transportation sustainability analysispanos/444/1.8.cee... · the sustainability framework (1/3)...

47
TRANSPORTATION SUSTAINABILITY ANALYSIS Panos D. Prevedouros, PhD Professor of Transportation Department of Civil Engineering Department of Civil Engineering [email protected] Presented at Korea University, Seoul, South Korea, April 27, 2012

Upload: others

Post on 18-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • TRANSPORTATION  SUSTAINABILITY  ANALYSIS

    Panos D. Prevedouros, PhDProfessor of Transportation

    Department of Civil EngineeringDepartment of Civil [email protected]

    Presented at Korea University, Seoul, South Korea, April 27, 2012 

  • In 1972, a team of experts from MIT presented a 

    db ki  groundbreaking report called The Limits to Growth

    In 2012 Australian h i i t  d physicist and 

    sustainability analyst Graham 

    Turner updated it Turner updated it with data from 1970 to 2000

  • OutlineOutline

    i. SUSTAINABILITYii. FRAMEWORKii. FRAMEWORKiii. ANALYSISiv CASE STUDYiv. CASE STUDYv. POLICY & DM

    CONCLUSIONvi. CONCLUSION

  • Sustainability  Sustainability can be applied 

    to any system, to describe the maintenance of a balancethe maintenance of a balance within the system

    Integrates Environment, E E S i tEconomy, Energy, Society

    World Commission on Environment and Development (WCED): Sustainability is a rate of development that meets the needs of the present without compromising the ability of future generations to meet their own needs

  • Sustainability … How?yTransportation impacts on:

    I ti   Environment Society 

    Incorporation of 

    sustainability into 

    Economy transportation planning

    1. Transportation system sustainability definition2. Standard method for assessing transportation systems

    Not AvailableNot Available 

  • Sustainability and LCASustainability and LCA

    Life Cycle Models

    Cradle to Well toCradle to Grave

    Well to Pump

    Vehicle Cycle  Fuel Cycle

  • The Sustainability Framework (1/3)y

    The 7 dimensions:

    The generic structure components of a transportation system and the restrictions

    The 7 goals seek to: The 7 dimensions:

    1. Environment

    2 T h l

    The 7 goals seek to:

    1. Minimize environmental impact 

    2 Maximize technology performance to 2. Technology

    3. Energy

    2. Maximize technology performance to help people meet their needs

    3 Minimize energy consumption4. Economy

    5. Users (and other 

    3. Minimize energy consumption 

    4. Maximize and support a vibrant economy 

    5 Maximize users’ satisfaction stakeholders)

    6. Legal framework 

    5. Maximize users  satisfaction

    6. Comply with legal framework

    7 Comply with local restrictions of each7. Local restrictions

    7. Comply with local restrictions of each place

  • The Sustainability Framework (2/3) y ( / )

    Transportation mode ‐Component 

    Sustainability dimension ‐Component  

    Environment

    Technology   

    Energy   

    Economy   

    Users 

    Legal Framework

    Sustainability  Decomposition Prism

    Framework

    Local Restrictions

  • Sustainability P i

    All activities within environmental limits• Human made components

    • Limits set by other layers

    • Set of stakeholders• System’s output • Existing legislation of a community

    • Feasibility constrains

    • Important & complex 

    ti i tiPrism • Sustainable technology

    y• Sustainable economycontrol user’s choice

    y• Cultural heritage• Archeological sites

    participation• Short and long term impacts

    • Needs are not met

    Economy

    TechnologyEnergy

    Economy

    Environment

    gy

    Users

  • Sample Applications Transport systems

    Transport modesp

    Other applications

    Hydroelectric, coal, nuclear plants

    Wind, solar power generation Wind, solar power generation

    Construction

    Waste treatment Waste treatment

    Other infrastructure

    Focus  Urban transportation modes

  • The Sustainability Framework (3/3) 

    Urban transportation mode

    Adjusted to assess sustainability in transportation

    p System operator Traveler Different technologies and fuel types Components Attributes

    fuel types

    ComponentsComponentsVehicleInfrastructure

    Vehicle InfrastructureManufacture Fuel Operation MaintenanceConstruction Fuel Operation MaintenanceVehicle InfrastructureManufacture Fuel Operation MaintenanceConstruction Fuel Operation Maintenance

  • Sustainability Indicators (1/2)y ( / )From literature developed indicators for sustainable transportation 

    t d d 4 t i bilit di iassessment  grouped under 4 sustainability dimensions: 

    1. Transportation system performance2 E i2. Environment3. Society4. Economy

    These sustainability dimensions are captured by the sustainable transportation goals described in the two fundamental definitions on sustainable transportation provided by the WCED (1987) and the (ECMT 2001)  

  • Environment Technology Energy Economy Users Legal FrameworkLocal

    RestrictionsFramework Restrictions

    ObjectivesE1…Ei

    ObjectivesT1…Ti

    ObjectivesEN1…ENi

    ObjectivesEC1…ECi

    ObjectivesU1…Ui

    ObjectivesF1…Fi

    ObjectivesR1…Ri

    IndicatorsE1…Ej

    Environment Sustainability

    IndicatorsT1…Tj

    Technology Sustainability

    IndicatorsEN1…ENj

    Energy Sustainability

    IndicatorsEC1…ECj

    EconomySustainability

    IndicatorsU1…Uj

    UsersSustainability

    IndicatorsF1…Fj

    Legal FrameworkFrameworkSustainability

    IndicatorsR1…Rj

    Local RestrictionsSustainabilitySustainability

    IndexSustainability

    IndexSustainability

    IndexSustainability

    IndexSustainability

    IndexSustainability

    IndexSustainability

    Index

    Overall Sustainability Index

  • AssumptionsAssumptions All vehicles use the same infrastructure 

    Indicators focus on the component vehicle, and 5 sustainability 

    dimensions: 

    1. Environment2. Technology3. Energy3. Energy4. Economy 5. Users

    The remaining two dimensions (legal framework and local 

    restrictions) are imposed by communities and they are applicable onlyrestrictions) are imposed by communities and they are applicable only 

    to the deployment of specific transportation projects

  • Transportation VehiclesTransportation Vehicles1. Internal Combustion Engine Vehicle or ICEV (2010 Toyota g ( y

    Camry LE)2. Hybrid Electric Vehicle or HEV (2010 Toyota Prius III)3 Fuel Cell Vehicle or FCV (2009 Honda Clarity FCX)3. Fuel Cell Vehicle or FCV (2009 Honda Clarity FCX)4. Electric Vehicle or EV (2011 Nissan Leaf)5. Plug‐In Hybrid Vehicle or PHEV (2011 Chevrolet Volt)g y ( )6. Gasoline Pickup Truck or GPT (2010 Ford F‐150 base)7. Gasoline Sports Utility Vehicle or GSUV (2010 Ford Explorer 

    Base)Base)8. Diesel Bus or DB (New Flyer 40′ Restyled)9. Bus Rapid Transit or BRT (New Flyer 60′ Advanced Style BRT)10. Car‐sharing or CS program with ICEV (2010 Toyota Camry LE)11. Car‐sharing or CS program with HEV (2010 Toyota Prius III)

  • Vehicle CharacteristicsVehicle CharacteristicsICEV    HEV    FCV      EV       PHEV  GPT   GSUV DB     BRT  CS  CS

    Camry Prius Clarity Leaf Volt F‐150 Explorer New   fl

    New fl

    Camry PriusCamry Prius Clarity Leaf Volt F 150 Explorerflyer flyer

    Camry Prius

    Weight Lbs 3,307 3,042 3,582 3,500 3,781 5,319 4,509 26,000 49,000 3,307 3,042

    Average occupancy passengers 1.15 1.15 1.15 1.15 1.15 1.10 1.40 10.50 23.90 4.58 4.58

    Average lifetime years 10.6 10.6 15.0 15.0 15.0 9.6 9.6 12.0 12.0 2.0 2.0

    Average annual miles miles 11,300 11,300 11,300 11,300 11,300 11,300 11,300 41,667 41,667 18,000 18,000

    Lifetime miles miles 119,780 119,780 169,500 169,500 169,500 108,480 108,480 500,000 500,000 36,000 36,000

    Cost to buy (MSRP) $ US dollars $22,225 $23,050 $48,850 $32,780 $40,000 $22,060 $28,190 $319,709 $550,000 $22,225 $23,050

    Fuel Price $ per U SFuel Price 

    (Jan. 2010 ‐W.Coast)

    $ per U.S. 

    gallon$2.85 $2.85 $4.90* $0.16** $2.85 $2.85 $2.85 $2.94 $2.94 $2.85 $2.85

    Note: (*) per kg, (**) per kWh

    Due to the variable character of the proposed indicators dataDue to the variable character of the proposed indicators, data for each vehicle is found from different sources

  • Life Cycle ModelsLife Cycle ModelsEmissions and Energy 

    V e h i c l e

    Manufacturing Fueling Operation

    MOBILE 6 2

    Maintenance

    GREET 2.7 GREET 1.7MOBILE 6.2GREET 1.7EIO‐LCA

    GREET 2.7EIO‐LCA

    Manufacture Feedstock Fuel Run, Start, Tire, Brake, 

    Idle, Insurance

    Maintain Dispose Recycle

    Insurance, License, 

    Registration, Taxes

  • EnvironmentEnvironmentSustainability Dimension

    Goal Objective Indicator

    Minimize global warming

    Carbon Dioxide ‐ CO2

    Methane ‐ CH4 

    N O

    onmen

    t Minimize 

    environmental

    N2O

    GHG

    Volatile Organic Compound  

    Enviro environmental 

    impactMinimize air pollution

    Carbon Monoxide  ‐ CO 

    Nitrogen Oxides ‐ NOx 

    Particle Matter PMParticle Matter ‐ PM10

    Sulphur Oxides ‐ SOx

    Minimize noise Noise 

    Minimize externalities on living 

    humans and speciesHealth

  • TechnologyTechnologySustainability Dimension

    Goal Objective Indicator

    Vehicle lifetimeMaximize vehicle lifetime

    Vehicle lifetime

    Upgrade potential

    Maximize used resources  Capacity 

    gy 

    M i i t h l

    Minimize time losses

    Fuel frequency

    Maintenance frequency

    Techno

    lo Maximize technology performance to help people 

    meet their needs Minimize land consumption Vehicle storage

    Maximize supply Supplypp y pp y

    Maximize  mode choices for all users

    Feasibility of use by social excluded groups

    Readiness

    Maximize vehicle performance Engine power

  • EnergyEnergy

    Sustainability Dimension Goal Objective Indicator

    gy Minimize energy

    Manufacturing energy

    Fueling energy

    Energ Minimize energy 

    consumptionMinimize energy consumption 

    Fueling energy

    Operation energy

    Maintenance energy

  • 60.0

    Energy Consumpion per VMT

    40.0

    50.0

    MT)

    20.0

    30.0

    Ener

    gy (M

    j/VM

    0 0

    10.0

    0.0

    ICE

    V

    HE

    V

    FCV

    EV

    PH

    EV

    GP

    T

    GS

    UV

    DB

    BR

    T

    CS

    -Cam

    ry

    CS

    -Priu

    s

    Maintenance Operation Fueling ManufactureMaintenance Operation Fueling Manufacture

  • Energy Consumpion per PMT

    12.0

    Energy Consumpion per PMT

    8.0

    10.0

    MT)

    4.0

    6.0

    Ener

    gy (M

    j/P

    0 0

    2.0

    0.0

    ICE

    V

    HE

    V

    FCV

    EV

    PH

    EV

    GP

    T

    GS

    UV

    DB

    BR

    T

    CS

    -Cam

    ry

    CS

    -Priu

    s

    Maintenance Operation Fueling Manufacture

  • EconomyEconomySustainability Dimension

    Goal Objective IndicatorDimension

    Reduce cost requirementsCost

    Property damage 

    my  Maximize and

    Minimize parking requirements Parking cost

    Econ

    om

    Maximize and support a vibrant 

    economy Minimize costs for the community Safety cost

    Minimize governmental support Subsidy

    Promote welfare Job opportunitiesPromote welfare  Job opportunities 

  • UsersUsersSustainability Dimension

    Goal Objective IndicatorDimension

    Mobility

    Demand

    Maximize transportation performance

    Global availability 

    Reasonable availability 

    Delay

    Users Maximize users 

    satisfactionReliability

    Safety

    Improve accessibility Equity of access

    Maximize user comfort

    Leg room

    Cargo space

    Seated probability

    Fueling opportunities

  • Urban Mode Sustainability ScoresUrban Mode Sustainability Scores

    Sustainability Dimensions

    ICEV    HEV   FCV     EV       PHEV  GPT   GSUV   DB      BRT    CS CS

    Camry Prius Clarity Leaf Volt F‐150 Explorer New flyer New flyer Camry Prius

    Environment   0.483 0.637  0.803 0.642 0.606 0.145 0.492 0.717 0.860 0.907 0.959

    Technology  0.450 0.500 0.408 0.553 0.471 0.387 0.489 0.628 0.669 0.561 0.590

    Energy  0.388 0.572 0.545 0.462 0.541 0.019 0.324 0.673 0.908 0.956 0.999

    Economy 0.341 0.385 0.485 0.557 0.454 0.193 0.354 0.326 0.486 0.578 0.561

    Users 0.344 0.347 0.291 0.129 0.354 0.429 0.402 0.250 0.228 0.344 0.347

    Overall Sustainability 

    Index40.1% 48.8% 50.6% 46.8% 48.5% 23.4% 41.2% 51.9% 63.0% 66.9% 69.3%

    Ranking 10 6 5 8 7 11 9 4 3 2 1

  • Case Studyy Uses our experimental SusTainability

    RAnking TOol (STRATO) in transportationRAnking TOol (STRATO) in transportation planning  

    STRATO reveals the tradeoffs that occur STRATO reveals the tradeoffs that occur from transportation policies and planning

    The results are aggregated to assess the The results are aggregated to assess the transport sustainability of 3 metropolitan areas by taking into account their transportation characteristicstransportation characteristics

  • MethodologyMethodology Atlanta, Chicago, and a simulated metropolitan area 

    called OPTIMUS (Optimal Transportation Indicators for ( p pModeling Urban Sustainability)

    OPTIMUS combines optimal and average characteristics f U S lifrom U.S. metropolitan areas

    The specific metropolitan areas of Atlanta and Chicago were selected due to the availability of recent trip datawere selected due to the availability of recent trip data

    Data  Regional household travel surveyssurveys

    Sustainability indicators are weighted per area passenger miles traveled 

    29

    (PMT) to eliminate inconsistencies due to different population sizes

  • Input DataOPTIMUS A i

    p1. Vehicle fuel price 2. Vehicle parking cost  

    1. Lowest fuel cost  2 Lowest electricity cost

    OPTIMUS Assumptions

    p g3. Vehicle ownership ratio  4. Number of passengers per 

    t lit

    2. Lowest electricity cost  3. Lowest insurance cost  4. Average parking cost  

    metropolitan area5. Mode split by trip  6. Avg. miles per trip per vehicle 

    5. Average vehicle ownership ratio  6. Average metropolitan area size g p p p

    type  7. Cost to purchase vehicle  8 Public transit fare

    7. Average trips per passenger  8 Average miles per trip8. Public transit fare  

    9. Insurance cost per vehicle type  10. Number of fueling stations 

    8. Average miles per trip  9. Maximum vehicle occupancy  10. Optimal fleet mixg

    available11. Vehicle occupancy per vehicle   11. Highest public transit use  

  • STRATO’s Sustainability IndicesSTRATO s Sustainability Indices

    Index Atlanta Chicago OPTIMUS

    Environment  0.880 0.887 1.000

    Technology 0.845 0.842 0.999Technology  0.845 0.842 0.999

    Energy  0.864 0.880 1.000

    Economy  0.913 0.707 0.974

    Users 0.791 0.787 0.800

    Overall Sustainability  0.859 0.820 0.954

  • STRATO’s Sustainability ScoresSTRATO s Sustainability Scores1.000Environment

    0.600

    0.800

    1.000

    0.200

    0.400Technology Users

    Chicago0.000

    ChicagoAtlantaOptimus

    Energy Economy

  • 13,000

    Business as Usual Model ‐‐Million KWh

    Biodiesel

    10,000

    11,000

    12,000 PV

    Coal

    Wind

    Geothermal

    7,000

    8,000

    9,000Hydro‐electric

    H‐Power

    Biomass

    Petroleum

    5,000

    6,000

    Oil usage change since

    2,000

    3,000

    4,000change since 2008= ‐4%

    0

    1,000

    2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

  • 12 000

    13,000

    Solve‐the‐Problem Model ‐‐Million KWh

    Bi di l

    10,000

    11,000

    12,000 Biodiesel

    PV

    Coal

    Wind

    Geothermal

    7,000

    8,000

    9,000

    Geothermal

    Hydroelectric

    H‐Power

    Biomass

    Petroleum

    5,000

    6,000

    2,000

    3,000

    4,000Oil usage 

    change since 2008 = ‐ 41 %

    0

    1,000

    2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

  • Transit 6.6Drive Alone 63.0s, PhD

    , 201

    1

    Transit 5.6D i Al 63 8

    Carpool 21.1Other 9.3Rail

    anos

    D. P

    reve

    dour

    os

    Drive Alone 63.8Carpool 21.2Other 9.4 Transit 7.0HOT

    © P

    Drive Alone 57.0Carpool 25.0Other 11.0

    HOTBRTTeleCBik W

    50%

    BikeW

  • Best Quadrant

    WIDE spread of COST

    NARROW Spread of COST

    2nd Best WIDE NARROWCOST COST

    WIDE spread of BENEFIT

    BestBestSpotSpot

    HOTLanes

    WIDENew 

    FreewayTruck Only Lanes

    NARROW spread of BENEFIT

    Handi‐van Service

    Ferry Service

    NARROWJapanH.S. Rail

    Bridge

    3rd Best WIDE NARROWWorst 

    QuadrantWIDE NARROW

    WIDECity Street Re‐paving

    Contraflow, temp. lane closures

    Quadrant

    WIDEHonoluluRail (32km)

    California H.S. Railp g

    closures

    NARROWBicycle Lanes

    Parking meters

    ( )

    NARROWSan Juan 

    Rail (15km)WorstWorstSpotSpot

    HIGHLOW COST

  • LimitationsLimitations The high number of data sources and assumptions  impose g p p

    limitations and uncertainties  

    STRATO’s inventories for vehicles are based on built‐in ti d t i GREET MOBILE d EIO LCAassumptions and parameters in GREET, MOBILE and EIO‐LCA. 

    STRATO’s sustainability results rely on the characteristics of the “best‐selling vehicle”, which represents a whole class of g , pvehicles

  • Research  Outcomes (1/2)( / )1. Developed a comprehensive sustainability framework with 

    a set of indicators for the life cycle sustainability 

    assessment of transportation vehiclesp

    2. Organized indicators into sustainability dimensions 

    (Environment, Technology, Energy, Economy, Users, Legal 

    Framework and Local Restrictions) that do not cross 

    sustainability boundaries  

  • Research Outcomes (2/2)Research  Outcomes (2/2)

    3 Assessed transportation sustainability by3. Assessed transportation sustainability by 

    disaggregating transportation modes according to 

    vehicle population and characteristics

    4. Developed STRATO, which is composed by a set of p p y

    sustainability indices and a visual interface, that can be 

    used as a planning and policy toolused as a planning and policy tool 

    5. Method is expandable to other infrastructure systems

  • Future WorkFuture Work Include a sensitivity analysis to reveal how changes in the y y g

    assumed parameters of vehicles can change the final outcome

    Expand this application to cover all popular urban transportation modes  such as heavy and light rail, HOT Lanes etcLanes, etc. 

    Explore additional indicators per sustainability dimension

    Remove indicators if their effect is uniform or marginal 

  • Th k YThank You

    Panos D. Prevedouros, PhDProfessor of Transportation

    Department of Civil [email protected]