tutorial 2

Upload: lionel-tan

Post on 04-Oct-2015

221 views

Category:

Documents


0 download

DESCRIPTION

n

TRANSCRIPT

Electrical Machines and Motors EME4323 Tutorial 2

3-1. The simple loop is rotating in a uniform magnetic field shown in Figure 3-1 has the following characteristics:

B = 1.0 T to the rightr = 0.1 m l = 0.3 mm = 377 rad/s

(a) Calculate the voltage etot(t) induced in this rotating loop. (b) What is the frequency of the voltage produced in this loop? (c) Suppose that a 10 resistor is connected as a load across the terminals of the loop. Calculate the current that would flow through the resistor. (d) Calculate the magnitude and direction of the induced torque on the loop for the conditions in (c). (e) Calculate the instantaneous and average electric power being generated by the loop for the conditions in (c). (f) Calculate the mechanical power being consumed by the loop for the conditions in (c). How does this number compare to the amount of electric power being generated by the loop?

3-2. Develop a table showing the speed of magnetic field rotation in ac machines of 2, 4, 6, 8, 10, 12, and 14 poles operating at frequencies of 50, 60, and 400 Hz.

3-3. The first ac power system in the USA ran at a frequency of 133 Hz. If the ac power for this system were produced by a 4-pole generator, how fast would the shaft of the generator have to rotate?

3-4. A three-phase Y-connected four-pole winding is installed in 24 slots on a stator. There are 40 turns of wire in each slot of the windings. All coils in each phase are connected in series. The flux per pole in the machine is 0.060 Wb, and the speed of rotation of the magnetic field is 1800 r/min.

(a) What is the frequency of the voltage produced in this winding? (b) What are the resulting phase and terminal voltages of this stator?

3-5. A three-phase -connected six-pole winding is installed in 36 slots on a stator. There are 150 turns of wire in each slot of the windings. All coils in each phase are connected in series. The flux per pole in the machine is 0.060 Wb, and the speed of rotation of the magnetic field is 1000 r/min. (a) What is the frequency of the voltage produced in this winding? (b) What are the resulting phase and terminal voltages of this stator?

3-6. A three-phase Y-connected 60-Hz two-pole synchronous machine has a stator with 5000 turns of wire per phase. What rotor flux would be required to produce a terminal (line-to-line) voltage of 13.2 kV?

3-8. If an ac machine has the rotor and stator magnetic fields shown in Figure P3-1, what is the direction of the induced torque in the machine? Is the machine acting as a motor or generator?

3-10 In the early days of ac motor development, machine designers had great difficulty controlling the core losses (hysteresis and eddy currents) in machines. They had not yet developed steels with low hysteresis, and were not making laminations as thin as the ones used today. To help control these losses, early ac motors in the USA were run from a 25 Hz ac power supply, while lighting systems were run from a separate 60 Hz ac power supply.

(a) Develop a table showing the speed of magnetic field rotation in ac machines of 2, 4, 6, 8, 10, 12, and 14 poles operating at 25 Hz. What was the fastest rotational speed available to these early motors? (b) For a given motor operating at a constant flux density B, how would the core losses of the motor running at 25 Hz compare to the core losses of the motor running at 60 Hz? (c) Why did the early engineers provide a separate 60 Hz power system for lighting?

3-11 In later years, motors improved and could be run directly from a 60 Hz power supply. As a result, 25 Hz power systems shrank and disappeared. However, there were many perfectly-good working 25 Hz motors in factories around the country that owners were not ready to discard. To keep them running, some users created their own 25 Hz power in the plant using motor-generator sets.

A motor generator set consists of two machines connected on a common shaft, one acting as a motor and the other acting as a generator. If the two machines have different numbers of poles but exactly the same shaft speed, then the electrical frequency of the two machines will be different due to Equation (3-34). What combination of poles on the two machines could convert 60 Hz power to 25 Hz power?