u toronto, february 18, 2011darin j. ulness, concordia college 1 noisy light spectroscopy noisy...

42
U Toronto, February 18, 2011 Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J. Ulness Department of Chemistry Concordia College Moorhead, MN

Upload: caitlin-oxman

Post on 19-Jan-2016

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1Noisy Light Spectroscopy

Noisy LightSpectroscopy:

Putting noise to good use

Darin J. UlnessDepartment of Chemistry

Concordia CollegeMoorhead, MN

Page 2: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 2Noisy Light Spectroscopy

OutlineI. IntroductionII.TheoryIII. Experiment

• Coherent Raman Scattering

IV. Connections

Page 3: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 3Noisy Light Spectroscopy

SpectroscopyUsing light to gain information about matter

• Lineshape function• Transition frequencies• Cross-sections• Susceptibilities

Information Uses of information• In Chemistry• In Biology• In Engineering

Page 4: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 4Noisy Light Spectroscopy

Modern SpectroscopyFrequency Domain• Measure Spectra• Examples• IR, UV-VIS, Raman

• Material response• Spectrally narrow• Temporally slow

Time Domain• Response to light pulse• Examples• PE, transient abs.

• Material response• Spectrally broad• Temporally fast

Page 5: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 4Noisy Light Spectroscopy

Modern SpectroscopyFrequency Domain• Measure Spectra• Examples• IR, UV-VIS, Raman

• Material response• Spectrally narrow• Temporally slow

Time Domain• Response to light pulse• Examples• PE, transient abs.

• Material response• Spectrally broad• Temporally fast

Page 6: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 4Noisy Light Spectroscopy

Modern SpectroscopyFrequency Domain• Measure Spectra• Examples• IR, UV-VIS, Raman

• Material response• Spectrally narrow• Temporally slow

Time Domain• Response to light pulse• Examples• PE, transient abs.

• Material response• Spectrally broad• Temporally fast

Is there another useful technique?Noisy light? YES!

Page 7: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 5Noisy Light Spectroscopy

Light

frequency

Spectrum

time

One frequency (or color)

Electromagnetic radiation•Focus on electric field part

Page 8: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 6Noisy Light Spectroscopy

Noisy Light: Definition• Broadband• Phase incoherent• Quasi continuous wave

Ele

tric

Fie

ld S

tren

gth

Time

Noi

sy L

ight

Spe

ctru

m

Frequency

Time resolution onthe order of the correlation time, tc

Page 9: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 7Noisy Light Spectroscopy

Noisy Light: Alternative• Its cw nature allows precise measurement

of transition frequencies.• Its ultrashort noise correlation time offers

femtosecond scale time resolution.• It offers a different way to study the

lineshaping function.• It is particularly useful for coherent

Raman scattering.• Other spectroscopies: photon echo, OKE,

FROG, polarization beats…

Page 10: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 8Noisy Light Spectroscopy

Theory

Optical coherence theory

Perturbation theory: Density operator

Noisy Light Spectroscopy

Page 11: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 9Noisy Light Spectroscopy

Theoretical Challenges•Complicated Mathematics•Complicated Physical Interpretation

Difficulty•The cw nature requires all field action permutations. The light is always on.

•The proper treatment of the noise cross-correlates chromophores.

Page 12: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 10Noisy Light Spectroscopy

Bichromophoric Model

a

b

Noisy light

P(t)(3)

P(s)(3)*

< >

Solution•Factorized time correlation (FTC) diagram analysis

Page 13: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 11Noisy Light Spectroscopy

FTC Diagram Analysis

Set of intensity level terms

(pre-evaluated)

Set of evaluated intensity level

terms

Messy integration and algebra

Set of FTC diagrams

ConstructionRules

EvaluationRules

Physicshard hard

easy

Page 14: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 12Noisy Light Spectroscopy

Example: I(2)CARS

a

b

P(t,{ti})

P(s,{si})

arrow segments: t-dependent correlation

line segments: t-independent

correlation

Page 15: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 13Noisy Light Spectroscopy

Experiment•Coherent Raman Scattering: e.g., CARS•Frequency resolved signals•Spectrograms•Molecular liquids

Page 16: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 14Noisy Light Spectroscopy

Nonlinear Optics

P= c ESignal

Material

Light field

Perturbation series approximation

P(t) = P(1) + P(2) + P(3) …

P(1) = c (1)E, P(2) = c (2)EE, P(3) = c (3)EEE

Page 17: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 15Noisy Light Spectroscopy

CARSCoherent Anti-Stokes Raman Scattering

wR

w1

w1w2

wCARS

w1-w2= wR

wCARS= w1 +wR

Page 18: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 16Noisy Light Spectroscopy

CARS with Noisy Light•I(2)CARS• We need twin noisy beams B and B’.• We also need a narrowband beam, M.• The frequency of B (B’) and M differ by

roughly the Raman frequency of the sample.• The I(2)CARS signal has a frequency that is

anti-Stokes shifted from that of the noisy beams.

B

B’M

I(2)CARS

Page 19: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 17Noisy Light Spectroscopy

I(2)CARS: Experiment

Monochromator

NarrowbandSource

BroadbandSource(noisy light)

Lens

Sample

Interferometer

t

B

B’

MI(2)CARS

ComputerCCD

Page 20: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 18Noisy Light Spectroscopy

I(2)CARS: SpectrogramMonochromator

NarrowbandSource

BroadbandSource

Lens

Sample

Interferometer

t

B

B’

MI(2)CARS

ComputerCCD

• Signal is dispersed onto the CCD

• Entire Spectrum is taken at each delay

• 2D data set: the Spectrogram

Page 21: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 19Noisy Light Spectroscopy

I(2)CARS: Spectrogram

Pixel A

A

Pixel B

B

Pixel C

C

Dark regions: high intensityLight regions: low intensity

Oscillations: downconversion of Raman frequency.Decay: Lineshape function

Page 22: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 20Noisy Light Spectroscopy

SpectrogramNo new information can be extracted.

However…

• Huge oversampling gives much enhanced precision.

• Visually appealing presentation of data gives much insight.

Page 23: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 21Noisy Light Spectroscopy

I(2)CARS: Data Processing

18000 18100 18200 18300 18400

-2

-1

0

1

2

BenzeneT22

0 200 400 600 800 1000 1200

0

25

50

75

100

125

150

BenzeneT22

100 200 300 400

0.2

0.4

0.6

0.8

Fourier

Transformation

X-Marginal

Page 24: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 22Noisy Light Spectroscopy

Virtues of I(2)CARS•Less expensive.•Easier experiment to perform.•Signals are more robust.• Immune to dispersion effects. •Exquisitely sensitive to relative changes in the vibrational frequency and dephasing rate constant.

Page 25: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 23Noisy Light Spectroscopy

17300 17400 17500 17600

-400

-200

0

200

400

Pyridine

Pyridine and Water

17300 17400 17500 17600

-400

-200

0

200

400

Pyridine

17300 17400 17500 17600

-400

-200

0

200

400

ave x.45 pyr_water

FT

NeatPyridine

Pyridine/Water Xw= 0.55

Page 26: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 24Noisy Light Spectroscopy

Pyridine and Water

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

955 975 995 1015 1035 1055

pure pyr

x=.15

x=0.3

x=0.45

x=0.75

Wavenumber / cm-1

Page 27: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 25Noisy Light Spectroscopy

Pyridine and Water

960 970 980 990 1000 1010 1020 1030 1040

0.0

0.2

0.4

0.6

0.8

1.0 Pyridine/water solution: X(py)=0.6

T = -4o

T = 3o

T = 23o

T = 32o

T = 42o

T = 52o

T = 62o

T = 72o

T = 76o

No

rma

lize

d X

-ma

rgin

al

Wavenumber / cm-1

Page 28: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 26Noisy Light Spectroscopy

Halogen bondingPyridine and C3F7I

0

0.5

1

1.5

2

2.5

3

3.5

4

900 920 940 960 980 1000 1020 1040 1060 1080 1100

Frequency (cm-1)

Norma

lized In

tensity

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Neat

C6F13I and Pyridine

0

0.5

1

1.5

2

2.5

3

3.5

4

900 920 940 960 980 1000 1020 1040 1060 1080 1100Frequency (cm-1)

Norma

lized In

tesity

Neat

0.1

0.2

0.3

0.4

0.5

0.6

0.7

.8

0.9

Page 29: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 27Noisy Light Spectroscopy

ProspectusSummary:•Noisy light provides an alternative method for probing ultrafast dynamics of the condensed phase.

•Experimentally it is relatively easy.•Theoretically it is relatively hard.•FTC diagram analysis helps with theoretical understanding.

Page 30: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 28Noisy Light Spectroscopy

ProspectusFuture of noisy light at Concordia:• I(2)CARS is an exquisitely sensitive probe of vibrational frequency shifts

•A principle goal is to explore halogen bonding. I(2)CARS is one tool available to us.

Page 31: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 29Noisy Light Spectroscopy

ConnectionsCoherent Energy Transfer:•Noisy light can produce a nonlinear response.

•Noisy light is “incoherent.” •Amplitude level correlation.

Page 32: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 30Noisy Light Spectroscopy

Connections

< >

P(t) P(s)

Stimulus

“ReactionCenter”

Page 33: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College 31Noisy Light Spectroscopy

AcknowledgementsFormer StudentsTheoryJahan DawlatyDan BiebighauserJohn GregioreDuffy Turner

Other Group MembersDr. Mark Gealy, Department of PhysicsDr. Eric Booth, Post-doctoral researcherDr. Haiyan Fan, Post-doctoral researcher

FundingNSF CAREER Grant CHE-0341087Henry Dreyfus Teacher/Scholar programConcordia Chemistry Research Fund

Method DevelopmentPye Phyo AungTanner SchulzLindsay WeiselKrista CosertPerrie ColeAlex HarshBritt BergerZach JohnsonThao Ta

Hydrogen/Halogen bondingEric BergJeff EliasonDiane MolivaJason OlsonScott FlancherDanny Green

Page 34: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College Noisy Light Spectroscopy

Page 35: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College A1Noisy Light Spectroscopy

Utility of FTC Diagrams•Organize lengthy calculations•Error checking• Identification of important terms• Immediate information of about features of spectrograms

•Much physical insight that transcends the choice of mathematical model.

Page 36: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College A2Noisy Light Spectroscopy

Example: I(2)CARS

a

b

P(t,{ti})

P(s,{si})

arrow segments: B, B’ correlation

t-dependentline segments: B, B or B’,B’ correlation

t-independent

FTC analysis• Each diagram with arrows

has a topologically equivalent partner diagram containing only lines: 2:1 dynamic range

• Each diagram with arrows has a topologically equivalent partner diagram that has arrows pointing in the opposite direction: signal must be symmetric in t

Page 37: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College A3Noisy Light Spectroscopy

Example: I(2)CARS

Pixel A

A

Pixel B

B

Pixel C

C

The I(2)CARS data shows • 2:1 dynamics range• t symmetry

Page 38: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College A4Noisy Light Spectroscopy

0 1 2 3 4 50.00

0.05

0.10

0.15

0.20

0.25

0.30

s g

S/N

(a)

0 1 2 3 4 50.00

0.05

0.10

0.15

0.20

0.25

0s w

D

S/N

(b)

Page 39: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College A5Noisy Light Spectroscopy

Page 40: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College A6Noisy Light Spectroscopy

Page 41: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College A7Noisy Light Spectroscopy

-20 0 20 40 60 800.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Fit Results:ratio =0.00783 T + 0.905R = 0.9942

Fre

e p

yr.

to

H-b

ou

nd

pyr

Temperature (Co)

- ∆G° Product Favored

- ∆H° Exothermic

- ∆S° Entropically unfavorable

Page 42: U Toronto, February 18, 2011Darin J. Ulness, Concordia College 1 Noisy Light Spectroscopy Noisy Light Spectroscopy: Putting noise to good use Darin J

U Toronto, February 18, 2011Darin J. Ulness, Concordia College A8Noisy Light Spectroscopy

17300 17400 17500 17600

-400

-200

0

200

400

pyridine with .4g AgNO3

960 970 980 990 1000 1010 1020 1030 1040-0.2

0.0

0.2

0.4

0.6

0.8

1.0Pyridine / AgNO

3

g AgNO3/ml py

0.00 0.061 0.097 0.121 0.170 0.238 0.298 0.341 0.409

No

rma

lize

d X

-ma

rgin

al

Wavenumber / cm-1

0.00 0.05 0.10 0.15 0.20 0.25-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Pyridine/AgNO3

Ratio

27.1 Xeff

2 -.97 X

eff + 0.013

Co

mp

lexe

d p

yri

din

e t

o

Fre

e p

yri

din

ed

Effective mole fraction AgNO3

c(3)complex = Icomplex c(3)

free xfree

Icomplex = Ifree at 0.21 mole fraction

c(3)complex = 1 c(3)

free .79

c(3)complex = 3.76 c(3)

free