triply periodic minimal surfaces bounded by vertical ...ohnita/2008/kokusai/fujimori.pdf ·...

44
Triply Periodic Minimal Surfaces Bounded by Vertical Symmetry Planes Shoichi Fujimori 1 Matthias Weber 2 1 Department of Mathematics Fukuoka University of Education 2 Department of Mathematics Indiana University December 17, 2008 Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 1 / 25

Upload: others

Post on 13-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

.

.

. ..

.

.

Triply Periodic Minimal SurfacesBounded by Vertical Symmetry Planes

Shoichi Fujimori1 Matthias Weber2

1Department of MathematicsFukuoka University of Education

2Department of MathematicsIndiana University

December 17, 2008

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 1 / 25

Page 2: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Introduction

A triply periodic minimal surface (TPMS)⇐⇒complete, embedded minimal surface in R3 which isinvariant under translations in three independentdirections (the three translations generate a lattice Λin R3).

TPMS can be considered as a minimally embeddedsurface from a compact Riemann surface of genusg ≥ 3 into R3/Λ.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 2 / 25

Page 3: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Introduction

A triply periodic minimal surface (TPMS)⇐⇒complete, embedded minimal surface in R3 which isinvariant under translations in three independentdirections (the three translations generate a lattice Λin R3).TPMS can be considered as a minimally embeddedsurface from a compact Riemann surface of genusg ≥ 3 into R3/Λ.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 2 / 25

Page 4: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

History

(19th century) H. A. Schwarz, E. R. Neovius, 5examples.

(1970) A. Schoen, 12 more examples.

(1989) H. Karcher, existence of Schoen’sexamples and further examples.

(2008) M. Traizet, existence of TPMS for anygenus g ≥ 3.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 3 / 25

Page 5: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

History

(19th century) H. A. Schwarz, E. R. Neovius, 5examples.

(1970) A. Schoen, 12 more examples.

(1989) H. Karcher, existence of Schoen’sexamples and further examples.

(2008) M. Traizet, existence of TPMS for anygenus g ≥ 3.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 3 / 25

Page 6: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

History

(19th century) H. A. Schwarz, E. R. Neovius, 5examples.

(1970) A. Schoen, 12 more examples.

(1989) H. Karcher, existence of Schoen’sexamples and further examples.

(2008) M. Traizet, existence of TPMS for anygenus g ≥ 3.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 3 / 25

Page 7: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

History

(19th century) H. A. Schwarz, E. R. Neovius, 5examples.

(1970) A. Schoen, 12 more examples.

(1989) H. Karcher, existence of Schoen’sexamples and further examples.

(2008) M. Traizet, existence of TPMS for anygenus g ≥ 3.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 3 / 25

Page 8: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Examples

Schwarz P Schwarz H Schoen T’-R

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 4 / 25

Page 9: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Our construction method

.

. .1 Construct a minimal embedding

defined on a parallel strip withthe following properties:

bounded by a vertical prism overa certain kind of triangle,the boundary curves lie on theprism,intersects to the prismorthogonally,invariant under varticaltranslation.

.

.

.

2 Repeat reflection with respectto a vertical plane of the prism.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 5 / 25

Page 10: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Our construction method

.

. .1 Construct a minimal embedding

defined on a parallel strip withthe following properties:

bounded by a vertical prism overa certain kind of triangle,the boundary curves lie on theprism,intersects to the prismorthogonally,invariant under varticaltranslation.

.

.

.

2 Repeat reflection with respectto a vertical plane of the prism.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 5 / 25

Page 11: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Our construction method

.

. .1 Construct a minimal embedding

defined on a parallel strip withthe following properties:

bounded by a vertical prism overa certain kind of triangle,the boundary curves lie on theprism,intersects to the prismorthogonally,invariant under varticaltranslation.

.

.

.

2 Repeat reflection with respectto a vertical plane of the prism.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 5 / 25

Page 12: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

The Classical Schwarz-Christoffel formula

It gives the biholomorphic map from the upper halfplane into a polygon.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 6 / 25

Page 13: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

An equivariant Schwarz-Christoffel formula

It gives the biholomorphic map from the parallel stripZ into a periodic polygon P .

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 7 / 25

Page 14: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

An equivariant Schwarz-Christoffel formula

A periodic polygon P is a simply connected domain inthe plane which is bounded by two infinite piecewiselinear curves, and is invariant under a Euclideantranslation V (z) = z + v for some v 6= 0, and thequotient P/〈V 〉 is conformally an annulus.

Let P be a periodic polygon, and define the stripZ = {z ∈ C ; 0 < Imz < τ/2}. Then ∃1 τ ∈ iR+ s.t.Z/〈z 7→ z + 1〉 and P/〈V 〉 are conformally equivalent.Moreover, we obtain a biholomorphic map f : Z → Pwhich is equivariant w.r.t. both translations:

f(z + 1) = V (f(z)).

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25

Page 15: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

An equivariant Schwarz-Christoffel formula

A periodic polygon P is a simply connected domain inthe plane which is bounded by two infinite piecewiselinear curves, and is invariant under a Euclideantranslation V (z) = z + v for some v 6= 0, and thequotient P/〈V 〉 is conformally an annulus.Let P be a periodic polygon, and define the stripZ = {z ∈ C ; 0 < Imz < τ/2}. Then ∃1 τ ∈ iR+ s.t.Z/〈z 7→ z + 1〉 and P/〈V 〉 are conformally equivalent.Moreover, we obtain a biholomorphic map f : Z → Pwhich is equivariant w.r.t. both translations:

f(z + 1) = V (f(z)).

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25

Page 16: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

.

Proposition

.

.

.

. ..

.

.

Let P be a periodic polygon and Z the associatedparallel strip. Then, up to scaling, rotating, andtranslating,

f(z) =

∫ z m∏i=1

ϑ(z − pi)ai ·

n∏j=1

ϑ(z − qj)bj

is the biholomorphic map from Z to P . Conversely,for any choices of pi ∈ R (1 ≤ i ≤ m), qj ∈ R+ τ/2(1 ≤ j ≤ n) and −1 < ai, bj < 1 satisfying the anglecondition

∑mi=1 ai = 0 =

∑nj=1 bj, f maps Z to a

periodic polygon.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 9 / 25

Page 17: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Jacobi ϑ-function

.

Definition

.

.

.

. ..

.

.

ϑ(z) = ϑ(z, τ) =∞∑

n=−∞eπi(n+ 1

2 )2τ+2πi(n+ 12 )(z− 1

2 )

.

Fact

.

.

.

. ..

.

.

ϑ(−z) = −ϑ(z),

ϑ(z + 1) = −ϑ(z),

ϑ(z + τ) = −e−πiτ−2πizϑ(z).

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 10 / 25

Page 18: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

.

Proposition (Weierstrass representation)

.

.

.

. ..

.

.

Z 3 z 7→ Re

∫ z (1

G−G,

i

G+ iG, 2

)dz

with

G(z) =m∏

i=1

ϑ(z − pi)ai ·

n∏

j=1

ϑ(z − qj)bj

gives a simply connected minimal surface with twoboundary components lying in a finite number ofvertical symmetry planes. These planes meet atangles πai at the image of pi and πbj at the image ofqj. Furthermore, the surface is invariant under thevertical translation x3 7→ x3 + 1.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 11 / 25

Page 19: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Two corners in one component

m = 2 and n = 0.

Can assume p1 = −p and p2 = +p.

G =

(ϑ(z − p)

ϑ(z + p)

)a

.

One boundary arc lies entirely in one verticalplane.

Other boundary arc swiches between two planes.

The surface lies in vertical prism over a triangle.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 12 / 25

Page 20: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Two corners in one component

m = 2 and n = 0.

Can assume p1 = −p and p2 = +p.

G =

(ϑ(z − p)

ϑ(z + p)

)a

.

One boundary arc lies entirely in one verticalplane.

Other boundary arc swiches between two planes.

The surface lies in vertical prism over a triangle.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 12 / 25

Page 21: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Two corners in one component

m = 2 and n = 0.

Can assume p1 = −p and p2 = +p.

G =

(ϑ(z − p)

ϑ(z + p)

)a

.

One boundary arc lies entirely in one verticalplane.

Other boundary arc swiches between two planes.

The surface lies in vertical prism over a triangle.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 12 / 25

Page 22: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Two corners in one component

m = 2 and n = 0.

Can assume p1 = −p and p2 = +p.

G =

(ϑ(z − p)

ϑ(z + p)

)a

.

One boundary arc lies entirely in one verticalplane.

Other boundary arc swiches between two planes.

The surface lies in vertical prism over a triangle.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 12 / 25

Page 23: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Two corners in one component

m = 2 and n = 0.

Can assume p1 = −p and p2 = +p.

G =

(ϑ(z − p)

ϑ(z + p)

)a

.

One boundary arc lies entirely in one verticalplane.

Other boundary arc swiches between two planes.

The surface lies in vertical prism over a triangle.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 12 / 25

Page 24: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Angles between symmetry planes

.

Proposition

.

.

.

. ..

.

.

The angle α0 between the symmetry planescorrespond to the intervals [0, p] and [0, 1/2] + τ/2 is

α0 = πa(2p− 1).

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 13 / 25

Page 25: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Basic case

Name (r, s, t) p gSchwarz P (2,4,4) 1/4 3Schoen H’-T (2,6,3) 1/3 4Schoen H’-T (2,3,6) 1/6 4Schwarz H (3,3,3) 1/4 3Schoen H”-R (3,2,6) 1/8 5Schoen H”-R (3,6,2) 3/8 5Schoen S’-S” (4,4,2) 1/3 4Schoen S’-S” (4,2,4) 1/6 4Schoen T’-R (6,2,3) 1/5 6Schoen T’-R (6,3,2) 3/10 6

(2,3,6)

(2,6,3)Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 14 / 25

Page 26: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Basic case

(2,4,4) (3,3,3) (2,3,6)

(3,2,6) (4,2,4) (6,2,3)

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 15 / 25

Page 27: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Limits

τ → 0 τ →∞(2,4,4)

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 16 / 25

Page 28: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Next complicated cases

Periodic polygons with four corners.

There are three different cases.

Assume additional horizontal symmetry plane.

1-dimensional period problem.

If all corners lie in one boundary component, theperiod problem cannot be solved.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 17 / 25

Page 29: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Next complicated cases

Periodic polygons with four corners.

There are three different cases.

Assume additional horizontal symmetry plane.

1-dimensional period problem.

If all corners lie in one boundary component, theperiod problem cannot be solved.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 17 / 25

Page 30: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Next complicated cases

Periodic polygons with four corners.

There are three different cases.

Assume additional horizontal symmetry plane.

1-dimensional period problem.

If all corners lie in one boundary component, theperiod problem cannot be solved.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 17 / 25

Page 31: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Next complicated cases

Periodic polygons with four corners.

There are three different cases.

Assume additional horizontal symmetry plane.

1-dimensional period problem.

If all corners lie in one boundary component, theperiod problem cannot be solved.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 17 / 25

Page 32: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Next complicated cases

Periodic polygons with four corners.

There are three different cases.

Assume additional horizontal symmetry plane.

1-dimensional period problem.

If all corners lie in one boundary component, theperiod problem cannot be solved.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 17 / 25

Page 33: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Four corners, case I

(2,4,4) (2,3,6)

(3,2,6) (6,2,3)

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 18 / 25

Page 34: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Four corners, case I

(2,4,4) and (4,2,4) surfaces in the basic case

(2,4,4) surface in this case

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 19 / 25

Page 35: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Four corners, case II

(2,4,4) (2,3,6) (3,3,3)

(3,2,6) (6,2,3) (4,2,4)

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 20 / 25

Page 36: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Four corners, case II

(2,4,4) and (4,2,4) surfaces in the basic case

(2,4,4) surface in this case

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 21 / 25

Page 37: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Existence proof for case I

We asswume the pair of planes corresponds to theintervals [0, p] and [τ/2, q] to be parallel. Then wehave

a(2p− 1) + b(2Re(q)− 1) = 1.

So the period problem reduces to 1-dimensional.

−→

The fundamental piece of the (2,3,6) surface

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 22 / 25

Page 38: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

We consider the projection F (z) of the fundamentalpiece into the x1x2-plane. Then the period problemsolved iff the image edges F ([0, p]) and F ([τ/2, q]) arecolinear.

p → 0 solved p → 1/2

The limit situations can be analyzed explicitly, so thesolution follows from an intermediate value argument.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 23 / 25

Page 39: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Next complicated cases

Periodic polygons with six corners.

There are many different cases.

Assume additional horizontal symmetry plane.

2-dimensional period problem.

In some cases we have established numerically.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 24 / 25

Page 40: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Next complicated cases

Periodic polygons with six corners.

There are many different cases.

Assume additional horizontal symmetry plane.

2-dimensional period problem.

In some cases we have established numerically.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 24 / 25

Page 41: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Next complicated cases

Periodic polygons with six corners.

There are many different cases.

Assume additional horizontal symmetry plane.

2-dimensional period problem.

In some cases we have established numerically.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 24 / 25

Page 42: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Next complicated cases

Periodic polygons with six corners.

There are many different cases.

Assume additional horizontal symmetry plane.

2-dimensional period problem.

In some cases we have established numerically.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 24 / 25

Page 43: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

Next complicated cases

Periodic polygons with six corners.

There are many different cases.

Assume additional horizontal symmetry plane.

2-dimensional period problem.

In some cases we have established numerically.

Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 24 / 25

Page 44: Triply Periodic Minimal Surfaces Bounded by Vertical ...ohnita/2008/kokusai/Fujimori.pdf · Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 8 / 25. An

The Neovius family

(2,4,4) (2,3,6) (3,3,3)

(3,2,6) (6,2,3) (4,2,4)Fujimori and Weber (FUE and IU) Triply periodic minimal surfaces OCAMI 2008 25 / 25