6.I nP = 28⇒ rank+(P) ≥ log2(28) ≈ 4.807.I nedges = 12,

(52

)= 10,

(63

)= 20, hence rank+(P) ≥ 6.

Page 66: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Bounds for polytopes - LP

PropositionAn Rk

+-lift of P induces an embedding from the lattice of facesof P, L(P), to the boolean lattice 2[k ]. In particular:

I If p is the size of the largest antichain in L(P), thenrank+(P) ≤ k where k is the smallest integer such thatp ≤

( kbk/2c

).

I [Goemans] If nP is the number of faces of P,rank+(P) ≥ log2(nP).

P = 3-cube: rank+(P) ≤ 6.I nP = 28⇒ rank+(P) ≥ log2(28) ≈ 4.807.I nedges = 12,

(52

)= 10,

(63

)= 20, hence rank+(P) ≥ 6.

Page 67: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Bounds for polytopes - LP

PropositionAn Rk

+-lift of P induces an embedding from the lattice of facesof P, L(P), to the boolean lattice 2[k ]. In particular:

I If p is the size of the largest antichain in L(P), thenrank+(P) ≤ k where k is the smallest integer such thatp ≤

( kbk/2c

).

I [Goemans] If nP is the number of faces of P,rank+(P) ≥ log2(nP).

P = 3-cube: rank+(P) ≤ 6.I nP = 28⇒ rank+(P) ≥ log2(28) ≈ 4.807.I nedges = 12,

(52

)= 10,

(63

)= 20, hence rank+(P) ≥ 6.

Page 68: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Bounds for polytopes - LP

PropositionAn Rk

+-lift of P induces an embedding from the lattice of facesof P, L(P), to the boolean lattice 2[k ]. In particular:

I If p is the size of the largest antichain in L(P), thenrank+(P) ≤ k where k is the smallest integer such thatp ≤

( kbk/2c

).

I [Goemans] If nP is the number of faces of P,rank+(P) ≥ log2(nP).

P = 3-cube: rank+(P) ≤ 6.

I nP = 28⇒ rank+(P) ≥ log2(28) ≈ 4.807.I nedges = 12,

(52

)= 10,

(63

)= 20, hence rank+(P) ≥ 6.

Page 69: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Bounds for polytopes - LP

PropositionAn Rk

+-lift of P induces an embedding from the lattice of facesof P, L(P), to the boolean lattice 2[k ]. In particular:

I If p is the size of the largest antichain in L(P), thenrank+(P) ≤ k where k is the smallest integer such thatp ≤

( kbk/2c

).

I [Goemans] If nP is the number of faces of P,rank+(P) ≥ log2(nP).

P = 3-cube: rank+(P) ≤ 6.I nP = 28⇒ rank+(P) ≥ log2(28) ≈ 4.807.

I nedges = 12,(5

2

)= 10,

(63

)= 20, hence rank+(P) ≥ 6.

Page 70: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Bounds for polytopes - LP

PropositionAn Rk

+-lift of P induces an embedding from the lattice of facesof P, L(P), to the boolean lattice 2[k ]. In particular:

I If p is the size of the largest antichain in L(P), thenrank+(P) ≤ k where k is the smallest integer such thatp ≤

( kbk/2c

).

I [Goemans] If nP is the number of faces of P,rank+(P) ≥ log2(nP).

P = 3-cube: rank+(P) ≤ 6.I nP = 28⇒ rank+(P) ≥ log2(28) ≈ 4.807.I nedges = 12,

(52

)= 10,

(63

)= 20, hence rank+(P) ≥ 6.

Page 71: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Bounds for polytopes - SDP

TheoremIf a polytope P in Rn has rankpsd = k than it has at most kO(k2n)

facets.

For Pn = n-gon, rank+(Pn) and rankpsd(Pn) grow to infinity as ngrows, despite rank(SPn ) = 3.

Open questions:I Can we find a separation between rankpsd and rank+ for

polytopes?I Recently, [Fiorini-Massar-Pokutta-Tiwary-de Wolf] proved

rank+(TSP) grows exponentially. What about rankpsd?

Page 72: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Bounds for polytopes - SDP

TheoremIf a polytope P in Rn has rankpsd = k than it has at most kO(k2n)

facets.

For Pn = n-gon, rank+(Pn) and rankpsd(Pn) grow to infinity as ngrows, despite rank(SPn ) = 3.

Open questions:

I Can we find a separation between rankpsd and rank+ forpolytopes?

I Recently, [Fiorini-Massar-Pokutta-Tiwary-de Wolf] provedrank+(TSP) grows exponentially. What about rankpsd?

Page 73: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Bounds for polytopes - SDP

TheoremIf a polytope P in Rn has rankpsd = k than it has at most kO(k2n)

facets.

For Pn = n-gon, rank+(Pn) and rankpsd(Pn) grow to infinity as ngrows, despite rank(SPn ) = 3.

Open questions:I Can we find a separation between rankpsd and rank+ for

polytopes?

I Recently, [Fiorini-Massar-Pokutta-Tiwary-de Wolf] provedrank+(TSP) grows exponentially. What about rankpsd?

Page 74: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Bounds for polytopes - SDP

TheoremIf a polytope P in Rn has rankpsd = k than it has at most kO(k2n)

facets.

For Pn = n-gon, rank+(Pn) and rankpsd(Pn) grow to infinity as ngrows, despite rank(SPn ) = 3.

Open questions:I Can we find a separation between rankpsd and rank+ for

polytopes?I Recently, [Fiorini-Massar-Pokutta-Tiwary-de Wolf] proved

rank+(TSP) grows exponentially. What about rankpsd?

Page 75: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Symmetric Lifts

In the LP case there has been much interest in symmetric lifts.[Kaibel-Pashkovich-Theis]

Symmetric liftsLet P be a polytope and P = Φ(K ∩ L) a lift of P. We say the liftis symmetric if there exists a group homomorphism sending g∈ Aut(P) to ψg ∈ Aut(K ) such that ψg(L) = L and Φ ◦ ψg = g.

Symmetric lift preserves symmetries of the lifted objects.

Common lift-and-project methods are symmetric (w.r.t.permutation of variables): LS, SA, Las...

Page 76: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Symmetric Lifts

In the LP case there has been much interest in symmetric lifts.[Kaibel-Pashkovich-Theis]

Symmetric liftsLet P be a polytope and P = Φ(K ∩ L) a lift of P. We say the liftis symmetric if there exists a group homomorphism sending g∈ Aut(P) to ψg ∈ Aut(K ) such that ψg(L) = L and Φ ◦ ψg = g.

Symmetric lift preserves symmetries of the lifted objects.

Common lift-and-project methods are symmetric (w.r.t.permutation of variables): LS, SA, Las...

Page 77: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Example:The square

Recall the lift of the 0/1 square[1 x yx x zy z y

]� 0.

Aut(g) = 〈g(x , y) = (y , x),h(x , y) = (1− x , y)〉.

φg(A) =[

1 y xy y zx z x

]= P23AP23,

φh(A) =[

1 1 − x y1 − x 1 − x y − z

y y − z y

]=[

1 0 01 −1 00 0 1

]A[

1 1 00 −1 00 0 1

],

generate a homomorphism so the lift is symmetric.

Page 78: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Example:The square

Recall the lift of the 0/1 square[1 x yx x zy z y

]� 0.

Aut(g) = 〈g(x , y) = (y , x),h(x , y) = (1− x , y)〉.

φg(A) =[

1 y xy y zx z x

]= P23AP23,

φh(A) =[

1 1 − x y1 − x 1 − x y − z

y y − z y

]=[

1 0 01 −1 00 0 1

]A[

1 1 00 −1 00 0 1

],

generate a homomorphism so the lift is symmetric.

Page 79: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Example:The square

Recall the lift of the 0/1 square[1 x yx x zy z y

]� 0.

Aut(g) = 〈g(x , y) = (y , x),h(x , y) = (1− x , y)〉.

φg(A) =[

1 y xy y zx z x

]= P23AP23,

φh(A) =[

1 1 − x y1 − x 1 − x y − z

y y − z y

]=[

1 0 01 −1 00 0 1

]A[

1 1 00 −1 00 0 1

],

generate a homomorphism so the lift is symmetric.

Page 80: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Example 2 : Regular n-gons

PropositionFor p prime the smallest k for which there exists a symmetricRk+-lift of the p-gon is p.

Note that we know that there are actually O(log(n))dimensional lifts of these polytopes [Ben-Tal, Nemirovski].

Open (small) problem: prove that the smallest symmetric lift ofan n-gon is to Rn

+.

Page 81: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Example 2 : Regular n-gons

PropositionFor p prime the smallest k for which there exists a symmetricRk+-lift of the p-gon is p.

Note that we know that there are actually O(log(n))dimensional lifts of these polytopes [Ben-Tal, Nemirovski].

Open (small) problem: prove that the smallest symmetric lift ofan n-gon is to Rn

+.

Page 82: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Example 2 : Regular n-gons

PropositionFor p prime the smallest k for which there exists a symmetricRk+-lift of the p-gon is p.

Note that we know that there are actually O(log(n))dimensional lifts of these polytopes [Ben-Tal, Nemirovski].

Open (small) problem: prove that the smallest symmetric lift ofan n-gon is to Rn

+.

Page 83: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Symmetric Yannakakis

K -FactorizationGiven a polytope P and its slack matrix SP ∈ Rn×m

+ and itsK -factorization given by a1, . . .an ∈ K , b1, . . . ,bm ∈ K ∗, we saythat it is symmetric if there is an homomorphismφ : Aut(P)→ Aut(K ) such that if g send the i-th vertex to thej-th vertex, φ(ai) = aj .

Theorem (G-Parrilo-Thomas)A convex set C has a symmetric K -lift if and only if SC has asymmetric K -factorization.

Page 84: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Symmetric Yannakakis

K -FactorizationGiven a polytope P and its slack matrix SP ∈ Rn×m

+ and itsK -factorization given by a1, . . .an ∈ K , b1, . . . ,bm ∈ K ∗, we saythat it is symmetric if there is an homomorphismφ : Aut(P)→ Aut(K ) such that if g send the i-th vertex to thej-th vertex, φ(ai) = aj .

Theorem (G-Parrilo-Thomas)A convex set C has a symmetric K -lift if and only if SC has asymmetric K -factorization.

Page 85: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Matchings

MatchingsGiven the complete graph Kn = ([n],En) a matching is acollection M of edges such that there’s one and only one edgeincident to each vertex.

χM ∈ {0,1}En is the indicator vector of M.For this example χM = (0,0,0,0,1,1).

Page 86: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Matchings

MatchingsGiven the complete graph Kn = ([n],En) a matching is acollection M of edges such that there’s one and only one edgeincident to each vertex.

χM ∈ {0,1}En is the indicator vector of M.For this example χM = (0,0,0,0,1,1).

Page 87: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Matchings

MatchingsGiven the complete graph Kn = ([n],En) a matching is acollection M of edges such that there’s one and only one edgeincident to each vertex.

χM ∈ {0,1}En is the indicator vector of M.For this example χM = (0,0,0,0,1,1).

Page 88: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Matchings

MatchingsGiven the complete graph Kn = ([n],En) a matching is acollection M of edges such that there’s one and only one edgeincident to each vertex.

χM ∈ {0,1}En is the indicator vector of M.For this example χM = (0,0,0,0,1,1).

Page 89: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

The matching Polytope

MaxMatchGiven a complete graph K2n with edge weights ω : En → R, findthe matching with maximum weight.

This has a geometrical version.

MaxMatchMaximize 〈ω, x〉 over the polytope

conv({χM : M is a matching}).

This polytope is the Matching Polytope, denoted PMatch2n.

Page 90: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

The matching Polytope

MaxMatchGiven a complete graph K2n with edge weights ω : En → R, findthe matching with maximum weight.This has a geometrical version.

MaxMatchMaximize 〈ω, x〉 over the polytope

conv({χM : M is a matching}).

This polytope is the Matching Polytope, denoted PMatch2n.

Page 91: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

The matching Polytope

MaxMatchGiven a complete graph K2n with edge weights ω : En → R, findthe matching with maximum weight.This has a geometrical version.

MaxMatchMaximize 〈ω, x〉 over the polytope

conv({χM : M is a matching}).

This polytope is the Matching Polytope, denoted PMatch2n.

Page 92: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Symmetric lifts of matching polytope

YannakakisAlthough the max-matching problem is polynomial timesolvable, there is no polynomial size linear symmetric lift for thematching polytope.

What about non-symmetric?

With other versions of the matching polytope, Kaibel,Pashkovich and Theis show that symmetry does matter, but thegeneral question is still open.

Page 93: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Symmetric lifts of matching polytope

YannakakisAlthough the max-matching problem is polynomial timesolvable, there is no polynomial size linear symmetric lift for thematching polytope.

What about non-symmetric?

With other versions of the matching polytope, Kaibel,Pashkovich and Theis show that symmetry does matter, but thegeneral question is still open.

Page 94: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Symmetric lifts of matching polytope

YannakakisAlthough the max-matching problem is polynomial timesolvable, there is no polynomial size linear symmetric lift for thematching polytope.

What about non-symmetric?

With other versions of the matching polytope, Kaibel,Pashkovich and Theis show that symmetry does matter, but thegeneral question is still open.

Page 95: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Symmetry in SDP

Further thoughts:

I SDP lift-and-project algorithms don’t work polynomially formatchings [Tuncel].

I Do all polynomial sized symmetric SDP lifts fail?

I What about non-symmetric?

Page 96: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Symmetry in SDP

Further thoughts:

I SDP lift-and-project algorithms don’t work polynomially formatchings [Tuncel].

I Do all polynomial sized symmetric SDP lifts fail?

I What about non-symmetric?

Page 97: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Symmetry in SDP

Further thoughts:

I SDP lift-and-project algorithms don’t work polynomially formatchings [Tuncel].

I Do all polynomial sized symmetric SDP lifts fail?

I What about non-symmetric?

Page 98: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Symmetry in SDP

Further thoughts:

I SDP lift-and-project algorithms don’t work polynomially formatchings [Tuncel].

I Do all polynomial sized symmetric SDP lifts fail?

I What about non-symmetric?

Page 99: Universidade de Coimbrajgouveia/CORE.pdf · Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

The end

Thank You