ultra-low k spin-on polymer; benefits, challenges and ... · thermal stability @ 450 oc < 1% /...

29
S i LK * Semiconductor Dielectric S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS Ultra-Low k Spin-on Polymer; Benefits, Challenges and Solutions for Damascene Integration Don Frye Semiconductor Fab Materials Dow Chemical Co. [email protected]

Upload: others

Post on 21-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

Ultra-Low k Spin-on Polymer;Benefits, Challenges and Solutions for

Damascene Integration

Don FryeSemiconductor Fab Materials

Dow Chemical Co.

[email protected]

Page 2: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

Acknowledgements

J. Hsu, S. Cummings, K. Foster, K. Itchhaporia, M. Mills, C. Mohler, A. Oshima, J.G. Song, J. Waeterloos, R. Woods

Ensemble* Dielectric Solutions Development Team

porous SiLK* Dielectric Development Team

SiLK* Semiconductor Dielectric Development Team

SFM Application Lab Team

* Trademark of The Dow Chemical Company

Page 3: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

ITRS 2001 - Dielectric needsYear of Production 2001 2004 2007 2010DRAM 1/2 PITCH (nm) 130 90 65 45Interlevel metal insulator - effective dielectric constant (k)

3.0 - 3.6 2.6 - 3.1 2.3 - 2.7 2.1 - 2.4

Interlevel metal insulator (minimum expected) - bulk dielectric constant (k)

< 2.7 < 2.4 <2.1 < 1.9

• K-effective is the goal ! ⇒ ILD material selection and integration choice is open

• Most companies will use the same low k ILD material for 2 technology generations but achieve a lower k-effective with a different integration scheme for the second generation. •Different low k materials can potentially leapfrog each other atsuccessive technology generations

Page 4: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

Low k Spin-on Polymers

Benzocyclobutene k = 2.7

Fluorinated Polyimide k = 2.5 - 2.9 *

Perfluorocyclobutane k = 2.4

Polyarylene k = 2.8

Polybenzoxazole k = 2.6 - 2.9 *

Polynorbornene k = 2.5

Polyphenylene k = 2.6

* anisotropic materials exist in these polymer families

Page 5: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

SiLK Semiconductor Dielectric Properties

Thermal Stability @ 450 oC < 1% / hr weight lossGlass Transition > 490 oCDielectric Constant @ 1 MHz 2.6 (isotropic)Refractive Index @ 633 nm 1.62Moisture Uptake (25 oC / 85% RH) < 0.24 % (wt)Expansion Coefficient 62 ppm / oC (50-150 oC)Film Stress @ 25 oC 60 MPa (tensile)Thermal Conductivity 0.23 W / mK @ 125 oCVoltage Breakdown > 4 MV/cmHardness (indentation) 0.29 GPaModulus (indentation) 3.6 MPaToughness 0.62 MPa m1/2

Strength (tensile) 93 MPa

This does not look like Oxide !

Page 6: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

Low k Spin-on Polymer Material Property Benefits

Initial Cu+ Drift Rates

105

106

107

108

109

1010

1011

1012

1013

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

300 250 200 150 100°C350

1000/Temperature (1/K)

Initi

al C

u+ Drif

t Rat

e (io

ns/c

m2 s)

PECVDoxynitride

(1.39 eV)

BCB (1.20 eV )

FPI (0.85 eV)

PAE (1.01 eV)

0.8 MV/cm

1.0 MV/cm

depositedoxide

(0.99 eV)

Ref: Loke et al., “Copper Drift in Low-K Polymer Dielectrics for ULSI Metallization,” presented at the 1998 Symposium on VLSI Technology (Honolulu, HI), June 9, 1998.

SiLK (0.97)

• Low k Spin-on Polymers have Cu drift rates approaching SiN and are more then 104 times lower then oxide or oxide based (OSG) ILD materials

Page 7: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

Low k Spin-on Polymer Material Property Challenges

• Modulus and hardness will decrease for all materials when voids (air) is introduced•At k<2.6, all ILD materials will have a modulus significantly less then the metal conductor (Cu)

Modulus vs. Dielectric

0

10

20

30

40

50

60

70

80

1.00 1.50 2.00 2.50 3.00 3.50 4.00Dielectric Constant

Mod

ulus

, GPa

SiO2SiLK*

Page 8: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

Low k Spin-on Polymer Material Property SolutionsFracture Toughness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Dielectric Constant

Toug

hnes

s, M

Pa-m

^1/2

OxideSiLK*

Aerogels

OSG

HSQ

OSG

SiO2

SiLK

PorousSiLK*

IncreasingCMP & Packaging

concerns

• Toughness determines CMP survivability not hardness or modulus for polymers. •Polymers have almost the same toughness as oxide and are significantly tougher then OSG materials at equivalent k values

Page 9: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

Low k Spin-on Polymer Integration Processes

Hybrid ILDHybrid ILD Buried Etch StopBuried Etch Stop Timed EtchTimed EtchIntegrationIntegration Integration IntegrationIntegration Integration

Technology AdvancementTechnology Advancement• Extendible K-effective roadmap• Leveraged development knowledge through multiple technology generations• CoO reduction roadmap

Page 10: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

Low k Spin-on Polymer Hybrid Integration Processes

SOPk=2.6

Oxide

SOPk=2.6

FSG

SOPk=2.1

OSG

Oxide FSG Oxide FSG OSGOSGHybrid ILDHybrid ILD Hybrid ILDHybrid ILD Hybrid ILDHybrid ILDIntegrationIntegration Integration IntegrationIntegration Integration

Technology AdvancementTechnology Advancement

• Extendible K-effective roadmap• Leveraged development knowledge through multiple technology generations• Multiple Low k strategy entry points

Page 11: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

Low k Spin-on Polymer Integration ModulesChallengeAvailability of integrated all spin-on dielectric stackDielectric Dep.

Lithography

Etch SolutionAll dielectric layers deposited sequentially with a single final cure per interconnect layer !

Clean

Metal Barrier

CMP

Packaging

Reliability

Extendibility

Page 12: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

Low k Spin-on Polymer Integration Modules

Dielectric Dep.

Lithography

Etch

ChallengeCompatibility with 248nm, 193nm, … photoresistSolutionMost low k spin-on polymer materials do not contain any amine (NH) structures nor are they prone to amine absorption during etch and clean processing !

Clean

Metal Barrier

CMP

Packaging

Reliability

Extendibility

Page 13: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

Low k Spin-on Polymer Integration Modules

Dielectric Dep.

Lithography

Etch

StandardAsh

Process• Bottom hardmask protects polymer during ash•Top hardmask is removed during CMP to lower k-effective

ChallengeAvailability of a photoresist rework process

SolutionDual Hard mask integration scheme !Clean

Metal Barrier

CMP

Packaging

Reliability

Extendibility

Page 14: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

Low k Spin-on Polymer Integration Modules

• Both “timed etch” and “buried etch stop”integration schemes have been demonstrated

ChallengeEtch of high aspect structures in damascene integrationDielectric Dep.

Lithography SolutionDual Hard mask materials offer an etch selectivity of greater then 20:1 !

Etch

Clean

Metal Barrier

CMP

Packaging

Reliability

Extendibility

Courtesy of Tokyo Electron, Ltd.

Page 15: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

Before wet clean processing After wet clean processing

Depending on the etch chemistryDepending on the etch chemistryPost etch clean removes this material prior to Post etch clean removes this material prior to metallizationmetallizationCleaning similar to dense SiLKCleaning similar to dense SiLK

Lithography

Etch

Clean

Metal Barrier

CMP

Packaging

Reliability

Extendibility

Porous SiLKDielectric Dep.

Page 16: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

Low-k Materials in CMPMinimum Toughness/Adhesion Threshold to survive CMP

Dielectric Dep.

Lithography

0

0.1

0.2

0.3

0.4

0.5

SiLK

TM

PQ-6

00

CVD

SOG

E

SOG

D

SOG

A

SOG

B

SOG

C

KC

(MPa

-m1/

2 )

Not Debonding Debonding

CMP Test Results*

Ohta et. al., JAPS Sept. 2000

Etch

Clean

Metal Barrier

CMP

Packaging

Reliability

Extendibility

Page 17: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

5

7

9

11

13

15

17

19

21

23

25

27

36 38 40 42 44 46 48

Ultrasonic Power(Arb. Units)B

ond

Forc

e (A

rb. U

nits

)

Cu/SiO2

Cu/Low-k• Higher Bond force is

necessary to ensure intimate contact between the wire and bond pad.

Dielectric Dep.

Lithography

Etch

Clean

Metal Barrier

CMP

Packaging

Reliability

Extendibility

• Inter metallic coverage and ball shear value was observed slightly less due to less efficient energy transfer to the wire/pad interface.

• With careful optimization of bond process parameter or wire bond pad design, good bond with tensile failure on the bond wire at the neck during wire pull can be achieved

V.Kripesh et.al., Institute of Microelectronics, ECTC 2002, May 28th -31st, San Diego, US

Page 18: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

Sequential Processing ModelingSequential Processing Modeling

Stacked Via Structure - FEA

SiLK(1)

Si

TaN(1) Cu(1)

SiN(1)

SiLK(2)

TaN(2) Cu(2)

SiN(2)

25

25

180

130

180

130

90

5000

7

• Simulation Stepsstep 1: SiLK(1) cured at 400C

step 3: Heat up to 350Cstep 2: Cool down to 20C

step 11: Heat up to 400C

step 9: Heat up to 350Cstep 8: Cu(1) plating

step 6: Cool down to 100Cstep 5: TaN(1) depositionstep 4: Numerical CMP of TaN(1)

step 7: Numerical CMP of Cu(1)

step 10: SiN(1) deposition

step 12: SiLK(2) cured at 400Cstep 13: Cool down to 20Cstep 14: Heat up to 350Cstep 15: Numerical CMP of TaN(2)

step 17: Cool down to 100Cstep 16: TaN(2) deposition

step 22: Cool down to 20C

step 18: Numerical CMP of Cu(2)step 19: Cu(2) platingstep 20: Heat up to 350Cstep 21: SiN(2) deposition

Dielectric Dep.

Lithography

Etch

Clean

Metal Barrier

CMP

Packaging

Reliability

Extendibility

Page 19: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

Stress of Stacked Via StructureStress of Stacked Via Structure

• Simulation Stepsstep 1: SiLK(1) cured at 400C

step 3: Heat up to 350Cstep 2: Cool down to 20C

step 11: Heat up to 400C

step 9: Heat up to 350Cstep 8: Cu(1) plating

step 6: Cool down to 100Cstep 5: TaN(1) depositionstep 4: CMP of TaN(1)

step 7: CMP of Cu(1)

step 10: SiN(1) deposition

step 12: SiLK(2) cured at 400Cstep 13: Cool down to 20Cstep 14: Heat up to 350Cstep 15: CMP of TaN(2)

step 17: Cool down to 100Cstep 16: TaN(2) deposition

step 22: Cool down to 20C

step 18: CMP of Cu(2)step 19: Cu(2) platingstep 20: Heat up to 350Cstep 21: SiN(2) deposition

-800

-600

-400

-200

0

200

400

step8 step9 step10 step11 step12 step13 step14 step15 step16 step17 step18 step19 step20 step21 step22A

xial

Str

ess

of C

u (M

Pa)

Cu(1)ViaCu(2)

Page 20: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

Stress during Thermal CycleStress during Thermal CycleAfter Step 22Dielectric Dep.

-1000

-800

-600

-400

-200

0

200

400

600

-100 0 100 200 300 400 500Temperature (C)

Axi

al S

tres

s of

Cu

Via

(MPa

)

Lithography

Etch

Clean

Metal Barrier

CMP

Packaging

Reliability

Extendibility

Page 21: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

Low k Spin-on Polymer Integration Modules

Extendibility is the key to maintaining pace with the ITRS and the IC Industry

Leveraging 70-80% of the process knowledge from the previous technology node is as important as high utilization of the existing tool set

Dielectric Dep.

Lithography

Etch

Clean

Metal Barrier

CMP

Packaging

Reliability

Extendibility

Page 22: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

Low k Spin-on Polymer ExtendibilityMicrostructure Challenges

Dielectric Dep.

Lithography

Etch

……mechanical integrity, mechanical integrity, dielectric performancedielectric performance

Uniform DistributionUniform Distribution

……protection from protection from electrical shortselectrical shorts

Small Pore SizeSmall Pore Size

andand

Clean

Metal Barrier

CMP

Packaging andandReliability

0.80.8

0.00.0

0.10.1

0.20.2

0.30.3

0.40.4

0.50.5

0.60.6

0.70.7

1.01.0 1.51.5 2.02.0 2.52.5 3.03.0 3.53.5 4.04.0 4.54.5

Dielectric ConstantDielectric Constant

Tou

ghn

ess,

MP

aTo

ugh

nes

s, M

Pa --

mm1/

21/

2

OxideOxide

SiLK*SiLK*

AerogelsAerogels

OSGOSG

HSQHSQ

OSGOSG

SiO2SiO2SiLK*SiLK*

PorousPorousSiLK*SiLK*

Fracture ToughnessFracture Toughnessandand

……protection from protection from trapped mat'ls, device trapped mat'ls, device yieldyield

Closed Pore SystemClosed Pore System

Potential for trapped chemicalsPotential for trapped chemicals

Extendibility

Page 23: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

Low k Spin-on Polymer Extendibility

Templated Pore SolutionTemplated Pore SolutionDielectric Dep.

Lithography

Etch "one poragen yields one pore""one poragen yields one pore"

Clean

Poragen ⇒ Pre-formed nano-particlesMetal Barrier

CMP Inherent advantages:

• doesn't rely on nucleation and growth• less process dependent

Technical challenges:• < 10 nm size is a new frontier • particles must be isolated• requires a metal free process

Packaging

Reliability

Extendibility

Page 24: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

Low k Spin-on Polymer Extendibility

Dielectric Dep.

Lithography

Etch

Clean

Metal Barrier

CMP

Packaging

Reliability

Extendibility

Page 25: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

Low k Spin-on Polymer Extendibility

Dielectric Dep.

Lithography

Etch

Clean

Metal Barrier

CMP

Packaging

Reliability

Extendibility

Porous SiLK Evolution: V1 Porous SiLK Evolution: V1 ⇒⇒ porous SiLK porous SiLK

V1 / V2V1 / V2 V3 / V4V3 / V4 V5V5

V6 / V7V6 / V7 V8V8 Porous SiLKPorous SiLK

Page 26: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

Low k Spin-on Polymer ExtendibilitySiLK V7 V8 Porous

SiLKK 2.65 2.35 2.20 2.10

Davg(nm) NA 25 16 < 10

Modulus(GPa @ 1 um) 3.6 2.8 2.7 2.8

Hardness(GPa @ 1 um) 0.27 0.17 0.16 0.15

CTE 62 62 62 ~ 62Toughness /

Adhesion(Mpa-m0.5)

> 0.35 > 0.35 > 0.35 > 0.35

ProcessTemperature

(oC)400 – 450 430 430 400

Chemistry SiLK SiLK SiLK SiLK

• Extendible material that leverages processing knowledge

Dielectric Dep.

Lithography

Etch

Clean

Metal Barrier

CMP

Packaging

Reliability

Extendibility

Page 27: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

Low k Spin-on Polymer Extendibility

0.0

0.3

0.5

0.8

1.0

0 5 10 15Diameter (nm)

Nor

mal

ized

Fra

ctio

n 8.2 nm mean diameter

0.99

0.992

0.994

0.996

0.998

1

16.0 16.5 17.0 17.5 18.0 18.5

0.6% > 2X Mean Size

Log-Normal Distributions for Porous SiLKTm

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

0 100 200 300

r (Å)

f(r) (

norm

aliz

ed)

V(9A)V9(B)V8

Dielectric Dep.

Lithography

Etch

Clean

Metal Barrier

CMP

Packaging

Reliability

Extendibility

• Continual reduction in pore size (closed) and pore size distribution•Good barrier metal integrity

Page 28: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

Pore Size Impact on Yield

Yield increase with decreasing pore size

Measurement ofleakage current

25 m meander line required to observe electrical differences (5025 m meander line required to observe electrical differences (50m effective length)m effective length)

Page 29: Ultra-Low k Spin-on Polymer; Benefits, Challenges and ... · Thermal Stability @ 450 oC < 1% / hr weight loss Glass Transition > 490 oC Dielectric Constant @ 1 MHz 2.6 (isotropic)

SiLK *

Semiconductor Dielectric

S E M I C O N D U C T O R F A B M A T E R I A LS S E M I C O N D U C T O R F A B M A T E R I A LS

SummaryChallenges for Low k Spin-on Polymers

Polymer mechanical properties are not like oxide and will require different integration and design mindset

Benefits of Low k Spin-on Polymers (SiLK)Chemistry is unchanged since the mid 1990’s

Compatible with all existing process modules and tools

Extendible versions, lower dielectric constant (k=2.1), are already available

Existing materials meet ITRS targets for k and k-effective through 45nm technology

Have passed full reliability qualification at 130nm and 90nm

In manufacturing at 130nm already