unit1 vrs

86
Taylor’s and Picard’s methods 2 Dr. V. Ramachandra Murthy Numerical Methods Unit-I: Numerical Methods-I Numerical solution of ordinary differential equations of first order and first degree: Picard’s method, Taylor’s series method, Modified Euler’s method, Runge-Kutta method of fourth order. Milne’s and Adams-Bashforth predictor and corrector methods [ No derivation of formulae] Unit-II: Numerical Methods-II Numerical solution of simultaneous first order differential equations: Picard’s method, Runge-Kutta method of fourth order. Numerical solution of second order ordinary differential equations: Picard’s method, Runge-kutta method and Milne’s method. Numerical Solution of Ordinary Differential Equations(ODE) The most general form of an ODE of n th order is given by -------- (1) A general solution of Eqn (1) is of the form ------- (2) If particular values are given to the constants then the resulting solution is called a particular solution. To obtain a particular solution from the general solution (2), we must be given n conditions so that the constants can be determined. If all the n conditions are specified at the same value of x then the problem is termed as initial value problem. If the conditions are specified at more than one value of x, then the problem is termed as boundary value problem. 0 dx y d ...., ,......... dx y d , dx y d , dx dy y, x, φ n n 3 3 2 2 = ( ) 0 c ...., ,......... c , c , c y, x, ψ n 3 2 1 =

Upload: akhilesh-deshpande

Post on 20-Aug-2015

102 views

Category:

Engineering


0 download

TRANSCRIPT

Page 1: Unit1 vrs

Taylor’s and Picard’s methods 2

Dr. V. Ramachandra Murthy

Numerical Methods

Unit-I: Numerical Methods-I

Numerical solution of ordinary differential equations of first order and first degree: Picard’s method, Taylor’s series method, Modified Euler’s method, Runge-Kutta method of fourth order. Milne’s and Adams-Bashforth predictor and corrector methods [ No derivation of formulae] Unit-II: Numerical Methods-II

Numerical solution of simultaneous first order differential equations: Picard’s method, Runge-Kutta method of fourth order. Numerical solution of second order ordinary differential equations: Picard’s method, Runge-kutta method and Milne’s method. Numerical Solution of Ordinary Differential Equations(ODE)

The most general form of an ODE of nth order is given by -------- (1) A general solution of Eqn (1) is of the form ------- (2) If particular values are given to the constants then the resulting solution is called a particular solution.

To obtain a particular solution from the general solution (2), we must be given n conditions so that the constants can be determined. If all the n conditions are specified at the same value of x then the problem is termed as initial value problem. If the conditions are specified at more than one value of x, then the problem is termed as boundary value problem.

0dx

yd....,,.........

dx

yd,

dx

yd,

dx

dyy,x,φ

n

n

3

3

2

2

=

( ) 0c....,,.........c,c,cy,x,ψ n321 =

Page 2: Unit1 vrs

Taylor’s and Picard’s methods 3

Dr. V. Ramachandra Murthy

Though there are many analytical methods for finding the solution of the equation of the form (1), there exist large number of ODE’s whose solution cannot be obtained by the known analytical methods. In such cases, we use numerical methods to get an approximate solution of a given differential equation under the prescribed conditions. Numerical solution of a Differential Equation

Consider the first order differential equation Let be the solution values at the points We wish to find the approximate values to these solution values. Let the initial condition be . Let the exact solution y(x) of the given differential equation be represented by a continuous curve. Divide the interval on which the solution is derived into a finite number of equispaced subintervals.

0x 1x

2x 1-mx

mx

For each , the approximate values of the dependent variable y(x) are calculated using a suitable recursive formula. These values are and these are shown by points. Computation of these approximate values is known as Numerical solution of the Differential equation. Numerical solution of ODE’s of first order and first degree Single step Methods:

• Taylor’s series method

y)f(x,dx

dy=

)x........y( ), y(x),y(x m10 mx,...,1 x,0x

m10 y........, , y,y

00 y)y(x =

[ ]m x,0x

Approximate

solution

Exact solution

ix

m10 y......, , y,y

00 y)y(x,y)f(x,dx

dy==

Page 3: Unit1 vrs

Taylor’s and Picard’s methods 4

Dr. V. Ramachandra Murthy

• Picard’s method • Modified Euler’s method • Runge-Kutta method of fourth order

Taylor’s Series method Let y = f(x) be a solution of the equation Expanding it by Taylor’s series about we get

This may be written as

Putting , we get

Similarly

In general,

Where Problem (1): Solve numerically up to x=1.2 with h=0.1 by Taylor’s

x0 =1 x1 =1.1 x2 =1.2

00 y)y(x,y)f(x,dx

dy==

0xx =

( ) ( ) ( ).....)(xf

3!

xx)(xf

2!

xx)(xf

1!

xx)f(xf(x) 0

///

3

00

//

2

00

/00 +

−+

−+

−+=

( ) ( ) ( ).....y

3!

xxy

2!

xxy

1!

xxyy(x)

///

0

3

0//

0

2

0/

00

0 +−

+−

+−

+=

hxxx 01 +==

.....y3!

hy

2!

hy

1!

hy)f(xy

///

0

3//

0

2/

0011 ++++==

.....y3!

hy

2!

hy

1!

hy)f(xy

///

1

3//

1

2/

1122 ++++==

.....y3!

hy

2!

hy

1!

hy)f(xy

///

n

3//

n

2/

nn1n1n ++++== ++

),........(xfy),(xfy),f(xy n

////

nn

//

nnn ===

0y(1) y,xdx

dy=+=

Page 4: Unit1 vrs

Taylor’s and Picard’s methods 5

Dr. V. Ramachandra Murthy

series method correct to

four decimal places. Soln: Given data: , h=0.1 From the Taylor’s series, we have ---------- (1) Where n=0, 1, 2,……. Put n=0 in Eqn (1) ----------- (2) Substituting all these values in Eqn(2) we get ∴

y0 =0 y1 =? y2 =?

yxy / +=

.....y3!

hy

2!

hy

1!

hy)f(xy

///

n

3//

n

2/

nn1n1n ++++== ++

yxy / +=/// y1y += ///// y1y +=

.....y3!

hy

2!

hy

1!

hy)f(xy

///

0

3//

0

2/

0011 ++++==

101yxy 00

/

0 =+=+=

211y1y/

0

//

0 =+=+=

2yy//

0

///

0 ==

( ) ( ).....(2)

3!

0.1(2)

2!

0.1(1)

1!

0.10f(1.1)y

32

1 ++++==

0.1103y(1.1)y1 ==

Page 5: Unit1 vrs

Taylor’s and Picard’s methods 6

Dr. V. Ramachandra Murthy

Put n=1 in Eqn(1) ---------(3) Substituting all these values in Eqn(3) we get ∴ _________________________________________________________ Problem (2): Apply Taylor’s series method to find the value of y(1.1) and y(1.2) correct to 4 decimal places given that ; y(1)=1 taking the first four terms of the Taylor’s series expansion. Soln: Given data: , h=0.1 From the Taylor’s series, we have ------------(1)

x0 =1 x1 =1.1 x2 =1.2

y0 =1 y1 =? y2 =?

.....y3!

hy

2!

hy

1!

hy)f(xy

///

1

3//

1

2/

1122 ++++==

1.21030.11031.1yxy 11

/

1 =+=+=

2.21031.21031y1y/

1

//

1 =+=+=

2.2103yy//

1

///

1 ==

( ) ( )...(2.2103)

3!

0.1(2.2103)

2!

0.1(1.2103)

1!

0.10.1103y

32

2 ++++=

0.2427y(1.2)y2 ==

31

/ xyy =

.....///ny

3!

3h//ny

2!

2h/ny

1!

hny)1nf(x1ny ++++=+=+

31

xydx

dy=

31

/ xyy = /3

2

31

// .y.y3

1x.yy

+= ( )

−++=

−−−

2/35

//32

/3

2

/// yy3

2yy

3

xyy

3

2y

Page 6: Unit1 vrs

Taylor’s and Picard’s methods 7

Dr. V. Ramachandra Murthy

Put n=0 in Eqn (1) ----------- (2) Substituting all these values in Eqn(2) we get ∴

Put n=1 in Eqn(1) ---------(3) Substituting all these values in Eqn(3) we get ∴

.....y3!

hy

2!

hy

1!

hy)f(xy

///

0

3//

0

2/

0011 ++++==

.....y3!

hy

2!

hy

1!

hy)f(xy

///

1

3//

1

2/

1122 ++++==

( )( ) 111yxy 31

31

00/0 ===

1.3333(1)3

1(1)(1).y.y

3

1.xyy

3

2

31

/0

3

2

003

1

0//0 =

+=+=

−−

( ) 8888.0yy3

2yy

3

xyy

3

2y

2/0

35

0//0

32

00/

03

2

0///0 =

−+=

−−−

( ) ( ).....(0.8888)

3!

0.1(1.3333)

2!

0.1(1)

1!

0.11y

32

1 ++++=

1.1068y(1.1)y1 ==

( ) ( ) ( ) 4242.11.13781.1068(1.1)3

11.1068.y.yx

3

1yy 3

2-3

1/1

3

2-

113

1

1//1 =+=+=

( ) 1.13781.1068(1.1)yxy 31

31

11/1 ===

( ) 8438.0yy3

2yy

3

xyy

3

2y

2/1

35

1//1

32

11/

13

2

1///1 =

−+=

−−−

( ) ( )(0.8438)

3!

0.1(1.4242)

2!

0.1(1.1378)

1!

0.11.1068y

32

2 +++=

1.2278y(1.2)y2 ==

Page 7: Unit1 vrs

Taylor’s and Picard’s methods 8

Dr. V. Ramachandra Murthy

Problem (3): Use Taylor’s series method to approximate y when x=0.1 correct to 4 decimal places given that and y=1 when x=0 by taking the first five terms of the Taylor’s series expansion. Soln: Given data: , h=0.1 From the Taylor’s series, we have ----------(1) Where n=0, 1, 2,……. Put n=0 in Eqn(1) -----------(2)

121020030 =+=+=′ yxy

Substituting all these values in Eqn(2) we get y(0.1)=1.1272

x0 =0 x1 =0.1

y0 =1 y1 =?

2/ yx3y +=

.....y3!

hy

2!

hy

1!

hy)f(xy

///

n

3//

n

2/

nn1n1n ++++== ++

2/ yx3y +=//// 2yy3y +=

.....y3!

hy

2!

hy

1!

hy)f(xy

///

0

3//

0

2/

0011 ++++==

2y3xdx

dy+=

( )( )2////// yyy2y +=

( ) ( )///////////////IV y3yyy2y2yyyyy2y +=++=

5(2)(1)(1)3y2y3y /00

//0 =+=+= ( )( ) ( )( ) 121(1)(5)2yyy2y

22/

0

//

00

///

0 =+=+=

( ) ( ) 54(3)(1)(5)(1)(12)2y3yyy2y //

0

/

0

///

00

IV

0 =+=+=

( ) ( ) ( )1.1272(54)

4!

0.1(12)

3!

0.1(5)

2!

0.1(1)

1!

0.11y

432

1 =++++=

Page 8: Unit1 vrs

Taylor’s and Picard’s methods 9

Dr. V. Ramachandra Murthy

Problem (4): Given with the initial condition y=1 when x=0. Compute y(0.2) correct to 4 decimal places by using Taylor’s series method. Soln: Given data: , h=0.2 From the Taylor’s series, we have ------------(1) Put n=0 in Eqn(1) -----------(2) Substituting all these values in Eqn(2) we get ∴

x0 =0 x1 =0.2

y0 =1 y1 =?

xy1y /+=

.....y3!

hy

2!

hy

1!

hy)f(xy

///

n

3//

n

2/

nn1n1n ++++== ++

.....y3!

hy

2!

hy

1!

hy)f(xy

///

0

3//

0

2/

0011 ++++==

xy1dx

dy+=

xy1y /+= yxyy ///

+=////////// 2yxyyyxyy +=++=

////////////IV 3yxy2yyxyy +=++=

11(0)(1)yyxy 0

/

00

//

0 =+=+=

2(2)(1)(0)(1)2yyxy /

0

//

00

///

0 =+=+=

1(0)(1)10y0x1/0

y =+=+=

3(3)(1)(0)(2)3yyxy //

0

///

00

IV

0 =+=+=

( ) ( ) ( )........(3)

4!

40.2(2)

3!

30.2(1)

2!

20.2(1)

1!

0.211y +++++=

1.2228y(0.2)y1 ==

Page 9: Unit1 vrs

Taylor’s and Picard’s methods 10

Dr. V. Ramachandra Murthy

Problem (5): Use Taylor’s series method to find the value of y at x=0.1 and x=0.2 correct to 5 decimal places from , y(0)=1. Soln: Given data: , h=0.1 From the Taylor’s series, we have ----------(1) Where n=0, 1, 2,……. Put n=0 in Eqn(1) -----------(2) Substituting all these values in Eqn(2) we get

x0 =0 x1 =0.1 x2 =0.2

y0 =1 y1 =? y2 =?

1-yxy 2/ =

.....y3!

hy

2!

hy

1!

hy)f(xy

///

n

3//

n

2/

nn1n1n ++++== ++

.....y3!

hy

2!

hy

1!

hy)f(xy

///

0

3//

0

2/

0011 ++++==

1-yxdx

dy 2=

/2// yx2xyy +=

//2///2///// yx4xy2yyx2xy2xy2yy ++=+++=

///2//////2//////IV yx6xy6yyx2xy4xy4y2yy ++=++++=

1-yxy 2/ =

0(0)(-1)2(0)(1)yxy2xy /0

2000

//0 =+=+=

2(0)(0)4(0)(-1)2(1)yxy4x2yy //

0

2

0

/

000

///

0 =++=++=

11(0)(1)1-yxy 020

/0 −=−==

-6(0)(2)6(0)(0)6(-1)yxy6x6yy ///0

20

//00

/0

IV0 =++=++=

( ) ( ) ( )0.90030...(-6)

4!

40.1(2)

3!

30.1(0)

2!

20.1(-1)

1!

0.111y =+++++=

Page 10: Unit1 vrs

Taylor’s and Picard’s methods 11

Dr. V. Ramachandra Murthy

Put n=1 in Eqn(1) ---------(3) Substituting all these values in Eqn(3) we get ∴ _________________________________________________________ Problem (6): Using Taylor’s series method find y to five decimal places when x=1.02

given that and y=2 when x=1

x0 =1 x1 =1.02

y0 =2 y1 =?

.....y3!

hy

2!

hy

1!

hy)f(xy

///

1

3//

1

2/

1122 ++++==

1.40590=

0.990991(0.90030)1(0.1)-yxy 21

21

/1 −=−=

( )( ) ( ) ( ) 17015.099099.01.09003.01.02yxy2xy2/

12111

//1 =−+=+=

(0.17015)(0.1)99099)4(0.1)(-0.2(0.9003)yxy4x2yy 2//1

21

/111

///1 ++=++=

( ) ( )

( ) (-5.82979)

4!

0.1

(1.40590)3!

0.1(0.17015)

2!

0.1(-0.99099)

1!

0.10.9003y

4

32

2

+

+++=

0.80226y(0.2)y2 ==

-5.82979

(1.40590)(0.1)7015)6(0.1)(0.1)6(-0.99099

yxy6x6yy

2

///

1

2

1

//

11

/

1

IV

1

=

++=

++=

1)dx-(xydy =

Page 11: Unit1 vrs

Taylor’s and Picard’s methods 12

Dr. V. Ramachandra Murthy

Soln: Given data: , h=0.02 From the Taylor’s series, we have ------------(1) Put n=0 in Eqn(1) -----------(2) Substituting all these values in Eqn(2) we get ∴

.....y3!

hy

2!

hy

1!

hy)f(xy

///

n

3//

n

2/

nn1n1n ++++== ++

.....y3!

hy

2!

hy

1!

hy)f(xy

///

0

3//

0

2/

0011 ++++==

1-xydx

dy=

1-xyy /= yxyy ///

+=

////////// 2yxyyyxyy +=++=

////////////IV 3yxyy2yxyy +=++=

32(1)(1)yyxy 0

/

00

//

0 =+=+=

52(1)(1)(3)2yyxy /

0

//

00

///

0 =+=+=

11(1)(2)1-yxy 00

/

0 =−==

14(3)(3)(1)(5)3yyxy //

0

///

00

IV

0 =+=+=

( ) ( ) ( )....(14)

4!

40.02(5)

3!

30.02(3)

2!

20.02(1)

1!

0.0221y +++++=

02000.2y(1.02)1y ==

Page 12: Unit1 vrs

Taylor’s and Picard’s methods 13

Dr. V. Ramachandra Murthy

Problem (7): Employ Taylor’s method to obtain the approximate value of y at x=0.2 for the differential equation y(0)=0, correct to three places of decimal. Soln: Given data: , h=0.2 From the Taylor’s series, we have ----------(1) Where n=0, 1, 2,……. Put n=0 in Eqn(1) -----------(2)

x0 =0 x1 =0.2

y0 =0 y1 =?

.....y3!

hy

2!

hy

1!

hy)f(xy

///

n

3//

n

2/

nn1n1n ++++== ++

.....y3!

hy

2!

hy

1!

hy)f(xy

///

0

3//

0

2/

0011 ++++==

x3e2ydx

dy+=

x/ 3e2yy +=

x/ 3e2yy +=x/// 3e2yy +=

x///// 3e2yy +=x///IV 3e2yy +=

33e(2)(0)3e2yy 0x

0/0

0 =+=+=

93e(2)(3)3e2yy 0x/

0

//

00 =+=+=

213e(2)(9)3e2yy 0x//

0

///

00 =+=+=

453e(2)(21)3e2yy 0x///

0

IV

00 =+=+=

Page 13: Unit1 vrs

Taylor’s and Picard’s methods 14

Dr. V. Ramachandra Murthy

Substituting all these values in Eqn(2) we get

_________________________________________________________ Problem (8): Solve for x=1.1 and x=1.2, given y(1)=1 correct to four decimal places by using Taylor’s series method. Soln: Given data: , h=0.1 From the Taylor’s series, we have ----------(1) Where n=0, 1, 2,……. Put n=0 in Eqn(1) -----------(2)

x0 =1 x1 =1.1 x2 =1.2

y0 =1 y1 =? y2 =?

( ) ( ) ( )....(45)

4!

40.2(21)

3!

30.2(9)

2!

20.2(3)

1!

0.201y +++++=

0.811y(0.2)y1 ==

.....y3!

hy

2!

hy

1!

hy)f(xy

///

n

3//

n

2/

nn1n1n ++++== ++

.....y3!

hy

2!

hy

1!

hy)f(xy

///

0

3//

0

2/

0011 ++++==

3xydx

dy+=

3/ xyy +=

3/ xyy +=2/// 3xyy += 6xyy /////

+= 6yy ///IV+=

53(1)(2)3xyy 22

0

/

0

//

0 =+=+=

116(1)(5)6xyy 0

//

0

///

0 =+=+=

2(1)(1)xyy 33

00

/

0 =+=+=

176116yy ///

0

IV

0 =+=+=

Page 14: Unit1 vrs

Taylor’s and Picard’s methods 15

Dr. V. Ramachandra Murthy

Substituting all these values in Eqn(2) we get Put n=1 in Eqn(1) ---------(3) Substituting all these values in Eqn(3) we get

_________________________________

Problem(9): Solve , y(0)=0 by Taylor’s series method for x=0.2 correct to four decimal places. {Ans: y(0.2)=0.1947} Problem(10): Solve , y(0)=1 by Taylor’s series method for x=0.1 in steps of 0.05 correct to four decimal places. {Ans: y(0.1)=0.9950}

.....///1y

3!

3h//1y

2!

2h/1y

1!

h1y)2f(x2y ++++==

( ) ( ) ( )1.2269....(17)

4!

40.1(11)

3!

30.1(5)

2!

20.1(2)

1!

0.111y =+++++=

2.5579(1.1)(1.2269)xyy 3311

/1 =+=+=

6.18793(1.1)(2.5579)3xyy 221

/1

//1 =+=+=

12.78796(1.1)(6.1879)6xyy 1//1

///1 =+=+=

18.7879612.78796yy ///1

IV1 =+=+=

( ) ( ) ( )

5158.1

...(18.7879)4!

40.1(12.7879)

3!

30.1(6.1879)

2!

20.1(2.5579)

1!

0.12269.12y

=

++++=

2xy-1dx

dy=

0xydx

dy=+

Page 15: Unit1 vrs

Taylor’s and Picard’s methods 16

Dr. V. Ramachandra Murthy

Picard’s method Consider the initial value problem ---------- (1) Integrating Eqn(1) from , we get ---------- (2) Equation (2) is called Integral equation. Such an equation can be solved by successive approximation. The first approximation y1 of y is given by The second approximation is given by Similarly . . . . . . The process of iteration is stopped when the values of and are the same to the desired accuracy. _________________________________________________________ Problem (1): Solve , y (0) =0 by Picard’s method up to third approximation. Soln: Given data: Picard’s iterative formula is given by ------- (1)

00 y)y(x,y)f(x,dx

dy==

xtox0

∫+=x

x0

0

y)dxf(x,yy

∫+=x

x001

0

)dxyf(x,yy

∫+=x

x102

0

)dxyf(x,yy

∫+=x

x203

0

)dxyf(x,yy

∫+=x

x1-n0n

0

)dxyf(x,yy

1-ny ny

2y1dx

dy+=

0y;0x;y1y)f(x, 002 ==+=

∫+=x

x1-n0n

0

)dxyf(x,yy

( ) ( )∫∫∫ +=++=x

0

2

1-n

x

0

x

0

2

1-nn dxy1.dxdxy10y

( )∫+=x

0

21-nn dxyxy

Page 16: Unit1 vrs

Taylor’s and Picard’s methods 17

Dr. V. Ramachandra Murthy

Put n=1 in Eqn(1) Put n=2 in Eqn(1) Put n=3 in Eqn(1) Problem (2): Use Picard’s method to approximate y when x=0.1 & x=0.2 for y(0)=0 by considering third approximation correct to 4 decimal places. Soln: Given data: Picard’s iterative formula is given by --------(1) Step (1): To find y (0.1) Put n=1 in Eqn(1) Put n=2 in Eqn(1)

x0 =0 x1 =0.1 x2 =0.2

y0 =0 y(0.1)=? y(0.2)=?

( ) ( ) xdx0xdxyxyx

0

x

0

201 =+=+= ∫∫

( ) ( )3

xxdxxxdxyxy

3x

0

2x

0

2

12 +=+=+= ∫∫

( )63

x

15

2x

3

xdx

3

xxxdxyxy

753x

0

23x

0

2

23 ++=

++=+= ∫∫

2yxdx

dy+=

2yxy)f(x, +=

∫+=x

x1-n0n

0

)dxyf(x,yy

( )∫ ++=x

x

2

1-n0n0

dxyxyy

( ) ( ) 0.00502

xdx0x0dxyxyy

0.1

0

20.1

0

x

x

2

0010

=

=++=++= ∫∫

Page 17: Unit1 vrs

Taylor’s and Picard’s methods 18

Dr. V. Ramachandra Murthy

Put n=3 in Eqn(1) Thus 0050.0)1.0( =y .

Step (2): To find y(0.2) Let ---------- (2) Put n=1 in Eqn(2) Put n=2 in Eqn(2) Similarly by putting n=3 in Eqn(2), we obtain Thus

0200.0)2.0( =y _____________________________________________

___________ Problem (3): Use Picard’s method to solve , y(0)=1 for x=0.2 .

x0 =0 x1 =0.2

y0 =1 y(0.2)=?

( ) ( )( ) 0.00502

xdx0.0050x0dxyxyy

0.1

0

20.1

0

2x

x

2

1020

=

=++=++= ∫∫

( ) ( )( ) 0.00502

xdx0050.0x0dxyxyy

0.1

0

20.1

0

2x

x

2203

0

=

=++=++= ∫∫

( ) ( )( ) 02.0dx0.0050x0050.0dxyx0050.0y0.2

0.1

20.2

0.1

2

01 =++=++= ∫∫

1.0x0 = 0.0050y0 =

( )∫ ++=0.2

0.1

2

1-nn dxyx0.0050y

( )( ) ( )( )

( )

0.0200

x0.022

x0.0050

dx0.02x0.0050dxyx0.0050y

0.2

0.1

22

0.2

0.1

20.2

0.1

2

12

=

++=

++=++= ∫∫

( )( ) 0.0200 dx0.02x0.0050y0.2

0.1

2

3 =++= ∫

yxdx

dy 2 −=

yxy)f(x, 2−=

Page 18: Unit1 vrs

Taylor’s and Picard’s methods 19

Dr. V. Ramachandra Murthy

Soln: Given data: Picard’s iterative formula is given by -------(1) Put n=1 in Eqn(1) Put n=2 in Eqn(1) Put n=3 in Eqn(1) Put n=4 in Eqn(1) Similarly Since y4 & y5 are the same up to four places of decimals y(0.2)=0.8355 _________________________________________________________ Problem (4): Solve , y (0) =0 by Picard’s method up to the third approximation. Soln: Given data: Picard’s iterative formula is given by

∫+=x

x1-n0n

0

)dxyf(x,yy

( )∫ −+=0.2

01-n

2

n dxyx1y

( ) ( ) 0.8026dx1x1dxyx1y0.2

0

20.2

00

2

1 =−+=−+= ∫∫

( ) ( ) 0.8421dx0.8026x1dxyx1y0.2

0

20.2

01

2

2 =−+=−+= ∫∫

( ) ( ) 0.8342dx0.8421x1dxyx1y0.2

0

20.2

02

2

3 =−+=−+= ∫∫

( ) ( ) 0.8358dx0.8342x1dxyx1y0.2

0

20.2

03

2

4 =−+=−+= ∫∫

8355.0y5 = 8355.0y6 =

2xyxdx

dy 2 +=

0y;0x;2xyxy)f(x, 00

2 ==+=

∫+=x

x1-n0n

0

)dxyf(x,yy

( )∫ −++=x

01n

2

n dx2xyx0y

Page 19: Unit1 vrs

Taylor’s and Picard’s methods 20

Dr. V. Ramachandra Murthy

--------(1) Put n=1 in Eqn(1) Put n=2 in Eqn(1) Put n=3 in Eqn(1) _________________________________________________________ Problem(5): Solve by Picard’s method , y(0)=1 for x=0.1 Correct to four decimal places. Soln: Given data: Picard’s iterative formula is given by ---------(1) Put n=1 in Eqn(1)

x0 =0 x1 =0.1

y0 =1 y(0.1)=?

( )15

x2

3

xdx

3

x2xxdx2xyxy

53x

0

32

x

01

2

2 +=

+=+= ∫∫

( ) ( )3

xdxxdx2xyxy

3x

0

2x

00

21 ∫∫ ==+=

∫ ++=∫ +=

x

0

dx15

5x

23

3x

2x2

xx

0

dx22xy2

x3y

7x105

45x152

3

3xx

0dx6x

1544x

322x3y ++=∫ ++=

xy1dx

dy+=

xy1y)f(x, +=

∫+=x

x1-n0n

0

)dxyf(x,yy

( )∫ −++=0.1

01nn dxxy11y

( ) ( ) 1.1052

xx1x11dxxy11y

0.1

0

0.1

0

20.1

001 =

++=++=++= ∫∫

Page 20: Unit1 vrs

Taylor’s and Picard’s methods 21

Dr. V. Ramachandra Murthy

Put n=2 in Eqn(1) Put n=3 in Eqn(1) Since y2 & y3 are the same up to four places of decimals y(0.1)=1.1055 Problem (6): Given the differential equation , with the condition y=1 when x=0, use Picard’s method to obtain y for x=0.2 correct to four decimal places. Soln: Given data: Picard’s iterative formula is given by ---------(1) Put n=1 in Eqn(1) Put n=2 in Eqn(1) Similarly,

x0 =0 x1 =0.2

y0 =1 y(0.2)=?

yxdx

dy−=

y-xy)f(x, =

∫+=x

x1-n0n

0

)dxyf(x,yy

( )∫ −+=0.2

01nn dxy-x1y

( ) ( ) 0.82x2

x11-x1dxy-x1y

0.2

0

0.2

0

20.2

001 =

−+=+=+= ∫∫

( ) ( )

0.8560.82x-2

x1

dx0.82-x1dxy-x1y

0.2

0

2

0.2

0

0.2

012

=

+=

+=+= ∫∫

8500.0y7,n

8500.0 y6,n

8499.0y 5,n

8502.0 y4,n

8488.0 y3,n for

7

6

5

4

3

==

==

==

==

==

Page 21: Unit1 vrs

Taylor’s and Picard’s methods 22

Dr. V. Ramachandra Murthy

Since y6 & y7 are the same up to four places of decimals y(0.2)=0.8500 Problem (7): Given the differential equation , with the condition y=1 when x=0. Use Picard’s method to obtain y for x=0.1 correct to three decimal places. Soln: Given data: Picard’s iterative formula is given by ---------(1) Put n=1 in Eqn(1) Put n=2 in Eqn(1)

x0 =0 x1 =0.1

y0 =1 y(0.1)=?

∫+=x

x1-n0n

0

)dxyf(x,yy

xy

xy

dx

dy

+

−=

xy

x-yy)f(x,

+=

+

−+=

−0.1

01n

1nn dx

xy

xy1y

dx1x

211dx

1x

2

1x

1x1dx

1x

21x1

dxx1

1x1dx

x1

x11dx

xy

xy1y

0.1

0

0.1

0

0.1

0

0.1

0

0.1

0

0.1

00

01

∫∫∫

∫∫∫

+−−=

+−

+

+−=

+

−+−=

+

−−+=

+

−+=

+

−+=

( ) ( )[ ] 090.11xlog2x1y0.1

0

0.1

01 =++−=

( )[ ] ( )

1.0917561)2.18(0.0870.11

x1.090xlog2.181dx11.090x

2.181

dx1.090x

1.090)(x-2(1.090)1dx

x1.090

1.0901.090x-1.0901

dxx1.090

x1.0901dx

xy

xy1y

0.1

0

0.1

0

0.1

0

0.1

0

0.1

0

0.1

0

0.1

01

12

=+−=

−++=

++=

+

++=

+

+−+=

+

−+=

+

−+=

∫∫

∫∫

Page 22: Unit1 vrs

Taylor’s and Picard’s methods 23

Dr. V. Ramachandra Murthy

Put n=3 in Eqn(1) Since y2 & y3 are the same up to three places of decimals y(0.1)=1.091 _________________________________________________________ Problem(8): Solve , y(0)=1 by Picard’s method up to third approximation and hence find the value of y at x=0.1. Soln: Given data: Picard’s iterative formula is given by ---------(1) Put n=1 in Eqn(1)

( )[ ] ( )

1.091

0.10

x0.10

1.091xlog2.1821

dx0.1

0

11.091x

2.1821

dx0.1

01.091x

1.091)(x-2(1.091)1

dx0.1

0x1.091

1.0911.091x-1.0911

dx0.1

0x1.091

x1.0911

0.1

0

dxx2y

x2y13y

=

−++=

++=

+

++=

+

+−+=

+

−+=

+

−+=

∫∫

2xydx

dy−=

2xyy)f(x, −=

∫+=x

x1-n0n

0

)dxyf(x,yy

( )∫ −+= −

x

0

21nn dxxy1y

( ) ( )3

xx1

3

xx1dxx11dxxy1y

3x

0

3x

0

2x

0

2

01 −+=

−+=−+=−+= ∫∫

Page 23: Unit1 vrs

Taylor’s and Picard’s methods 24

Dr. V. Ramachandra Murthy

Put n=2 in Eqn(1) Put n=3 in Eqn(1) ∴ y(0.1)=1.1051 _________________________________________________________ Problem(9): Solve , y(0)=1 for x=0.1 by Picard’s method correct to four decimal places. {Ans: y(0.1)=1.1270} Problem(10): Use Picard’s method to solve , y(0)=0 for x=0.4 {Ans: y(0.4)=0.0214}

( )

60

x

12

x

6

x

2

xx1

dx12

x

3

x

2

xx11

dxx3

x

12

x

2

xx11dxxy1y

5432

x

0

432

x

0

2342

x

0

2

23

−−−++=

−−−++=

−−−+++=−+=

∫∫

2y3xdx

dy+=

22 yxdx

dy+=

Page 24: Unit1 vrs

Taylor’s and Picard’s methods 25

Dr. V. Ramachandra Murthy

Modified Euler’s method Consider first order differential equation

00 y)y(x,y)f(x,dx

dy==

Modified Euler’s formula is given by ___________________________________________________ _________________________________________________________ Problem(1): Determine the value of y for x=0(0.05)0.1 given that

1y(0) y,2xdx

dy=+= , using Modified Euler’s method up to four places of

decimal.

Soln: Given data: ( ) y2xyx,f += , h=0.05

00x =

Modified Euler’s Formula is given by

( ) ( )

( ) ( )

0,1,2,...n

0,1,2,...r______(2)ny,nxhfny0

1nywhere

1)_______((r)

1ny,1nxfny,nxf

2

hny

1r1n

y

=

=+=+

++++=++

Step-(1): (To find y(0.05))1y(x1y == )

Put n=0 in Equations (1) and (2)

( ) ( )

( ) ( ) 0,1,2,...nformula)s(Euler'ny,nxhfny0

1nywhere

,..2,1,0(r)

1ny,1nxfny,nxf

2

hny

1r1n

y

=→+=+

=

++++=++

r

0.051x = 0.12x =

10y = ?1y = ?2y =

Page 25: Unit1 vrs

Taylor’s and Picard’s methods 26

Dr. V. Ramachandra Murthy

( ) ( )

( ) ( ) ______(4)0y,0xhf0y0

1ywhere

3)_______((r)1

y,1xf0y,0xf2

h0y

1r1

y

+=

++=

+

Initial approximation: From Eqn(4)

( ) ( )

[ ] 1.05100.0510y20

x0.051

0y,0xhf0y0

1y

=++=

++=

+=

First approximation: Put r=0 in Eqn(3)

( ) ( )

( ) ( )

( ) ( ) 0513.11.0520.051202

0.051

(0)1

y21x0y2

0x2

0.051

(0)1

y,1xf0y,0xf2

h0y

11

y

=

++++=

++++=

++=

Second approximation: Put r=1 in Eqn(3)

( ) ( )

( ) ( )

( ) ( ) 0513.11.051320.051202

0.051

(1)1

y21x0y2

0x2

0.051

(1)1

y,1xf0y,0xf2

h0y

21

y

=

++++=

++++=

++=

Since( )11

y and ( )21

y are the same correct to four decimal places

y(0.05)=1.0513 Step-(2): (To find y(0.1))2y(x2y == )

Put n=1 in Equations (1) and (2)

Page 26: Unit1 vrs

Taylor’s and Picard’s methods 27

Dr. V. Ramachandra Murthy

( ) ( )

( ) ( ) ______(6)1y,1xhf1y02

ywhere

_______(5)(r)2

y,2xf1y,1xf2

hy1

1r2

y

+=

++=

+

Initial approximation: From Eqn(6)

( ) ( )

( ) 1.10391.051320.050.051.0513

1y21

x0.051.05131y,1xhf1y02

y

=

++=

++=+=

First approximation: Put r=0 in Eqn(5)

( ) ( )

( ) ( )

( ) ( )

1.1054

1.103920.11.051320.052

0.051.0513

(0)2

y21x1y2

1x2

0.051.0513

(0)2

y,2xf1y,1xf2

h1y

12

y

=

++++=

++++=

++=

Second approximation: Put r=1 in Eqn(5)

( ) ( )

( ) ( )

( ) ( ) 1055.11.105420.11.051320.052

0.051.0513

(1)2

y21x1y2

1x2

0.051.0513

(1)2

y,2xf1y,1xf2

h1y

22

y

=

++++=

++++=

++=

Similarly ( )

1055.132

y =

Since ( ) ( )3

2y&

22

y are the same correct to four decimal places

y(0.1)=1.1055 Problem(2):

Obtain the solution of the equation yxdx

dy+= with y=1 when x=0 for y

at x=0.6 in steps of 0.3 using Modified Euler’s method correct to four

Page 27: Unit1 vrs

Taylor’s and Picard’s methods 28

Dr. V. Ramachandra Murthy

decimal places.

Soln: Given data: ( ) yxyx,f += , h=0.3

00x =

Modified Euler’s Formula is given by

( ) ( )

( ) ( ) ______(2)ny,nxhfny0

1nywhere

1)_______((r)

1ny,1nxfny,nxf

2

hny

1r1n

y

+=+

++++=++

Step-(1): (To find y(0.3))1y(x1y == )

Put n=0 in Equations (1) and (2)

( ) ( )

( ) ( ) ______(4)0y,0xhf0y0

1ywhere

3)_______((r)1

y,1xf0y,0xf2

h0y

1r1

y

+=

++=

+

Initial approximation: From Eqn(4)

( ) ( )

[ ] [ ] 1.3100.310y0x0.31

0y,0xhf0y0

1y

=++=++=

+=

First approximation: Put r=0 in Eqn(3)

( ) ( )

( ) ( )

++++=

++=

(0)1

y1x0y0x2

0.31

(0)1

y,1xf0y,0xf2

h0y

11

y

( ) ( )[ ] 3660.11.30.3102

0.31 =++++=

Second approximation: Put r=1 in Eqn(3)

0.31x = 0.62x =

10y = ?1y = ? 2y =

Page 28: Unit1 vrs

Taylor’s and Picard’s methods 29

Dr. V. Ramachandra Murthy

( ) ( )

( ) ( )

( ) ( ) ( )[ ] 3703.11.36600.3102

0.31

21

y

(1)1

y1x0y0x2

0.31

(1)1

y,1xf0y,0xf2

h0y

21

y

=++++=

++++=

++=

Similarly ( )

3703.13

1y =

Since( ) ( )3

1y&

21

y are the same correct to four decimal places

y(0.3)=1.3703 Step-(2): (To find y(0.6))2y(x2y == )

Put n=1 in Equations (1) and (2)

( ) ( )

( ) ( ) ______(6)1y,1xhf1y02

ywhere

_______(5)(r)2

y,2xf1y,1xf2

h0y

1r2

y

+=

++=

+

Initial approximation: From Eqn(6)

( ) ( ) ( )

( )[ ] 1.81141.37030.30.31.3703

1y1x0.31.37031y,1xhf1y02

y

=++=

++=+=

First approximation: Put r=0 in Eqn(5)

( ) ( )

( ) ( )

++++=

++=

(0)2

y2x1y1x2

0.33703.1

(0)2

y,2xf1y,1xf2

h1y

12

y

( ) ( )[ ] 8827.11.81140.61.37030.32

0.33703.1 =++++=

Similarly ( ) ( ) ( )

8869.14

2y,8869.1

32

y,8667.12

2y ===

∴∴∴∴ y(0.6)=1.8869

Page 29: Unit1 vrs

Taylor’s and Picard’s methods 30

Dr. V. Ramachandra Murthy

Problem(3):

Using Modified Euler’s method find y(0.2) given that yxdx

dy+= ; y(0)=1

correct to four decimal places. Soln: Given data: ( ) yxyx,f += , h=0.2

00x = 0.21x =

10y = ? 1y =

Modified Euler’s Formula is given by

( ) ( )

( ) ( ) ______(2)ny,nxhfny0

1nywhere

1)_______((r)

1ny,1nxfny,nxf

2

hny

1r1n

y

+=+

++++=++

To find y(0.2))1y(x1y ==

Put n=0 in Equations (1) and (2)

( ) ( )

( ) ( ) ______(4)0y,0xhf0y0

1ywhere

3)_______((r)1

y,1xf0y,0xf2

h0y

1r1

y

+=

++=

+

Initial approximation: From Eqn(4)

( ) ( )

[ ] [ ] 1.2100.210y0x0.21

0y,0xhf0y0

1y

=++=++=

+=

First approximation: Put r=0 in Eqn(3)

( ) ( )

[ ] 24.12.12.0102

0.21

(0)1

y1x0y0x2

0.21

(0)1

y,1xf0y,0xf2

h0y

11

y

=++++=

++++=

++=

Second approximation: Put r=1 in Eqn(3)

Page 30: Unit1 vrs

Taylor’s and Picard’s methods 31

Dr. V. Ramachandra Murthy

( ) ( )

( ) [ ] 244.124.12.0102

0.21

21

y

(1)1

y1x0y0x2

0.21

(1)1

y,1xf0y,0xf2

h0y

21

y

=++++=

++++=

++=

Similarly ( )

2444.13

1y = &

( )2444.1

41

y =

Since ( ) ( )4

1y&

31

y are the same correct to four decimal places

y(0.2)=1.2444 Problem(4): Use Modified Euler’s method to find the approximate value of y(1.1) for

the solution of the initial value problem 2xydx

dy= , y(1)=1 correct to three

decimal places. Perform two iterations. Soln: Given data: ( ) 2xyyx,f = , h=0.1

10x = 1.11x =

10y = ?1y =

Modified Euler’s Formula is given by

( ) ( )

( ) ( ) ______(2)ny,nxhfny0

1nywhere

1)_______((r)

1ny,1nxfny,nxf

2

hny

1r1n

y

+=+

++++=++

To find y(1.1))1y(x1y ==

Put n=0 in Equations (1) and (2)

( ) ( )

( ) ( ) ______(4)0y,0xhf0y0

1ywhere

3)_______((r)1

y,1xf0y,0xf2

h0y

1r1

y

+=

++=

+

Initial approximation: From Eqn(4)

Page 31: Unit1 vrs

Taylor’s and Picard’s methods 32

Dr. V. Ramachandra Murthy

( ) ( )

[ ] [ ] 1.2)1)(1)(2(0.110y02x0.11

0y,0xhf0y0

1y

=+=+=

+=

First approximation: Put r=0 in Eqn(3)

( ) ( )

[ ] 1.232)2(1.1)(1.22(1)(1)2

0.11

(0)1

y12x0y02x2

0.11

(0)1

y,1xf0y,0xf2

h0y

11

y

=++=

++=

++=

Second approximation: Put r=1 in Eqn(3)

( ) ( )

( ) [ ] 1.235532)2(1.1)(1.22(1)(1)2

0.11

21

y

(1)1

y12x0y02x2

0.11

(1)1

y,1xf0y,0xf2

h0y

21

y

=++=

++=

++=

∴ The value of y(1.1) after two iteration is y(0.2)=1.2355 Problem(5): Find y(1.2) and y(1.4) by Modified Euler’s method given that

3xx

2y

dx

dy+= , y(1)=0.5 correct to three decimal places.

Soln: Given data: ( ) 3xx

2yyx,f += , h=0.2

10x = 1.21x = 1.41x =

0.50y = ?1y = ?1y =

Modified Euler’s Formula is given by

( ) ( )

( ) ( ) ______(2)ny,nxhfny0

1nywhere

1)_______((r)

1ny,1nxfny,nxf

2

hny

1r1n

y

+=+

++++=++

Page 32: Unit1 vrs

Taylor’s and Picard’s methods 33

Dr. V. Ramachandra Murthy

Step(1): To find y(1.2))1y(x1y ==

Put n=0 in Equations (1) and (2)

( ) ( )

( ) ( ) ______(4)0y,0xhf0y0

1ywhere

3)_______((r)1

y,1xf0y,0xf2

h0y

1r1

y

+=

++=

+

Initial approximation: From Eqn(4)

( ) ( )

( )

( )

0.9

311

2(0.5)0.20.5

30x

0x02y

0.20.5

0y,0xhf0y0

1y

=

++=

++=

+=

First approximation: Put r=0 in Eqn(3)

( ) ( )

( ) ( )

( )( )

( )( )

0227.1

31.21.2

0.92311

0.52

2

0.20.5

31x

1x

(0)1

2y30x

0x02y

2

0.20.5

(0)1

y,1xf0y,0xf2

h0y

11

y

=

++++=

++++=

++=

Second approximation: Put r=1 in Eqn(3)

Page 33: Unit1 vrs

Taylor’s and Picard’s methods 34

Dr. V. Ramachandra Murthy

( ) ( )

( ) ( )

( )( )

( )( )

043.1

31.21.2

1.02272311

0.52

2

0.20.5

31x

1x

(1)1

2y30x

0x02y

2

0.20.5

(1)1

y,1xf0y,0xf2

h0y

21

y

=

++++=

++++=

++=

Similarly ( )

046.13

1y = and

( )046.1

41

y =

Since ( ) ( )4

1y&

31

y are the same correct to four decimal places

y(1.2)=1.2444 Step(2): To find y(1.4))2y(x2y ==

Put n=1 in Equations (1) and (2)

( ) ( )

( ) ( ) ______(6)1y,1xhf1y02

ywhere

5)_______((r)2

y,2xf1y,1xf2

h1y

1r2

y

+=

++=

+

Initial approximation: From Eqn(6)

( ) ( )

( )

( )

1.740

31.21.2

2(1.046)0.2046.1

31x

1x12y

0.2046.1

1y,1xhf1y02

y

=

++=

++=

+=

First approximation: Put r=0 in Eqn(5)

Page 34: Unit1 vrs

Taylor’s and Picard’s methods 35

Dr. V. Ramachandra Murthy

( ) ( )

( ) ( )

( )( )

( )( )

916.1

31.41.4

1.74231.21.2

1.0462

2

0.2046.1

32x

2x

(0)2

2y31x

1x12y

2

0.2046.1

(0)2

y,2xf1y,1xf2

h1y

12

y

=

++++=

++++=

++=

Similarly ( )

941.12

2y =

( )

944.132

y =,

( )945.1

42

y =,

( )945.1

52

y =

Since ( ) ( )5

2y&

42

y are the same correct to three decimal places

y(1.4)=1.945

Problem(6):

solve y1dx

dy−= , y(0)=0 by Modified Euler’s method for x=0.1 correct to

four decimal places. Soln: Given data: ( ) y1yx,f −= , h=0.1

00x = 0.11x =

00y = ?1y =

Modified Euler’s Formula is given by

( ) ( )

( ) ( ) ______(2)ny,nxhfny0

1nywhere

1)_______((r)

1ny,1nxfny,nxf

2

hny

1r1n

y

+=+

++++=++

To find y(0.1))1y(x1y ==

Put n=0 in Equations (1) and (2)

Page 35: Unit1 vrs

Taylor’s and Picard’s methods 36

Dr. V. Ramachandra Murthy

( ) ( )

( ) ( ) ______(4)0y,0xhf0y0

1ywhere

3)_______((r)1

y,1xf0y,0xf2

h0y

1r1

y

+=

++=

+

Initial approximation: From Eqn(4)

( ) ( )

[ ] 1.0010.10

]01[00y,0xhf0y0

1y

=−+=

−+=+= yhy

First approximation: Put r=0 in Eqn(3)

( ) ( )

[ ] 095.01.01012

0.10

(0)1

y1012

h0

(0)1

y,1xf0y,0xf2

h0y

11

y

=−+−+=

++−+=

++= yy

Second approximation: Put r=1 in Eqn(3)

( ) ( )

0952.0]095.0101[2

0.10

(1)1

y10y-12

h0y

(1)1

y,1xf0y,0xf2

h0y

21

y

=−+−+=

−++=

++=

Similarly ( )

0952.03

1y = ,

Since ( ) ( )4

1y&

31

y are the same correct to four decimal places

y(0.1)=0.0952 Problem(7): Use Modified Euler’s method to solve the differential equation

2yxdx

dy+= ,y(0)=1 for x=0.2 in steps of 0.1 correct to three

decimal places.

Soln: Given data: ( ) 2yxyx,f += , h=0.1

00x = 0.11x = 0.22x =

Page 36: Unit1 vrs

Taylor’s and Picard’s methods 37

Dr. V. Ramachandra Murthy

10y = 1.11741y = 1.27622y =

Modified Euler’s Formula is given by

( ) ( )

( ) ( ) ______(2)ny,nxhfny0

1nywhere

1)_______((r)

1ny,1nxfny,nxf

2

hny

1r1n

y

+=+

++++=++

Step(1): To find y(0.1))1y(x1y ==

Put n=0 in Equations (1) and (2)

( ) ( )

( ) ( ) ______(4)0y,0xhf0y0

1ywhere

3)_______((r)1

y,1xf0y,0xf2

h0y

1r1

y

+=

++=

+

Initial approximation: From Eqn(4)

( ) ( )

( ) ( ) 1.12100.1120y0x0.11

0y,0xhf0y0

1y

=

++=

++=

+=

First approximation: Put r=0 in Eqn(3)

( ) ( ) ( )

( ) ( ) 1155.121.11.02102

0.11

2(0)1

y1x20y0x

2

h0y

(0)1

y,1xf0y,0xf2

h0y

11

y

=

++++=

++++=

++=

Second approximation: Put r=1 in Eqn(3)

( ) ( )

( )

1172.1]2)1155.1(1.02)1(0[2

0.11

2(1)1

y1x20y0x

2

h0y

(1)1

y,1xf0y,0xf2

h0y

21

y

=++++=

++++=

++=

Page 37: Unit1 vrs

Taylor’s and Picard’s methods 38

Dr. V. Ramachandra Murthy

Similarly ( )

1174.13

1y = ,

( )1174.1

41

y =

Clearly ( ) ( )4

1y&

31

y are same correct to four decimal places.

∴∴∴∴ y(0.1)=1.1174 Step-(2): (To find y(0.2))2y(x2y == )

Put n=1 in Equations (1) and (2)

( ) ( )

( ) ( ) ______(6)1y,1xhf1y02

ywhere

_______(5)(r)2

y,2xf1y,1xf2

h1y

1r2

y

+=

++=

+

Initial approximation: From Eqn(6)

( ) ( ) ( )

( ) 2522.121.11741.00.11.1174

21y1xh1y1y,1xhf1y

02

y

=

++=

++=+=

First approximation: Put r=0 in Eqn(5)

( ) ( )

( )

( ) ( ) 1.273221.25220.221.11740.12

0.11.1174

2(0)2

y2x21y1x

2

h1y

(0)2

y,2xf1y,1xf2

h1y

12

y

=

++++=

++++=

++=

Similarly ( ) ( ) ( )

2762.14

2y,2762.1

32

y,2758.12

2y ===

Since( )32

y and( )42

y are the same correct to four decimal places

y(0.2)=1.2762 Problem(8): Find y(4.4) by Modified Euler’s method taking h=0.2 from the differential

equation 5x

2y-2

dx

dy= , y(4)=1 correct to Four decimal places.

{Ans:y(4.4)=1.0187}

Page 38: Unit1 vrs

Taylor’s and Picard’s methods 39

Dr. V. Ramachandra Murthy

Problem(9):

Solve y2xdx

dy+= , y(0)=1 for x=0.02 taking h=0.01 by Modified Euler’s

method correct to Four decimal places. Carry out two iterations after each step. {Ans:y(0.02)=1.020} ___________________________________________________________

Runge-Kutta Method of 4th order

Consider 0y)0y(x,y)f(x,dx

dy==

The Runge-Kutta method of 4th

order is given by

[ ]

( )

( )3knyh,nxhf4k

22k

ny,2

hnxhf3k

21k

ny,2

hnxhf2k

ny,nxhf1kwhere

4k32k22k1k6

1ny1ny

++=

++=

++=

=

++++=+

Problem(1): By employing Runge-Kutta method of fourth order solve the differential

equation y6x/2y =− ,y(0)=1 for x=0.2 in steps of 0.1 correct to four

decimal places.

Soln: Given data: ( )2

y3xyx,f += , h=0.1

00x = 0.11x = 0.21x =

10y = 1.06641y = 1670.12y =

The Runge-Kutta method of 4th order is given by

Page 39: Unit1 vrs

Taylor’s and Picard’s methods 40

Dr. V. Ramachandra Murthy

[ ]

( )

( )

++=

++=

++=

=

++++=+

3knyh,nxhf4k

22k

ny,2

hnxhf3k

21k

ny,2

hnxhf2k

ny,nxhf1kwhere

4k32k22k1k6

1ny1ny

-------------------- (1)

Put n=0 in Eqn(1)

[ ]4k32k22k1k6

10y1y ++++= --------------------------- (2)

( )

( )

++=

++=

++=

=

3k0yh,0xhf4k

22k

0y,2

h0xhf3k

21k

0y,2

h0xhf2k

0y,0xhf1kwhere

( )

0.052

13(0)0.1

20y

03xh

0y,0xhf1k

=

+=

+=

=

0.06622

0.051

2

1

2

0.1030.1

21k

0y2

1

2

h0x3h

21k

0y,2

h0xhf2k

=

++

+=

++

+=

++=

0.06662

0.06621

2

1

2

0.1030.1

22k

0y2

1

2

h0x3h

22k

0y,2

h0xhf3k

=

++

+=

++

+=

++=

Page 40: Unit1 vrs

Taylor’s and Picard’s methods 41

Dr. V. Ramachandra Murthy

( )

( ) ( )

( ) ( ) 0.08330.066612

10.1030.1

3k0y2

1h0x3h

3k0yh,0xhf4k

=

+++=

+++=

++=

Substituting all these values in Eqn(2), we get

[ ] 1.06640.08332(0.0666)2(0.0662)0.056

111y =++++=

Put n=1 in Eqn(1)

[ ]4k32k22k1k6

11y2y ++++= ---------------------- (3)

Where

( )

( )3k1yh,1xhf4k

22k

1y,2

h1xhf3k

21k

1y,2

h1xhf2k

1y,1xhf1k

++=

++=

++=

=

( )

0.08332

1.06643(0.1)0.1

21y

13xh

1y,1xhf1k

=

+=

+=

=

0.10042

0.08331.0664

2

1

2

0.10.130.1

21k

1y2

1

2

h1x3h

21k

1y,2

h1xhf2k

=

++

+=

++

+=

++=

0.10082

0.10041.0644

2

1

2

0.10.130.1

22k

1y2

1

2

h1x3h

22k

1y,2

h1xhf3k

=

++

+=

++

+=

++=

Page 41: Unit1 vrs

Taylor’s and Picard’s methods 42

Dr. V. Ramachandra Murthy

( )

( ) ( )

( ) ( ) 0.11830.10081.06642

10.10.130.1

3k1y2

1h1x3h

3k1yh,1xhf4k

=

+++=

+++=

++=

Substituting all these values in Eqn(3), we get

[ ]

1.1670

0.11832(0.1008)2(0.1004)0.08336

11.06642y

=

++++=

Problem(2): Apply Runge-Kutta method of fourth order to find an approximate value

of y(0.1) and y(0.2) of 2yxdx

dy+= , y(0)=1 correct to three decimal

places.

Soln: Given data: ( ) 2yxyx,f += , h=0.1

00x = 0.11x = 0.22x =

10y = ?1y = ?2y =

The Runge-Kutta method of 4th order is given by

[ ]

( )

( )

++=

++=

++=

=

++++=+

3knyh,nxhf4k

22k

ny,2

hnxhf3k

21k

ny,2

hnxhf2k

ny,nxhf1kwhere

4k32k22k1k6

1ny1ny

-------------------------(1)

Put n=0 in Eqn(1)

[ ]4k32k22k1k6

10y1y ++++= --------------------------(2)

Page 42: Unit1 vrs

Taylor’s and Picard’s methods 43

Dr. V. Ramachandra Murthy

( )

( )3k0yh,0xhf4k

22k

0y,2

h0xhf3k

21k

0y,2

h0xhf2k

0y,0xhf1kwhere

++=

++=

++=

=

( )

( ) ( ) 0.12100.120y0xh

0y,0xhf1k

=

+=

+=

=

0.11522

2

0.11

2

0.100.1

2

21k

0y2

h0xh

21k

0y,2

h0xhf2k

=

++

+=

++

+=

++=

0.11682

2

0.11521

2

0.100.1

2

22k

0y2

h0xh

22k

0y,2

h0xhf3k

=

++

+=

++

+=

++=

( )

( ) ( )

( ) ( ) 0.134720.116810.100.1

23k0yh0xh

3k0yh,0xhf4k

=

+++=

+++=

++=

Substituting all these values in Eqn(2), we get

[ ] 1.11640.13472(0.1168)2(0.1152)0.16

111y =++++=

Put n=1 in Eqn(1) [ ]4k32k22k1k6

11y2y ++++= -----------(3)

Where

Page 43: Unit1 vrs

Taylor’s and Picard’s methods 44

Dr. V. Ramachandra Murthy

( )

( )3k1yh,1xhf4k

22k

1y,2

h1xhf3k

21k

1y,2

h1xhf2k

1y,1xhf1k

++=

++=

++=

=

( )

( ) ( ) 0.134621164.1(0.1)0.121y1xh

1y,1xhf1k

=

+=

+=

=

++

+=

++=

2

21k

1y2

h1xh

21k

1y,2

h1xhf2k

0.15512

2

0.13461.1164

2

0.10.10.1 =

++

+=

0.15752

2

0.15511.1164

2

0.10.10.1

2

22k

1y2

h1xh

22k

1y,2

h1xhf3k

=

++

+=

++

+=

++=

( )

( ) ( )

( ) ( ) 0.182220.15751.11640.10.10.1

23k1yh1xh

3k1yh,1xhf4k

=

+++=

+++=

++=

Substituting all these values in Eqn(3), we get

[ ]

27341.

0.18222(0.1575)2(0.1551)0.13466

11.11642y

=

++++=

Page 44: Unit1 vrs

Taylor’s and Picard’s methods 45

Dr. V. Ramachandra Murthy

Problem(3): Use Runge-Kutta method of fourth order to approximate y when x=0.1,

given that y=1 when x=0 and yxdx

dy+=

Soln: Given data: ( ) yxyx,f += , h=0.1

00x = 0.11x =

10y = ?1y =

The Runge-Kutta method of 4th order is given by

[ ]

( )

( )3knyh,nxhf4k

22k

ny,2

hnxhf3k

21k

ny,2

hnxhf2k

ny,nxhf1kwhere

4k32k22k1k6

1ny1ny

++=

++=

++=

=

++++=+

------------------(1)

Put n=0 in Eqn(1)

[ ]4k32k22k1k6

10y1y ++++= -------------------(2)

( )

( )3k0yh,0xhf4k

22k

0y,2

h0xhf3k

21k

0y,2

h0xhf2k

0y,0xhf1kwhere

++=

++=

++=

=

( )

( )[ ] [ ] 0.1100.10y0xh

0y,0xhf1k

=+=+=

=

Page 45: Unit1 vrs

Taylor’s and Picard’s methods 46

Dr. V. Ramachandra Murthy

0.112

0.11

2

0.100.1

21k

0y2

h0xh

21k

0y,2

h0xhf2k

=

++

+=

++

+=

++=

1105.02

0.111

2

0.100.1

22k

0y2

h0xh

22k

0y,2

h0xhf3k

=

++

+=

++

+=

++=

( )

( ) ( )[ ]( ) ( )[ ] 0.12100.110510.100.1

3k0yh0xh

3k0yh,0xhf4k

=+++=

+++=

++=

Substituting all these values in Eqn(2), we get

[ ]

11031.

0.12102(0.1105)2(0.11)0.16

111y

=

++++=

Problem(4): Use Runge-Kutta method of fourth order to obtain an approximation to

y(1.5) for the solution of 2xydx

dy= ;y(1)=1 correct to four decimal places.

Soln: Given data: ( ) 2xyyx,f = , h=0.5

10x = 1.51x =

10y = ?1y =

The Runge-Kutta method of 4th order is given by

Page 46: Unit1 vrs

Taylor’s and Picard’s methods 47

Dr. V. Ramachandra Murthy

[ ]

( )

( )

++=

++=

++=

=

++++=+

3knyh,nxhf4k

22k

ny,2

hnxhf3k

21k

ny,2

hnxhf2k

ny,nxhf1kwhere

4k32k22k1k6

1ny1ny

------------------(1)

Put n=0 in Eqn(1)

[ ]4k32k22k1k6

10y1y ++++= --------------------------(2)

( )

( )3k0yh,0xhf4k

22k

0y,2

h0xhf3k

21k

0y,2

h0xhf2k

0y,0xhf1kwhere

++=

++=

++=

=

( )

[ ] [ ] 12(1)(1)0.50y02xh

0y,0xhf1k

===

=

1.8752

11

2

0.5120.5

21k

0y2

h0x2h

21k

0y,2

h0xhf2k

=

+

+=

+

+=

++=

4218.22

1.8751

2

0.5120.5

22k

0y2

h0x2h

22k

0y,2

h0xhf3k

=

+

+=

+

+=

++=

Page 47: Unit1 vrs

Taylor’s and Picard’s methods 48

Dr. V. Ramachandra Murthy

( )

( )( )[ ]( )( )[ ] 5.13272.421810.5120.5

3k0yh0x2

3k0yh,0xhf4k

=++=

++=

++=

h

Substituting all these values in Eqn(2), we get

[ ]

4543.3

5.13272(2.4218)2(1.875)16

111y

=

++++=

Problem(5): Obtain the values of y at x=0.1, 0.2 using Runge-Kutta method of 4th

order for the differential equation y/y −= ; y(0)=1 correct to four decimal

places. Soln: Given data: ( ) -yyx,f = , h=0.1

00x = 0.11x = 0.22x =

10y = ?1y = ?2y =

The Runge-Kutta method of 4th order is given by

[ ]

( )

( )

++=

++=

++=

=

++++=+

3knyh,nxhf4k

22k

ny,2

hnxhf3k

21k

ny,2

hnxhf2k

ny,nxhf1kwhere

4k32k22k1k6

1ny1ny

-----------(1)

Put n=0 in Eqn(1)

[ ]4k32k22k1k6

10y1y ++++= -------------(2)

( )

( )3k0yh,0xhf4k

22k

0y,2

h0xhf3k

21k

0y,2

h0xhf2k

0y,0xhf1kwhere

++=

++=

++=

=

Page 48: Unit1 vrs

Taylor’s and Picard’s methods 49

Dr. V. Ramachandra Murthy

( )

[ ] [ ] -0.11-0.10y-h

0y,0xhf1k

===

=

095.02

0.1-10.1

21k

0yh

21k

0y,2

h0xhf2k

−=

−=

+−=

++=

0952.02

0.09510.1

22k

0yh

22k

0y,2

h0xhf3k

−=

−−=

+−=

++=

( )

( )[ ]( )[ ] -0.09040.0952-10.1

3k0yh

3k0yh,0xhf4k

=−=

+−=

++=

Substituting all these values in Eqn(2), we get

[ ] 9048.00.0904-2(-0.0952)2(-0.095)0.1-6

111y =+++=

Put n=1 in Eqn(1) [ ]4k32k22k1k6

11y2y ++++= -------------(3)

( )

( )3k1yh,1xhf4k

22k

1y,2

h1xhf3k

21k

1y,2

h1xhf2k

1y,1xhf1k

++=

++=

++=

=

( )

( )[ ] [ ] -0.09049048.00.11y-h

1y,1xhf1k

=−==

=

Page 49: Unit1 vrs

Taylor’s and Picard’s methods 50

Dr. V. Ramachandra Murthy

-0.08592

0.09040.90480.1

21k

1yh

21k

1y,2

h1xhf2k

=

−−=

+−=

++=

-0.08612

0.08590.90480.1

22k

1yh

22k

1y,2

h1xhf3k

=

−−=

+−=

++=

( )

( )[ ]( )[ ] 0.08180.0861-0.90480.1

3k1yh

3k1yh,1xhf4k

−=−=

+−=

++=

Substituting all these values in Eqn(3), we get

[ ]

8187.0

0.0818-2(-0.0861)2(-0.0859)0.0904-6

10.90482y

=

+++=

Problem(6): By using the Runge-Kutta method of fourth order find the approximate

values of y(0.5) and y(1), given that yx

1

dx

dy

+= y(0)=1 correct to four

decimal places.

Soln: Given data: yx

1

dx

dy

+= , h=0.5

00x = 0.51x = 12x =

10y = ?1 =y ?2y =

The Runge-Kutta method of 4th order is given by

Page 50: Unit1 vrs

Taylor’s and Picard’s methods 51

Dr. V. Ramachandra Murthy

[ ]

( )

( )

++=

++=

++=

=

++++=+

3knyh,nxhf4k

22k

ny,2

hnxhf3k

21k

ny,2

hnxhf2k

ny,nxhf1kwhere

4k32k22k1k6

1ny1ny

---------------------(1)

Put n=0 in Eqn(1)

[ ]4k32k22k1k6

10y1y ++++= -----------------------(2)

( )

( )3k0yh,0xhf4k

22k

0y,2

h0xhf3k

21k

0y,2

h0xhf2k

0y,0xhf1kwhere

++=

++=

++=

=

( )

0.510

10.5

0y0x

1h

0y,0xhf1k

=

+=

+=

=

3333.0

2

0.51

2

5.00

10.5

21k

0y2

h0x

1h

21k

0y,2

h0xhf2k

=

+++

=

+++

=

++=

3529.0

2

0.33331

2

0.50

10.5

22k

0y2

h0x

1h

22k

0y,2

h0xhf3k

=

+++

=

+++

=

++=

Page 51: Unit1 vrs

Taylor’s and Picard’s methods 52

Dr. V. Ramachandra Murthy

( )

0.2698

0.352910.50

10.5

3k0yh0x

1h

3k0yh,0xhf4k

=

+++=

+++=

++=

Substituting all these values in Eqn(2), we get

[ ] 3570.10.26982(0.3529)2(0.3333)0.56

111y =++++=

Put n=1 in Eqn(1) [ ]4k32k22k1k6

11y2y ++++= --------------(3)

( )

( )3k1yh,1xhf4k

22k

1y,2

h1xhf3k

21k

1y,2

h1xhf2k

1y,1xhf1k

++=

++=

++=

=

( )

0.26921.3570.5

10.5

1y1x

1h

1y,1xhf1k

=

+=

+=

=

2230.0

2

0.26921.3570

2

5.00.5

10.5

21k

1y2

h1x

1h

21k

1y,2

h1xhf2k

=

+++

=

+++

=

++=

2253.0

2

0.22301.357

2

0.50.5

10.5

22k

1y2

h1x

1h

22k

1y,2

h1xhf3k

=

+++

=

+++

=

++=

Page 52: Unit1 vrs

Taylor’s and Picard’s methods 53

Dr. V. Ramachandra Murthy

( )

0.1936

0.22531.3570.50.5

10.5

3k1yh1x

1h

3k1yh,1xhf4k

=

+++=

+++=

++=

Substituting all these values in Eqn(3), we get

[ ]

5835.1

0.19362(0.2253)2(0.2230)0.26926

11.35702y

=

++++=

Problem(7): By using the Runge-Kutta method of fourth order solve the initial value

problem 2yx3e/y += ; y(0)=0 at x=0.1 correct to three decimal places.

Soln: Given data: ( ) 2yx3eyx,f += , h=0.1

00x = 0.11x =

00y = ?1y =

The Runge-Kutta method of 4th

order is given by

[ ]

( )

( )3knyh,nxhf4k

22k

ny,2

hnxhf3k

21k

ny,2

hnxhf2k

ny,nxhf1kwhere

4k32k22k1k6

1ny1ny

++=

++=

++=

=

++++=+

---------------(1)

Put n=0 in Eqn(1)

[ ]4k32k22k1k6

10y1y ++++= -------------------(2)

Page 53: Unit1 vrs

Taylor’s and Picard’s methods 54

Dr. V. Ramachandra Murthy

( )

( )3k0yh,0xhf4k

22k

0y,2

h0xhf3k

21k

0y,2

h0xhf2k

0y,0xhf1kwhere

++=

++=

++=

=

( )

0.32(0)03e0.1

02yx

3eh

0y,0xhf1k

0

=

+=

+=

=

0.345

2

0.302

)2

0.1(0

3e0.521k

0y2)

2

h(x

3eh

21k

0y,2

h0xhf2k

0

=

++

+=

++

+=

++=

0.349

2

0.34502

)2

0.1(0

3e0.122k

0y2)

2

h(x

3eh

22k

0y,2

h0xhf3k

0

=

++

+=

++

+=

++=

( )

( ) ( )

401.0

349.002)1.0(0

3e1.03k0y2h)(x

3eh

3k0yh,0xhf4k

00

=

++

+=

++

+=

++=

Substituting all these values in Eqn(2), we get

[ ]

348.0

0.4012(0.349)2(0.345)0.36

101y

=

++++=

Problem(8): Obtain the value of y at x=0.2 using Runge-Kutta method of 4th order for

Page 54: Unit1 vrs

Taylor’s and Picard’s methods 55

Dr. V. Ramachandra Murthy

the differential equation xy

x-y/y+

= ; y(0)=1 correct to four decimal

places.

Soln: Given data: ( )xy

x-yyx,f

+= , h=0.2

00x = 0.21x =

10y = ?1y =

The Runge-Kutta method of 4th order is given by

[ ]

( )

( )

)1.(..............................

3knyh,nxhf4k

22k

ny,2

hnxhf3k

21k

ny,2

hnxhf2k

ny,nxhf1kwhere

4k32k22k1k6

1ny1ny

++=

++=

++=

=

++++=+

Put n=0 in Eqn(1)

[ ]4k32k22k1k6

10y1y ++++= -----------------(2)

( )

( )3k0yh,0xhf4k

22k

0y,2

h0xhf3k

21k

0y,2

h0xhf2k

0y,0xhf1kwhere

++=

++=

++=

=

( )

0.201

0-10.2

0x0y0x0y

h

0y,0xhf1k

=

+=

+

−=

=

Page 55: Unit1 vrs

Taylor’s and Picard’s methods 56

Dr. V. Ramachandra Murthy

0.1666

2

0.20

2

0.21

2

0.20

2

0.21

0.2

2

h0x

21k

0y

2

h0x

21k

0y

h

21k

0y,2

h0xhf2k

=

++

+

+−

+

=

++

+

+−

+

=

++=

0.1661

2

0.20

2

0.16661

2

0.20

2

0.16661

0.2

2

h0x

22k

0y

2

h0x

22k

0y

h

22k

0y,2

h0xhf3k

=

++

+

+−

+

=

++

+

+−

+

=

++=

( )

( ) ( )( ) ( )

( ) ( )( ) ( )

1414.0

2.001661.01

2.001661.010.2

h0x3k0y

h0x3k0y0.2

3k0yh,0xhf4k

=

+++

+−+=

+++

+−+=

++=

Substituting all these values in Eqn(2), we get

[ ]

1678.1

0.14142(0.1661)2(0.1666)0.26

111y

=

++++=

Problem(9):

Evaluate y(1.1) by fourth order Runge-Kutta method given that

2x

1

x

y/y =+ , y(1)=1 correct to four decimal places.

{Ans: y(1.1)=0.9958}

Problem(10):

Using Runge-Kutta method of fourth order solve 2x2y

2x2y

dx

dy

+

−=

y(0)=1 at x=0.2 and 0.4.

{Ans: y(0.2)=1.1959,

y(0.4)=1.3751}

Page 56: Unit1 vrs

Taylor’s and Picard’s methods 57

Dr. V. Ramachandra Murthy

Numerical Methods Predictor-Corrector methods

(Multi Step Methods)

The methods in which the construction of involves the use of not

only

the solution but also some of its predecessors

are called Multi step methods.

Milne’s Predictor-Corrector Method Consider the differential equation

Milne’s predictor and corrector formula is given by Problem(1)

Find y(2) if y(x) is the solution of , given that y(0)=2,

y(0.5)=2.636, y(1)=3.595, y(1.5)=4.968 using Milne’s Predictor-Corrector

method correct to four decimal places.

Soln: Given data , h=0.5

x0 = 0 x1 = 0.5 x2 = 1.0 x3 = 1.5 x4 = 2.0

y0 = 0 y1 = 2.636 y2 = 3.595 y3 = 4.968 y4 = ?

Milne’s Predictor formula is given by

1ny +

ny ,....etc)2-ny,1-n y(i.e

00 y)y(x;y)f(x,dx

dy==

( )

( ) ( ) ( )

0rfor(r)

c4,y

(r)4

y& p4,y(0)4

ywhere(0)4

y,4xf(0)4

f:Note

(r)4

y,4xf(r)4

f ,3y,3xf3f ,2y,2xf2f,1y,1xf1f where

formula Corrector(2)(r)4

f34f2f3

h2y

1)(rc4,

y

formula Predictor(1)32f2f12f3

4h0yp4,y

≠==

=

====

→−−−−−

+++=

+

→−−−−−+−+=

2

yx

dx

dy +=

2

yxy)f(x,

+=

( ) (1)2ff2f3

4hyy 3210p4, −−−−−+−+=

Page 57: Unit1 vrs

Taylor’s and Picard’s methods 58

Dr. V. Ramachandra Murthy

Substituting all the values in eqn(1) we get,

Milne’s Corrector formula is given by

First improvement: Put r=0 in eqn(2)

Second improvement: Put r=1 in eqn(2)

2

yx)y,f(xf ii

iii

+==

ix iy

0.5x1 =

1x2 =

1.5x3 =

636.2y1 =

595.3y2 =

968.4y3 =

568.12

2.6360.5

2

yxf 111 =

+=

+=

2975.22

3.5951

2

yxf 222 =

+=

+=

234.32

4.9681.5

2

yxf 333 =

+=

+=

{ } 871.6)234.3(22975.2)568.1(23

4(0.5)2y p4, =+−+=

( ) ( )(r)44

(r)4

(r)4322

1)(rc4, y,xff where)2(f4ff

3

hyy =−−−−−+++=+

( )

( ) ( )

( ) 6.87314.43554(3.234)2.29753

0.53.595y

4.43552

6.8712

2

yxy,xfy,xff

Where,f4ff3

hy y

(1)

c4,

p4,4

p4,4

(0)

44

(0)

4

(0)4322

(1)c4,

=+++=∴

=+

=+

===

+++=

( )

( ) ( )

( )

6.8733

4.43654(3.234)2.29753

0.53.595y

4.43652

6.87312

2

yxy,xfy,xff

where

f4ff3

hy y

(2)

c4,

(1)c4,4(1)

c4,4(1)44

(1)4

(1)

4322

(2)

c4,

=

+++=∴

=+

=

+===

+++=

Page 58: Unit1 vrs

Taylor’s and Picard’s methods 59

Dr. V. Ramachandra Murthy

Third improvement: Put r=2 in eqn(2)

Since are the same up to four decimal places

y(2)=6.8733

Problem(2):

Use Milne’s method to find y(0.3) from , y(0)=1 after

computing y(-0.1),y(0.1) and y(0.2) by Taylor’s series method correct to

four decimal places..

Soln: Given data , h=0.1, ,

We shall first find y(-0.1),y(0.1) and y(0.2) by Taylor’s series method.

By Taylor’s series method, we have

_____(1)

Put n=0 in eqn(1) ____(2)

22 yxdx

dy+=

( )

( ) ( )

( ) 6.87334.43664(3.234)2.29753

0.53.595y

4.43662

6.87332

2

yxy,xfy,xff

where

f4ff3

hy y

(3)c4,

(2)

c4,4(2)

c4,4

(2)

44

(2)

4

(2)

4322

(3)

c4,

=+++=∴

=+

=+

===

+++=

(3)c4,

(2)c4, y& y

22 yxy)f(x, += 0x0 = 2y0 =

.....y3!

hy

2!

hy

1!

hy)f(xy

///

n

3//

n

2/

nn1n1n ++++== ++

( )( )( ) ( )///////////////IV

2//////

///

22/

y3yyy2y2yyyyy2y

yyy22y

2yy2xy

yxyGiven

+=++=

++=

+=∴

+=

.....y3!

hy

2!

hy

1!

hy)f(xy

///

0

3//

0

2/

0011 ++++==

( )( )( ) 28yy3yy2y

8yyy22y

2y2y2xy

1yxy

//0

/0

///00

IV0

2/0

//00

///0

/000

//0

20

20

/0

=+=

=++=

=+=

=+=

Page 59: Unit1 vrs

Taylor’s and Picard’s methods 60

Dr. V. Ramachandra Murthy

Substituting all these values in Eqn(2), we get

∴ y(0.1)=1.1114

similarly y(-0.1)=0.9087, y(0.2)=1.2529

Thus

Milne’s Predictor formula is given by

Substituting all the values in eqn(3) we get, Milne’s Corrector formula is given by First improvement: Put r=0 in eqn(4)

( ) ( ) ( )

1.1114

.......(28)4!

0.1(8)

3!

0.1(2)

2!

0.1(1)

1!

0.11y

432

1

=

+++++=

0.1x0 −=

1y1 =

0x1 = 0.1x2 = 0.2x3 = 0.3x4 =

9087.0y0 = 1114.1y2 = 2529.1y3 = ?y4 =

( ) (3)32f2f12f3

4h0yp4,y −−−−−+−+=

( ) ( )2

i

2

iiii yx)y,f(xf +==ixiy

0x1 = 1y1 = ( ) ( ) ( ) ( ) 110yxf222

1

2

11 =+=+=

0.1x2 = 1114.1y2 = ( ) ( ) 2452.1yxf2

2

2

22 =+=

0.2x3 = 2529.1y3 = ( ) ( ) 6097.1yxf2

3

2

33 =+=

{ } 4385.1)6097.1(22452.1)1(23

4(0.1)0.9087y p4, =+−+=

0,(r)

c4,y

(r)4

fp4,y(0)4

f

(r)4

y,4xf(r)4

f where)4((r)4

f34f2f3

h2y

1)(rc4,

y

≠==

=−−−−−

+++=

+

rand

Page 60: Unit1 vrs

Taylor’s and Picard’s methods 61

Dr. V. Ramachandra Murthy

( ) ( ) ( ) ( )

( ) 4395.11592.24(1.6097)1.24523

0.11.1114

(1)c4,

y

1592.221.438520.32p4,y2

4x(0)4

f

(0)4

y,4xf(0)4

f Where,(0)4

f34f2f3

h2y

(1)c4,

y

=+++=∴

=+=+=∴

=

+++=

Second improvement: Put r=1 in eqn(4)

( )

( ) ( )

( )

4396.1(3)

c4,ysimilarly

1.43961621.24(1.6097)1.24523

0.11.1114

(2)c4,

y

2.162121.439520.3

2(1)

c4,y2

4x(1)

c4,y,4xf

(1)4

y,4xf(1)4

f

where(1)4

f34f2f3

h2y

(2)c4,

y

=

=+++=∴

=+=

+=

=

=

+++=

Since (3)

c4, y&

(2)c4,

y are the same up to four decimal places

y(0.3)=1.4396 Problem(3):

Using Milne’s method find y(4.4) given that 022y/5xy =−+

y(4)=1, y(4.1)=1.0049, y(4.2)=1.0097, y(4.3)=1.0143 correct to four decimal places.

Soln: 0.1h,5x

2y2y)f(x, :data Given =

−=

Milne’s Predictor formula is given by

( ) (1)32f2f12f3

4h0yp4,y −−−−−+−+=

40x =

0049.11y =

4.11x = 4.22x = 4.33x = 4.44x =

10y = 0097.12y = 0143.13y = ?4y =

Page 61: Unit1 vrs

Taylor’s and Picard’s methods 62

Dr. V. Ramachandra Murthy

Substituting all the values in eqn(1) we get,

{ } 0816.1)0451.0(20466.0)0483.0(23

4(0.1)1p4,y =+−+=

Milne’s Corrector formula is given by

=−−−−−

+++=

+ (r)4

y,4xf(r)4

f where)2((r)4

f34f2f3

h2y

1)(rc4,

y

0,(r)

c4,y

(r)4

fp4,y(0)4

f ≠== rand

First improvement: Put r=0 in eqn(2)

( )

i5x

2iy2

)iy,if(xif−

==ix iy

4.11x =

4.22x =

4.33x =

0049.11y =

0097.12y =

0143.13y =

( ) ( )0.0483

5(4.1)

21.00492

15x

21y2

1f =−

=−

=

( ) ( )0.0466

5(4.2)

21.00972

25x

22y2

2f =−

=−

=

( ) ( )0.0451

5(4.3)

21.01432

35x

23y2

3f =−

=−

=

Page 62: Unit1 vrs

Taylor’s and Picard’s methods 63

Dr. V. Ramachandra Murthy

( )( ) ( )

( ) 0187.10.04374(0.0451)0.04663

0.11.0097

(1)c4,

y

0437.05(4.4)

21.01862

45x

2p4,y2

p4,y,4xf(0)4

y,4xf(0)4

f

Where,(0)4

f34f2f3

h2y

(1)c4,

y

=+++=∴

=−

=−

==

=

+++=

Second improvement: Put r=1 in eqn(2)

( )

( ) 0187.10437.04(0.0451)0.04663

0.11.0097

(2)c4,

y

0437.05(4.4)

21.01872

45x

2(1)

c4,y2

(1)c4,

y,4xf(1)4

y,4xf(1)4

f

where(1)4

f34f2f3

h2y

(2)c4,

y

=+++=∴

=−

=

=

=

=

+++=

Since (2)

c4, y&

(1)c4,

y are the same up to four decimal places

y(4.4)=1.0187 Problem(4):

Given 2y2x12

1

dx

dy

+= and y(0)=1, y(0.1)=1.06, y(0.2)=1.12,

y(0.3)=1.21. Evaluate y(0.4) by Milne’s Predictor-Corrector method.

Soln : 0.1h,2y2x12

1y)f(x, :data Given =

+=

Milne’s Predictor formula is given by

00x =

06.11y =

0.11x = 0.22x = 0.33x =

10y = 12.12y = 21.13y = ?4y =

0.44x =

Page 63: Unit1 vrs

Taylor’s and Picard’s methods 64

Dr. V. Ramachandra Murthy

( ) (1)32f2f12f3

4h0yp4,y −−−−−+−+=

Substituting all the values in eqn(1) we get,

{ } 2771.1)7979.0(26522.0)5674.0(23

4(0.1)1p4,y =+−+=

Milne’s Corrector formula is given by

)2((r)4

f34f2f3

h2y

1)(rc4,

y −−−−−

+++=

+

0,(r)

c4,y

(r)4

fp4,y(0)4

f ,(r)4

y,4xf(r)4

f e wher ≠==

= rand

First improvement: Put r=0 in eqn(2)

2i

y2i

x12

1)iy,if(xif

+==

ix iy

0.11x =

0.22x =

0.33x =

06.11y =

12.12y =

21.13y =

5674.021

y21

x12

11f =

+=

6522.022

y22

x12

12f =

+=

7979.023

y23

x12

13f =

+=

Page 64: Unit1 vrs

Taylor’s and Picard’s methods 65

Dr. V. Ramachandra Murthy

( ) ( )

( ) 2796.10.94594(0.7979)0.65223

0.11.12

(1)c4,

y

9459.022771.124.012

12p4,

y24

x12

1(0)4

y,4xf(0)4

f

Where,(0)4

f34f2f3

h2y

(1)c4,

y

=+++=∴

=

+=

+=

=

+++=

Second improvement: Put r=1 in eqn(2)

( ) ( )

( )

1.2797(3)

c4, ySimilarly

1.27970.94964(0.7979)0.65223

0.11.12

(2)c4,

y

0.949621.279620.412

1(1)c4,

y24

x12

1(1)4

y,4xf(1)4

f

Where,(1)4

f34f2f3

h2y

(2)c4,

y

=

=+++=∴

=

+=

+=

=

+++=

Since (3)

c4, y&

(2)c4,

y are the same up to four decimal places

y(0.4)=1.2797 Problem(5):

Using Milne’s predictor-corrector method solve 2y2ydx

dy−=

y(0)=1 for x=0.2 if y(0.05)=1.0499, y(0.1)=1.0996, y(0.15)=1.1488 correct to four decimal places.

Soln: 0.05h,2y2yy)f(x, :data Given =−=

Milne’s Predictor formula is given by

( ) (1)32f2f12f3

4h0yp4,y −−−−−+−+=

00x =

0499.11y =

0.051x = 0.12x = 0.153x = 0.44x =

10y = 0996.12y = 1488.13y = ?4y =

2i

y-i2y)iy,if(xif ==ix iy

0.051x = 0499.11y = 9975.021

y-12y1f ==

Page 65: Unit1 vrs

Taylor’s and Picard’s methods 66

Dr. V. Ramachandra Murthy

9960.02

2y-22y2f ==

Substituting all the values in eqn(1) we get,

{ } 1969.1)9778.0(29960.0)9975.0(23

4(0.05)1p4,y =+−+=

Milne’s Corrector formula is given by

0,(r)

c4,y

(r)4

fp4,y(0)4

f ,(r)4

y,4xf(r)4

f where

)2((r)4

f34f2f3

h2y

1)(rc4,

y

≠==

=

−−−−−

+++=

+

rand

First improvement: Put r=0 in eqn(2)

( ) ( ) ( )

( ) 1.19740.96124(0.9778)0.99603

0.051.0996

(1)c4,

y

0.961221.19691.196922p4,yp4,2y

(0)4

y,4xf(0)4

f

Where,(0)4

f34f2f3

h2y

(1)c4,

y

=+++=∴

=−=−=

=

+++=

Second improvement: Put r=1 in eqn(4)

( ) ( )

( )

1.1974

0.96104(0.9778)0.99603

0.051.0996

(2)c4,

y

0.961021.19741.197422

(1)c4,

y(1)

c4,2y

(1)4

y,4xf(1)4

f

Where,(1)4

f34f2f3

h2y

(2)c4,

y

=

+++=∴

=−=

−=

=

+++=

Since (2)

c4, y&

(1)c4,

y are the same up to four decimal places

y(0.2)=1.1974

0.12x =

0.153x =

0996.12y =

1488.13y = 9778.023

y-32y3f ==

Page 66: Unit1 vrs

Taylor’s and Picard’s methods 67

Dr. V. Ramachandra Murthy

Problem(6):

Solve the initial value problem 1y(0);2xy1dx

dy=+=

for x=0.4 by Milne’s predictor and corrector method correct to three decimal places, given that

Soln: 0.1h,2y1y)f(x, :data Given =+= x

Milne’s Predictor formula is given by

( ) (1)32f2f12f3

4h0yp4,y −−−−−+−+=

( )( ) 122.12105.11.0121

y1x11f =+=+=

( )( ) 299.12223.12.0122

y2x12f =+=+=

( )( ) 1.55021.3550.3123

y3x13f =+=+=

Substituting all the values in eqn(1) we get,

{ } 526.1)550.1(2299.1)122.1(23

4(0.1)1p4,y =+−+=

x 0.1 0.2 0.3

y 1.105 1.223 1.355

00x =

105.11y =

0.11x = 0.22x = 0.33x = 0.44x =

10y = 223.12y = 355.13y = ?4y =

2i

yix1)iy,if(xif +==ix iy

0.11x =

0.22x =

0.33x =

105.11y =

223.12y =

355.13y =

Page 67: Unit1 vrs

Taylor’s and Picard’s methods 68

Dr. V. Ramachandra Murthy

Milne’s Corrector formula is given by

0,(r)

c4,y

(r)4

fp4,y(0)4

f ,(r)4

y,4xf(r)4

f where

)2((r)4

f34f2f3

h2y

1)(rc4,

y

≠==

=

−−−−−

+++=

+

rand

First improvement: Put r=0 in eqn(2)

( ) ( )( )

( ) 1.5371.9314(1.550)1.2993

0.11.223

(1)c4,

y

1.93121.5260.412p4,y4x1

(0)4

y,4xf(0)4

f

Where,(0)4

f34f2f3

h2y

(1)c4,

y

=+++=∴

=+=+=

=

+++=

Second improvement: Put r=1 in eqn(2)

( )( )

( )

1.537

1.9444(1.550)1.2993

0.11.223

(2)c4,

y

944.121.5370.412

(1)c4,

y4x1(1)4

y,4xf(1)4

f

Where,(1)4

f34f2f3

h2y

(2)c4,

y

=

+++=∴

=+=

+=

=

+++=

Since (2)

c4, y&

(1)c4,

y are the same up to four decimal places

y(0.4)=1.537 Problem(7):

Part of a Numerical solution of ( ) ( )y0.1x0.2dx

dy+= is shown in the

following table.

x 0.00 0.05 0.10 0.15

y 2.0000 2.0103 2.0211 2.0323

Page 68: Unit1 vrs

Taylor’s and Picard’s methods 69

Dr. V. Ramachandra Murthy

Use Milne’s Predictor and corrector method to find the next entry in the table, correct to four decimal places. Soln: ( ) ( ) 0.05h,y0.1x0.2y)f(x, :data Given =+=

Milne’s Predictor formula is given by

( ) (1)32f2f12f3

4h0yp4,y −−−−−+−+=

( ) ( ) iy0.1ix2.0)iy,if(xif +==

( ) ( ) 2110.00103.21.005.02.01f =+=

( ) ( ) 2221.00211.21.01.02.02f =+=

( ) ( ) 2332.00323.21.015.02.03f =+=

Substituting all the values in eqn(1) we get,

{ } 0444.2)2332.0(22221.0)2110.0(23

4(0.05)1p4,y =+−+=

Milne’s Corrector formula is given by

0,(r)

c4,y

(r)4

fp4,y(0)4

f ,(r)4

y,4xf(r)4

f where

)2((r)4

f34f2f3

h2y

1)(rc4,

y

≠==

=

−−−−−

+++=

+

rand

First improvement: Put r=0 in eqn(2)

00x =

0103.21y =

0.051x = 0.12x = 0.153x = 0.24x =

20y = 0211.22y = 0323.23y = ?4y =

ix iy

0.11x =

0.22x =

0.33x =

105.11y =

223.12y =

355.13y =

Page 69: Unit1 vrs

Taylor’s and Picard’s methods 70

Dr. V. Ramachandra Murthy

( )

( )

( ) 0444.20.24444(0.2332)0.22213

0.052.0211

(1)c4,

y

0.24444(0.1)2.0440.22.0

p4,(0.1)y4x2.0(0)4

y,4xf(0)4

f

Where,(0)4

f34f2f3

h2y

(1)c4,

y

=+++=∴

=+=

+=

=

+++=

Since (1)

c4, y&p4, y are the same up to four decimal places

y(0.2)=2.0444 Problem(8): Determine the value of y(0.4) using Milne’s predictor and corrector method correct to four decimal places. Given that

1y(0);2yxy/y =+= Use Taylor’s series method to get the values of

y(0.1),y(0.2) and y(0.3). {Ans: y(0.1)=1.1167, y(0.2)=1.2767, y(0.3)=1.5023

1.8376}y(0.4)

(4)c4,

y1.8376(3)

c4,y1.8375,

(2)c4,

y1.8369,(1)

c4, y1.8397,p4, y

=∴

=====

Problem(9):

By using the Milne’s predictor-corrector method find an approximate

solution of the equation 0x,x

2y/y ≠= at the point x=2 given that y(1)=2,

y(1.25)=3.13, y(1.5)=4.5 , y(1.75)=6.13.

{Ans:

8.00}y(2)

8.00(2)

c4,y8.00,

(1)c4,

y8.01,p4, y

=∴

===

Page 70: Unit1 vrs

Taylor’s and Picard’s methods 71

Dr. V. Ramachandra Murthy

Adam-Bashforth Predictor-Corrector Method

Consider the differential equation 0y)0y(x;y)f(x,dx

dy==

Adam-Bashforth Predictor-Corrector formula is given by

( )

( ) ( ) ( )

0rfor(r)

c4,y

(r)4

y& p4,y(0)4

ywhere(0)4

y,4xf(0)4

f:Note

(r)4

y,4xf(r)4

f ,3y,3xf3f ,2y,2xf2f,1y,1xf1f where

formulaCorrector1f25f319f(r)4

9f24

h3y

1)(rc4,

y

formulaPredictor09f137f259f355f24

h3yp4,y

≠==

=

====

+−++=

+

→−+−+=

Problem(1):

Solve for y(2) given that ;2

yx

dx

dy += y(0)=2, y(0.5)=2.636, y(1.0)=3.595,

y(1.5)=4.968 by Adam-Bashforth Predictor Corrector method correct to

four decimal places.

Soln: 0.5h,2

yxy)f(x, :data Given =

+=

00x = 0.51x = 1.02x = 1.53x = 2.04x =

636.21y = 595.32y = 968.43y = ?4y =

Adam’s Predictor formula is given by

( ) -(1)-------09f137f259f355f24

h3yp4,y −+−+=

20y =

Page 71: Unit1 vrs

Taylor’s and Picard’s methods 72

Dr. V. Ramachandra Murthy

ix

iy 2iyix

)iy,if(xif+

==

00x =

20y = 1

2

20

20y0x

)0y,0f(x0f =+

=+

==

0.51x =

636.21y =

568.1

2

636.25.0

21y1x

)1y,1f(x1f

=

+=

+==

12x =

595.32y = 2975.2

2

595.30.1

22y2x

)2y,2f(x2f

=

+=

+==

1.53x =

968.43y =

234.3

2

968.45.1

23y3x

)3y,3f(x3f

=

+=

+==

( ) ( ) ( ) ( )( )

8707.6

191.568372.2975593.2345524

0.54.968p4,y

becomes Eqn(1)

=

−+−+=

Adam-Bashforth Corrector formula is given by

(2)1f25f319f(r)4

9f24

h3y

1)(rc4,

y −−−−−−−

+−++=

+

0rfor(r)

c4,y

(r)4

y& p4,y(0)4

ywhere(0)4

y,4xf(0)4

f ≠==

=

First improvement: Put r=0 in eqn(2)

Page 72: Unit1 vrs

Taylor’s and Picard’s methods 73

Dr. V. Ramachandra Murthy

( )

( ) ( ) ( )( )

6.8730

1.5682.297553.234194.4353924

0.54.968

(1)c4,

y

4.43532

6.87072

2

p4,y4xp4,y,4xf

(0)4

y,4xf(0)4

f where

1f25f319f(0)4

9f24

h3y

(1)c4,

y

=

+−++=∴

=+

=+

==

=

+−++=

Second improvement: Put r=1 in eqn(2)

( ) ( ) ( )( )

6.8733

1.5682.297553.234194.4365924

0.54.968

(2)c4,

y

4.4365

2

6.87302

2

(1)c4,

y4x(1)

c4,y,4xf

(1)4

y,4xf(1)4

f where

1f25f319f(1)4

9f24

h3y

(2)c4,

y

=

+−++=∴

=

+=

+=

=

=

+−++=

Third improvement: Put r=2 in eqn(2)

( ) ( ) ( )( )

6.8733

1.5682.297553.234194.4366924

0.54.968

(3)c4,

y

4.43662

6.87332

2

(2)c4,

y4x(2)

c4,y,4xf

(2)4

y,4xf(2)4

f

1f25f319f(2)4

9f24

h3y

(3)c4,

y

=

+−++=∴

=+

=+

=

=

=

+−++=

Since (3)

c4, y&

(2)c4,

y are the same up to four decimal places

y(2)=6.8733

Page 73: Unit1 vrs

Taylor’s and Picard’s methods 74

Dr. V. Ramachandra Murthy

Problem(2):

Obtain the solution of the initial value problem 2xy2xdx

dy=− , y(1)=1 at

x=1(0.1)1.3 by Taylor’s series method and at x=1.4 by Adam’s-Bashforth

method correct to four decimal places.

Soln: 0.1h1,0y1,0xy),(12xy2x2xy)f(x,Given ===+=+=

By Taylor’s series method, we have

.....///ny

3!

3h//ny

2!

2h/ny

1!

hny)1nf(x1ny ++++=+=+ _____(1)

/y2xy)2x(1//y

y)(12x/yGiven

++=∴

+=

///y2x//6xy/6yIVySimilarly,

//y2xy)2(1/4xy///y

++=

+++=

Put n=0 in eqn(1) .....///0y

3!

3h//0y

2!

2h/0y

1!

h0y)1f(x1y ++++== ------

(2)

661x186x1x66x2///0

y20

x//0

y06x/0

6yIV0

y

181x61)2(14x1x2//0

y20

x)0y2(1/0

y04x///0

y

61x21)2(1)(1/0

y20

x)0y(102x//0

y

21)1(1)0y(120

x/0

y

=++=++=

=+++=+++=

=++=++=

=+=+=

Substituting all these values in Eqn(2), we get

( ) ( ) ( )

1.2332

.......(66)24

40.1(18)

3!

30.1(6)

2!

20.1(2)

1!

0.111y

=

+++++=

Put n=1 in eqn(1) .....///1y

3!

3h//1y

2!

2h/1y

1!

h1y2y ++++= ----------(3)

Page 74: Unit1 vrs

Taylor’s and Picard’s methods 75

Dr. V. Ramachandra Murthy

( )

( )

99.5907///1

y21

x//1

y16x/1

6yIV1

y

25.8968//1

y21

x)1y2(1/1

y14x///1

y

7.8853

2.702121.11.2332)2(1.1)(1/1

y21

x)1y(112x//1

y

2.70211.2332)(121.1)1y(121

x/1

y

=++=

=+++=

=

++=++=

=+=+=

Substituting all these values in Eqn(3), we get

( ) ( )

( )

1.5475

.......(99.5907)4!

40.1

(25.8968)3!

30.1(7.8853)

2!

20.1(2.7021)

1!

0.11.23322y

=

++

+++=

similarly 9785.13y =

Thus

5475.12y = 9785.13y =

Adam Predictor formula is given by

( )09f137f259f355f24

h3yp4,y −+−+= ---------(4)

( ) ( )iy12ix)iy,if(xif +==

( ) ( ) ( ) ( ) 211210y120x0f =+=+=

( ) ( ) ( ) ( )

7021.2

1.2332121.11y121x1f

=

+=+=

( ) ( ) ( ) ( )

6684.3

1.5475121.22y122x2f

=

+=+=

( ) ( ) ( ) ( )

0336.5

1.9785121.33y123x3f

=

+=+=

10x =

2332.11y =

1.11x = 1.22x = 1.33x = 1.44x =

10y = ?4y =

ix iy

10x = 10y =

1.11x = 2332.11y =

1.22x = 5475.12y =

1.33x = 9785.13y =

Page 75: Unit1 vrs

Taylor’s and Picard’s methods 76

Dr. V. Ramachandra Murthy

( ) ( ) ( ) ( )( )

8707.6

191.568372.2975593.2345524

0.54.968p4,y

becomes Eqn(4)

=

−+−+=

Adam-Bashforth Corrector formula is given by

+−++=

+1f25f319f

(r)4

9f24

h3y

1)(rc4,

y ---------(5)

0rfor(r)

c4,y

(r)4

y& p4,y(0)4

ywhere(0)4

y,4xf(0)4

f ≠==

=

First improvement: Put r=0 in eqn(5)

( ) ( ) ( ) ( ) ( )

7.0005

2.5717121.4p4,y124xp4,y,4xf0

4y,4xf

(0)4

f

where1f25f319f(0)4

9f24

h3y

(1)c4,

y

=

+=+==

=

+−++=

( ) ( ) ( )( )

2.5743

2.70213.668455.0336197.0005924

0.11.9785

(1)c4,

y

=

+−++=∴

Second improvement: Put r=1 in eqn(5)

( ) ( ) ( )

2.5745(3)

c4,ySimilarly 2.5745

(2)c4,

y

7.0056

2.5743121.4(1)

c4,y12

4x(1)

c4,y,4xf

(1)4

y,4xf(1)4

f

where1f25f319f(1)4

9f24

h3y

(2)c4,

y

==∴

=

+=

+=

=

=

+−++=

Since (3)

c4, y&

(2)c4,

y are the same up to four decimal places

y(1.4)=2.5745

Page 76: Unit1 vrs

Taylor’s and Picard’s methods 77

Dr. V. Ramachandra Murthy

Problem(3):

Solve for y(0.4) given that ;2yxdx

dy−= y(0)=1, y(0.1)=0.9117,

y(0.2)=0.8494, y(0.3)=0.8061 by Adam-Bashforth Predictor Corrector method correct to four decimal places.

Soln 0.1h,2yxy)f(x, :dataGiven : =−=

Adam Predictor formula is given by

( )09f137f259f355f24

h3yp4,y −+−+= --------(1)

( )2iy-ix)iy,if(xif ==

( ) ( ) 121-020y-0x0f −===

( ) ( )

7311.0

20.9117-0.121y-1x1f

−=

==

( ) ( )

0.5214

20.8494-0.222y-2x2f

−=

==

( ) ( )

0.3497

20.8061-0.323y-3x3f

−=

==

( ) ( ) ( ) ( )( )

7789.0

1-90.7311-370.5214-590.3497-5524

0.10.8061p4,y

becomes Eqn(1)

=

−+−+=

Adam-Bashforth Corrector formula is given by

00x =

10y = 9117.01y =

0.11x = 0.22x =

8494.02y =

0.33x =

8061.03y =

0.44x =

?4y =

0.33x = 8061.03y =

0.22x = 8494.02y =

0.11x = 9117.01y =

00x = 10y =

ix iy

Page 77: Unit1 vrs

Taylor’s and Picard’s methods 78

Dr. V. Ramachandra Murthy

+−++=

+1f25f319f

(r)4

9f24

h3y

1)(rc4,

y ---------(2)

0rfor(r)

c4,y

(r)4

y& p4,y(0)4

ywhere(0)4

y,4xf(0)4

f ≠==

=

First improvement: Put r=0 in eqn(2)

( ) ( ) ( )

( ) ( ) ( )

0.7784

0.7311

0.5214-50.3497-190.2066-9

24

0.10.8061

(1)c4,

y

0.206620.77890.42p4,y4xp4,y,4xf

(0)4

y,4xf(0)4

f

where1f25f319f(0)4

9f24

h3y

(1)c4,

y

=

−++=∴

−=−=−==

=

+−++=

Second improvement: Put r=1 in eqn(2)

( )

( ) ( ) ( )( )

0.7785(3)

c4,ySimilarly

0.7785

0.73110.5214-50.3497-190.2059-924

0.10.8061

(2)c4,

y

0.205920.77840.42

(1)c4,

y4x(1)

c4,y,4xf

(1)4

f

where1f25f319f(1)4

9f24

h3y

(2)c4,

y

=

=

−−++=∴

−=−=

−=

=

+−++=

Since (3)

c4, y&

(2)c4,

y are the same up to four decimal places

y(0.4)=0.7785 Problem(4):

Solve ;2

xy

dx

dy= for x=0.4 using Adam-Bashforth Predictor Corrector

method correct to four decimal places. Given that y(0)=1, y(0.1)=1.01, y(0.2)=1.022, y(0.3)=0.1023.

Page 78: Unit1 vrs

Taylor’s and Picard’s methods 79

Dr. V. Ramachandra Murthy

Soln: 0.1h,2

xyy)f(x, :dataGiven ==

Adam Predictor formula is given by

( )09f137f259f355f24

h3yp4,y −+−+= --------(1)

ix iy

2iyix

)iy,if(xif ==

00x = 10y = 0

2

0(1)

20y0x

0f ===

0.11x = 01.11y = 0505.0

2

0.1(1.01)

21y1x

1f ===

0.22x = 022.12y = 1022.0

2

0.2(1.022)

22y2x

2f ===

0.33x = 023.13y = 1534.0

2

0.3(1.023)

23y3x

3f ===

( ) ( ) ( ) ( )( )

0408.1

090.0505370.1022590.15345524

0.11.023p4,y

becomes Eqn(1)

=

−+−+=

Adam-Bashforth Corrector formula is given by

+−++=

+1f25f319f

(r)4

9f24

h3y

1)(rc4,

y ---------(2)

0rfor(r)

c4,y

(r)4

y& p4,y(0)4

ywhere(0)4

y,4xf(0)4

f ≠==

=

00x =

10y = 01.11y =

0.11x = 0.22x =

022.12y =

0.33x = 0.44x =

023.13y = ?4y =

Page 79: Unit1 vrs

Taylor’s and Picard’s methods 80

Dr. V. Ramachandra Murthy

First improvement: Put r=0 in eqn(2)

( )

( ) ( ) ( )

1.0410

0505.0

0.102250.1534190.20819

24

0.1023.1

(1)c4,

y

2081.02

)0.4(1.0408

2

p4,y4xp4,y,4xf0

4y,4xf

(0)4

f

where1f25f319f(0)4

9f24

h3y

(1)c4,

y

=

+

−++=∴

====

=

+−++=

Second improvement: Put r=1 in eqn(2)

( ) ( ) ( )

1.0410

0505.0

0.102250.1534190.20829

24

0.1023.1

(2)c4,

y

2082.02

)0.4(1.0410

2

(1)c4,

y4x(1)

c4,y,4xf

(1)4

f

where1f25f319f(1)4

9f24

h3y

(2)c4,

y

=

+

−++=∴

===

=

+−++=

Since (2)

c4, y&

(1)c4,

y are the same up to four decimal places

y(0.4)=1.0410 Problem(5):

Solve ;yx

1

dx

dy

+= for x=0.8 using Adam-Bashforth Predictor Corrector

method correct to four decimal places. Given that y(0)=2, y(0.2)=2.0932, y(0.4)=2.1754, y(0.6)=2.2492.

Soln:

0.2h,yx

1y)f(x, :data Given =

+=

2492.23y =

Adam- Predictor formula is given by

( )09f137f259f355f24

h3yp4,y −+−+= --------(1)

00x =

0932.21y =

0.21x = 0.42x =

20y = 1754.22y =

0.33x = 0.44x =

?4y =

Page 80: Unit1 vrs

Taylor’s and Picard’s methods 81

Dr. V. Ramachandra Murthy

ix

iy iyix

1)iy,if(xif

+==

00x =

20y =

5.020

1

0y0x

10f =

+=

+=

0.21x =

0932.21y =

4360.00932.22.0

1

1y1x

11f =

+=

+=

0.42x =

1754.22y =

3882.01754.24.0

1

2y2x

12f =

+=

+=

0.63x =

2492.23y = 3509.02492.26.0

1

3y3x

13f =

+=

+=

( ) ( ) ( ) ( )( )

2.3160

0.590.4360370.3882590.35095524

0.22.2492p4,y

becomes Eqn(1)

=

−+−+=

Adam-Bashforth Corrector formula is given by

+−++=

+1f25f319f

(r)4

9f24

h3y

1)(rc4,

y ---------(2)

0rfor(r)

c4,y

(r)4

y& p4,y(0)4

ywhere(0)4

y,4xf(0)4

f ≠==

=

First improvement: Put r=0 in eqn(2)

( )

( ) ( ) ( )( )

2.3162

0.43600.388250.3509190.3209924

0.22.2492

(1)c4,

y

0.32092.31600.8

1

p4,y4x

1p4,y,4xf0

4y,4xf

(0)4

f

where1f25f319f(0)4

9f24

h3y

(1)c4,

y

=

+−++=∴

=+

=+

==

=

+−++=

Page 81: Unit1 vrs

Taylor’s and Picard’s methods 82

Dr. V. Ramachandra Murthy

Second improvement: Put r=1 in eqn(2)

( ) ( ) ( )( )

2.3162

0.43600.388250.3509190.3209924

0.22.2492

(2)c4,

y

0.32092.31620.8

1

(1)c4,

y4x

1(1)c4,

y,4xf(1)4

f

where1f25f319f(1)4

9f24

h3y

(2)c4,

y

=

+−++=∴

=+

=

+

=

=

+−++=

Since (2)

c4, y&

(1)c4,

y are the same up to four decimal places

y(0.8)=2.3162 Problem(6): Using Adam-Bashforth Predictor Corrector method evaluate y(1.4) if y

satisfies 2x

1

x

y

dx

dy=+ and y(1)=1, y(1.1)=0.996, y(1.2)=0.986,

y(1.3)=0.972 correct to three decimal places.

Soln: 0.1h,2x

xy1xy

2x

1y)f(x, :dataGiven =

−=−=

Adam-Bashforth Predictor formula is given by

( )09f137f259f355f24

h3yp4,y −+−+= --------(1)

10x =

996.01y =

1.11x = 1.22x =

10y = 986.02y =

1.33x = 1.44x =

972.03y = ?4y =

Page 82: Unit1 vrs

Taylor’s and Picard’s methods 83

Dr. V. Ramachandra Murthy

ix

iy ( )2ix

iyix-1)iy,if(xif ==

00x =

10y = ( ) ( )0

21

1x1-1

20x

0y0x-10f ===

.111x =

996.01y = ( ) ( )

0.079

21.1

1.1x0.996-1

21x

1y1x-11f

−=

==

1.22x =

986.02y = ( ) ( )

0.127

21.2

1.2x0.986-1

22x

2y2x-12f

−=

==

1.33x =

972.03y = ( ) ( )

155.0

21.3

1.3x0.972-1

23x

3y3x-13f

−=

==

( ) ( ) ( ) ( )( )

955.0

090.079-370.127-590.155-5524

0.10.972p4,y

becomes Eqn(1)

=

−+−+=

Adam’s-Bashforth Corrector formula is given by

+−++=

+1f25f319f

(r)4

9f24

h3y

1)(rc4,

y --------(2)

0rfor(r)

c4,y

(r)4

y& p4,y(0)4

ywhere(0)4

y,4xf(0)4

f ≠==

=

First improvement: Put r=0 in eqn(2)

( )( ) ( )

( ) ( ) ( )( ) 955.00.0790.171-50.155-190.171-924

0.10.972

(1)c4,

y

-0.17121.4

)1.4)(0.955-1

24x

p4,y4x-1p4,y,4xf)

(0)4

y,4((0)4

f

where1f25f319f(0)4

9f24

h3y

(1)c4,

y

=−−++=∴

=====

+−++=

xf

Since (1)

c4, y&p4,y are the same up to four decimal places

y(1.4)=0.955

Page 83: Unit1 vrs

Taylor’s and Picard’s methods 84

Dr. V. Ramachandra Murthy

Problem(7): Using Adam-Bashforth Predictor Corrector method obtain the solution of

y2xdx

dy−= at x=0.4 correct to four places of decimals given that

x: 0 0.1 0.2 0.3

y: 1 0.9051 0.8212 0.7491

Soln: 0.1hy,-2xy)f(x, :dataGiven ==

Adam-Bashforth Predictor formula is given by

( )09f137f259f355f24

h3yp4,y −+−+= --------(1)

ix

iy

( ) iy-2ix)iy,if(xif ==

00x =

10y =

( ) ( ) 11-200y-20x0f −===

.101x =

9051.01y =

( ) ( ) 8951.09051.0-20.11y-21x1f −===

0.22x =

8212.02y =

( ) ( ) 7812.08212.0-20.22y-22x2f −===

0.33x =

7491.03y =

( ) ( ) 6591.07491.0-20.33y-23x3f −===

00x =

9051.01y =

0.11x = 0.22x =

10y = 8212.02y =

0.33x = 0.44x =

7491.03y = ?4y =

Page 84: Unit1 vrs

Taylor’s and Picard’s methods 85

Dr. V. Ramachandra Murthy

( ) ( ) ( ) ( )( )

6896.0

1-90.8951-370.7812-590.6591-5524

0.10.7491p4,y

becomes Eqn(1)

=

−+−+=

Adam-Bashforth Corrector formula is given by

+−++=

+1f25f319f

(r)4

9f24

h3y

1)(rc4,

y --------(2)

0rfor(r)

c4,y

(r)4

y& p4,y(0)4

ywhere(0)4

y,4xf(0)4

f ≠==

=

First improvement: Put r=0 in eqn(2)

( ) ( ) ( )

( ) ( ) ( )( )

.68960

0.89510.7812-50.6591-190.5296-924

0.10.7491

(1)c4,

y

-0.52960.6896-20.4p4,y-24xp4,y,4xf

(0)4

f

where1f25f319f(0)4

9f24

h3y

(1)c4,

y

=

−−++=∴

====

+−++=

Since (1)

c4, y&p4,y are the same up to four decimal places

y(0.4)=0.6896 Problem(8): Using Adam-Bashforth Predictor Corrector method obtain the solution of

yx2edx

dy−= for x=0.4 under the conditions y(0)=2, y(0.1)=2.010,

y(0.2)=2.040 and y(0.3)=2.090 correct to four decimal places.

Soln: 0.1h-y,x2ey)f(x, :dataGiven ==

Adam’s Predictor formula is given by

( )09f137f259f355f24

h3yp4,y −+−+= --------(1)

00x =

010.21y =

0.11x = 0.22x =

20y = 040.22y =

0.33x = 0.44x =

090.23y = ?4y =

Page 85: Unit1 vrs

Taylor’s and Picard’s methods 86

Dr. V. Ramachandra Murthy

ix

iy

iyx

2e)iy,if(xifi −==

00x =

20y =

0202e0yx

2e0f0i =−=−=

.101x =

010.21y =

0.20032.0100.12e1yx

2e1fi =−=−=

0.22x =

040.22y =

0.40282.0400.22e2yx

2e2f2 =−=−=

0.33x =

090.23y =

0.60972.0900.32e3yx

2e3f3 =−=−=

( ) ( ) ( ) ( )( )

2.1615

090.2003370.4028590.60975524

0.12.090p4,y

becomes Eqn(1)

=

−+−+=

Adam-Bashforth Corrector formula is given by

+−++=

+1f25f319f

(r)4

9f24

h3y

1)(rc4,

y --------(2)

0rfor(r)

c4,y

(r)4

y& p4,y(0)4

ywhere(0)4

y,4xf(0)4

f ≠==

=

First improvement: Put r=0 in eqn(2)

( )

( ) ( ) ( )( )

2.1615

0.20030.402850.6097190.8221924

0.12.090

(1)c4,

y

2.16150.42ep4,yx

2ep4,y,4xf)(0)4

y,4((0)4

f

where1f25f319f(0)4

9f24

h3y

(1)c4,

y

4

=

+−++=∴

−=−===

+−++=

xf

Since (1)

c4, y&p4, y are the same up to four decimal places

y(0.4)=2.1615

Page 86: Unit1 vrs

Taylor’s and Picard’s methods 87

Dr. V. Ramachandra Murthy

Problem(8): Using Adam-Bashforth Predictor Corrector method obtain the solution of

2yxdx

dy−= at x=0.8 correct to four places of decimals given that

x: 0 0.2 0.4 0.6

y: 0 0.0200 0.0795 0.1762

{Ans: y(0.8)=0.2416}