understanding multiple ray tracing for automotive radar … · 2020. 9. 22. · understanding...

27
Understanding Multiple Ray Tracing for Automotive Radar Simulations Jin Zhang, R&D Engineer Oct.13 th 2020 Radar and Antenna

Upload: others

Post on 27-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Understanding Multiple Ray Tracing for Automotive Radar Simulations

    Jin Zhang, R&D Engineer

    Oct.13th 2020

    Radar and Antenna

  • Design Engineering Software (EESof) R&D Team

    Keysight Technologies, Inc.

    Jin Zhang (Ph.D)Shenghui Zhou (Ph.D)

  • Agenda

    ➢ What is MRT (Multiple Ray Tracing)

    ➢ The Basic Theories of MRT

    ➢ Conducting MRT Analysis on Real-life Scenarios

    ➢ Advanced Scenario/Radar Architecture Designs

    ➢ Summary

  • WHAT IS MRT (MULTIPLE RAY TRACING)

    Understanding Multiple Ray Tracing for Automotive Radar Simulations

  • Challenges in Automotive Radar Designs• Multiple System-Level Design Requirements

    • PCS (Near-Range), ACC (Long Range), AEBS (for heavy trucks), Autonomous Driving, etc. • System-Level Radar Evaluations: High-Res (Wide BW), Beamforming, etc.• Multi-Domain Signal Analysis: Baseband, RF, Digitizing, DSP, etc.

    • Complex Architectural & Algorithm Design for ARo FMCW, MFSK, Frequency Hopping, Pulse, etc.o MIMO Radar Architecture (TDM-MIMO, CDM-MIMO, etc.)o Multi-Target Range & Velocity Detection Performanceso Advanced DSP Algorithm Designs (Compressed Sensing, etc.)

    • AR working under Complex Environment Scenarioso Radar Platforms in motiono Guard-rails, Road Clutters, Interferenceso Pedestrians, Bicycles o Atmospheric & Propagation Loss (Harsh Weather Conditions)

    Multiple Ray Tracing (MRT) is the Solution!

  • A First Impression on MRT

  • Why Using MRT?MRT is an established large-scale EM simulation technology to

    characterize EM wave travelling behaviors in Complex Scenarios.

    MRT is a New Library in Keysight SystemVue that can do:

    Complex Scenario Modeling with built-in/imported 3D CAD Targets

    Authentic Radar Echo from Real-world Sensing Scenarios

    Integrated System-Level Radar Design with SV Dataflow

    Cross-check with Target Detections from other Sensors

  • Quick Demo of MRT CapabilitiesWhat unexpected targets can be seen

    in a small-scale Complex Scenario? What can be seen in

    a large-scale Complex Scenario ?

  • THE BASIC THEORIES OF MRT

    Understanding Multiple Ray Tracing for Automotive Radar Simulations

  • Core Enabling Technologies in MRT

    SBR + MRTSolution

    3D CAD basedTarget Modeling

    Facet Searching Algorithm

    Scattered Field EM Calculation

    Algorithms

    Abundant built-in Target Models

    Optimized KD-tree based Fast

    Facet Searching

    Facet ScatteringEdge Scattering

    Surface Roughness

    Externally Imported

    Target Models

  • 3D-CAD based built-in Target Models

    Facet No.: ~0.3k Facet No.: ~1.5k Facet No.: ~460k

    Cars -> 3 levels of fidelities

    Facet No.: ~1k Facet No.: ~130k

    Trucks/Buses -> 2 levels of fidelities

  • 3D-CAD based built-in Target Models

    Guardrails -> 4 Models Available

    Lampposts -> 2 levels of fidelity

    Manhole Cover

    Road Signs

  • Optimized KDTree-based Facet Searching Algorithm

    Left Fig: from https://en.wikipedia.org/wiki/K-d_tree

    How to determine which facet is hit in a ray’s bouncing paths?

    The algorithm narrows down the region of possible ray hitting:

    White -> Red -> Green -> Blue

  • Scattered EM Calculation Algorithms

    Scattered FieldElectromagnetic

    Algorithms

    Facet Scattering

    Edge Scattering

    Surface Roughness

    Basic Ray Tracing Capability Enabled (GO + PO + Ray Tubes)

    Target sharp edges caused additional scattered rays

    Rough surfaces caused EM field fluctuations

    Ray Tubes illuminating Trucks

  • CONDUCTING MRT ANALYSIS ON REAL-LIFE SCENARIOS

    Understanding Multiple Ray Tracing for Automotive Radar Simulations

  • OfflineCalculatedRay Files

    SystemVue MRT Channel Model

    SystemVue MRT Channel Model

    SystemVue MRT Simulation Methodology

  • Starting from one Simple Scenario

    Target Characterization with MRT:

    ✓ True mmW Radar echoes obtained;✓ Not point-scatter NOW!

    ✓ Range/Doppler Multi-Scatter Spreading clearly observed

    ✓ Range/Velocity hot-spot positions consistent with input values

    Far Range Car Complex Echo

    Near Range Car Complex Echo

  • Target Profiling (WB mmW Radar Imaging Demo)

    ✓ Detected Point-Cloud positions

    consistent with input values

    ✓ Both vehicles have been characterized

    by multi-scatter profiles

    ❖ (Wideband mmW radar ranging capability demonstrated)

    CFAR: SOCA

    Target Grouping: Plots-Of-Centroid

    Range/Angle: MathLang ScriptTarget Profiling for the

    Far Range Car

    Target Profiling for the Near Range Car

  • Complex Scenario Modeling and RayTracing Snapshot

    Multiple Ray Bouncing Clearly Visible

  • Range Doppler Mapping for Complex Scenario

    Two Sedans

    Bus Side

    Effects

    Nearby Ground

    Reflections

    Far Bus +

    Truck

    Multiple

    Reflections

    Two Sedans

    Bus

    Side

    Effects

    Far Bus

    + Truck

    Multiple

    Reflections

    Nearby Reflections

    Significantly Attenuated

    Pedestrian Pedestrian

    Raw MRT RD Mapping Tx+Rx Antenna Patterns Imported

  • Point Scatter Plot for Complex Scenario Modeling

    Target Scatter Distribution Results

    ScenarioMRT Simulation

  • ADVANCED SCENARIO/RADAR ARCHITECTURE DESIGNS

    Understanding Multiple Ray Tracing for Automotive Radar Simulations

  • Using External Scenario Model File – Tunnel MRT Demo

  • Integrating Advanced Radar Architectures

  • Integrating Advanced Radar ArchitecturesTDM-MIMO Src & Tx Modeling

    Tx _TDM -M IM OSigGen

    Subnetwork5 {Tx_TDM-MIMOSigGen}

    AutomotiveRadar

    CW

    f r eq_out _

    wavef or m _out _

    SampleRate=400e+6 Hz [SampleRate]DeltaFreq=200e+6 Hz [BW]

    LowerFreq=0 HzOffTime=5.4e-6 s [Toff_A]

    FreqFixTime=0 sFreqDownTime=0 s

    FreqUpTime=40e-6 s [Tup_A]Amplitude=1 V

    Waveform_type=UserDefinedA19 {AutomotiveRadar_CW@Automotive Radar Models}

    Tx _UpConv _RefTx

    Subnetwork6 {Tx_UpConv_RefTx}

    Tx_UpConv

    Subnetwork7 {Tx_UpConv}

    123

    StartStopOption=TimeS1 {Sink@Data Flow Models}

    MixerAe Term

    LNA

    Noise

    Density

    NDensit y=- 190. 021 dBm [ - 174- 10* log10( Sam pleRat e/ ADCFs) ]

    NDensit yType=Const ant noise densit yA19 { AddNDensit y@Dat a Flow M odels}

    Am pl i fier

    G CType=none

    NoiseFigur e=0

    G ainEr r or =NoneQ uant izat ion=NO

    G ain=70 [ Rx_G ain_CplxSce]

    G ainUnit =dBA20 { Am plif ier @Dat a Flow M odels}

    Noise

    Density

    NDensit y=- 190. 021 dBm [ - 174- 10* log10( Sam pleRat e/ ADCFs) ]NDensit yType=Const ant noise densit y

    A21 { AddNDensit y@Dat a Flow M odels}

    123

    St ar t St opO pt ion=Sam plesDisabled: O PEN

    S2 { Sink@Dat a Flow M odels}

    Am pl i fier

    G CType=none

    NoiseFigur e=0G ainEr r or =None

    Q uant izat ion=NO

    G ain=70 [ Rx_G ain_CplxSce]G ainUnit =dB

    A22 { Am plif ier @Dat a Flow M odels}

    Rx_Doppler FFT

    DopplerFFT_Out

    DopplerFFT_BeforeCFAR

    MIMOReshape_DataIn

    Subnet wor k10 { Rx_Doppler FFT}

    Rx _RangeFFT

    FFTSize=512 [ RangeFFTSize]

    ADCFs=10e+6 [ ADCFs]PW=40e- 6 [ Fr eqUpTim e1]

    PRI =45. 4e- 6 [ PRI 1]Subnet wor k12 { Rx_RangeFFT}

    Rx_TDM-MIMOSigReshape

    TxNum =2 [ TxNum ]Doppler FFTSize=128 [ Doppler FFTSize]

    RangeFFTSize=512 [ RangeFFTSize]Subnet wor k13 { Rx_TDM - M I M O SigReshape}

    Rx _RangeFFT

    FFTSize=512 [ RangeFFTSize]ADCFs=10e+6 [ ADCFs]

    PW=40e- 6 [ Fr eqUpTim e1]PRI =45. 4e- 6 [ PRI 1]

    Subnet wor k2 { Rx_RangeFFT}

    Rx_TDM-MIMOSigReshape

    TxNum =2 [ TxNum ]

    Doppler FFTSize=128 [ Doppler FFTSize]RangeFFTSize=512 [ RangeFFTSize]

    Subnet wor k3 { Rx_TDM - M I M O SigReshape}

    Rx_Doppler FFT

    DopplerFFT_Out

    DopplerFFT_BeforeCFAR

    MIMOReshape_DataIn

    Subnet wor k17 { Rx_Doppler FFT}

    Rx _RangeFFT

    FFTSize=512 [ RangeFFTSize]

    ADCFs=10e+6 [ ADCFs]PW=40e- 6 [ Fr eqUpTim e1]

    PRI =45. 4e- 6 [ PRI 1]

    Subnet wor k19 { Rx_RangeFFT}

    G ain=1. 099e- 3 [ sqr t ( Ae_Ter m ) ]

    G 1 { G ain@Dat a Flow M odels}

    Rx_TDM-MIMOSigReshape

    TxNum =2 [ TxNum ]Doppler FFTSize=128 [ Doppler FFTSize]

    RangeFFTSize=512 [ RangeFFTSize]

    Subnet wor k20 { Rx_TDM - M I M O SigReshape}

    G ain=1. 099e- 3 [ sqr t ( Ae_Ter m ) ]

    G 2 { G ain@Dat a Flow M odels}

    Rx_Doppler FFT

    DopplerFFT_Out

    DopplerFFT_BeforeCFAR

    MIMOReshape_DataIn

    Subnet wor k22 { Rx_Doppler FFT}

    Rx_Doppler FFT

    DopplerFFT_Out

    DopplerFFT_BeforeCFAR

    MIMOReshape_DataIn

    Subnet wor k6 { Rx_Doppler FFT}

    Rx _RangeFFT

    FFTSize=512 [ RangeFFTSize]

    ADCFs=10e+6 [ ADCFs]

    PW=40e- 6 [ Fr eqUpTim e1]PRI =45. 4e- 6 [ PRI 1]

    Subnet wor k8 { Rx_RangeFFT}

    Rx_TDM-MIMOSigReshape

    TxNum =2 [ TxNum ]

    Doppler FFTSize=128 [ Doppler FFTSize]RangeFFTSize=512 [ RangeFFTSize]

    Subnet wor k9 { Rx_TDM - M I M O SigReshape}

    G ain=1. 099e- 3 [ sqr t ( Ae_Ter m ) ]G 3 { G ain@Dat a Flow M odels}

    G ain=1. 099e- 3 [ sqr t ( Ae_Ter m ) ]

    G 4 { G ain@Dat a Flow M odels}

    123

    St ar t St opO pt ion=Aut o

    Disabled: O PENLO { Sink@Dat a Flow M odels}

    123

    St ar t St opO pt ion=Aut oDisabled: O PEN

    RF { Sink@Dat a Flow M odels}

    BeatFreqBeatSignal

    LoSignal

    Recieve

    DownSam pleFact or =40 [ f loor ( Sam pleRat e/ ADCFs) ]

    Subnet wor k1 { Beat Fr eq}

    BeatFreqBeatSignal

    LoSignal

    Recieve

    DownSam pleFact or =40 [ f loor ( Sam pleRat e/ ADCFs) ]

    Subnet wor k4 { Beat Fr eq}

    BeatFreqBeatSignal

    LoSignal

    Recieve

    DownSam pleFact or =40 [ f loor ( Sam pleRat e/ ADCFs) ]Subnet wor k5 { Beat Fr eq}

    BeatFreqBeatSignal

    LoSignal

    Recieve

    DownSam pleFact or =40 [ f loor ( Sam pleRat e/ ADCFs) ]

    Subnet wor k21 { Beat Fr eq}

    123St ar t St opO pt ion=Sam ples

    S1 { Sink@Dat a Flow M odels}

    Noise

    Density

    NDensit y=- 190. 021 dBm [ - 174- 10* log10( Sam pleRat e/ ADCFs) ]NDensit yType=Const ant noise densit y

    A10 { AddNDensit y@Dat a Flow M odels}

    Noise

    Density

    NDensit y=- 190. 021 dBm [ - 174- 10* log10( Sam pleRat e/ ADCFs) ]

    NDensit yType=Const ant noise densit y

    A16 { AddNDensit y@Dat a Flow M odels}

    Am pl i fier

    G CType=none

    NoiseFigur e=0G ainEr r or =None

    Q uant izat ion=NOG ain=70 [ Rx_G ain_CplxSce]

    G ainUnit =dB

    A18 { Am plif ier @Dat a Flow M odels}

    A23 { Add@Dat a Flow M odels}

    123St ar t St opO pt ion=Sam ples

    Dat aCube { Sink@Dat a Flow M odels}

    Am pl i fier

    G CType=none

    NoiseFigur e=0

    G ainEr r or =NoneQ uant izat ion=NO

    G ain=70 [ Rx_G ain_CplxSce]G ainUnit =dB

    A5 { Am plif ier @Dat a Flow M odels}

    AutomotiveRadarRayTracingChannel

    RxAnt Slant Angle=0

    RxAnt Downt ilt Angle=90

    RxAnt Bear ingAngle=0RxPhaseCent er =NO

    TxAnt Slant Angle=0

    TxAnt Downt ilt Angle=90TxAnt Bear ingAngle=90

    TxPhaseCent er =NORayTr acingFileNam e=C: …/ Pr oject Tr acing_Fr am e1_Ray3_256PRI _Syst em VueRays. bin

    Num ber of Rays=100000 [ Num O f Rays]

    RxElem ent Pat t er nFileScaleFact or =1RxAnt Pat t er nFileNam e=C: / User s/ shengzho…/ Rx_Ant enna_2line. csv

    RxAnt Pat t er nFileType=HFSS

    RxCom m onAnt Pat t er nFile=YESRxAnt Pat t er nType=Fr om File

    RxAxisType=Y- Hor izont alRxElem ent Spacing=0. 513 [ Dr x]

    Num RxAnt s1D=4 [ RxEleNum ]

    RxAr r ayConf ig=Unif or m Linear Ar r ayTxElem ent Pat t er nFileScaleFact or =1

    TxAnt Pat t er nFileNam e=C: / User s/ shengzho…/ Tx_Ant enna_8line. csv

    TxAnt Pat t er nFileType=HFSSTxCom m onAnt Pat t er nFile=YES

    TxAnt Pat t er nType=Fr om FileTxAxisType=Y- Hor izont al

    TxElem ent Spacing=2. 053 [ Dt x]

    Num TxAnt s1D=2 [ TxEleNum ]TxAr r ayConf ig=Unif or m Linear Ar r ay

    AnglePair Pr ecision=0. 017 [ Angle_Res_Rad_CplxSce]DelayPair Pr ecision=2. 5e- 9 [ Tim eDelay_Res_sec]

    A4

    123

    St ar t St opO pt ion=Aut oDisabled: O PEN

    RayTr acingCH { Sink@Dat a Flow M odels}

    Aut om ot iveRadar

    CW

    freq_out_

    waveform_out_

    Sam pleRat e=400e+6 Hz [ Sam pleRat e]Delt aFr eq=200e+6 Hz [ BandWidt h]

    Lower Fr eq=0 Hz

    O f f Tim e=5. 4e- 6 s [ O f f Tim e1]Fr eqFixTim e=0 s

    Fr eqDownTim e=0 s

    Fr eqUpTim e=40e- 6 s [ Fr eqUpTim e1]Am plit ude=1 V

    Wavef or m _t ype=User Def inedA17 { Aut om ot iveRadar _CW@Aut om ot ive Radar M odels}

    123

    St ar t St opO pt ion=Aut oDisabled: O PEN

    RayTr acingCHI nput { Sink@Dat a Flow M odels}

    123

    St ar t St opO pt ion=Sam ples

    Disabled: O PENS4 { Sink@Dat a Flow M odels}

    Tx_TDM - M I M O SigGen

    Sam pleNum O f PRI =18160 [ Sam pleNum O f PRI 1]

    TxNum =2 [ TxEleNum ]

    Subnet wor k14 { Tx_TDM - M I M O SigG en}

    Tx_UpConv_Ref Tx

    Subnet wor k15 { Tx_UpConv_Ref Tx}

    Tx _UpConv

    Sam pleRat e=400e+6 [ Sam pleRat e]TxNum =2 [ TxNum ]

    f c=77e+9 [ Fcar r ier ]

    Subnet wor k16 { Tx_UpConv}

    Tx Modeling

    MRT Channel Modeling

    2D FFTRx RF Modeling

    2T4R TDM MIMO Radar Architecture

  • Integrating Advanced Radar Architectures

  • Thank You for Attending